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Abstract
In this paper, we provide an elementary, geometric, and unified framework to ana-
lyze conic programs that we call the strict complementarity approach. This frame-
work allows us to establish error bounds and quantify the sensitivity of the solution. 
The framework uses three classical ideas from convex geometry and linear algebra: 
linear regularity of convex sets, facial reduction, and orthogonal decomposition. We 
show how to use this framework to derive error bounds for linear programming, sec-
ond order cone programming, and semidefinite programming.

Keywords Conic program · Strict complementarity · Error bound

1 Introduction

Given two finite dimensional Euclidean spaces � and � , each equipped with an inner 
product denoted as ⟨⋅, ⋅⟩ , we consider a conic program in standard form with deci-
sion variable x ∈ �:

Here the problem data comprises a linear map A ∶ � → � , a right hand side vector 
b ∈ � , and a cost vector c ∈ � . The cone K ⊂ � is proper [1, Section 2.4.1]. The 
solution set and optimal value of ( P ) are denoted as X⋆ and p⋆ respectively. When 

minimize ⟨c, x⟩
subject to Ax = b,

x ∈ K.
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K is the nonnegative orthant �n
+
 , the second order cone SOCn , or the set of positive 

semidefinite matrices �n
+
 , we call the corresponding problem ( P ) an linear program-

ming (LP), second order cone programming (SOCP), or semidefinite programming 
(SDP), respectively.

In this paper, we provide an elementary framework based on strict complementa-
rity (see Sect. 2.1) to establish error bounds and quantify the sensitivity of the solu-
tion of Problem ( P ). In the following, ‖⋅‖2 denotes the Euclidean norm induced by 
the inner product, while ‖⋅‖ is a generic norm that will be specified when we instan-
tiate these bounds later in the paper.

• Error bound: Given x ∈ � , define three error metrics: suboptimality 
𝜖opt(x) ∶ = ⟨c, x⟩ − p⋆ , linear infeasibility Ax − b , and conic infeasibility as 
x− = x − x+ , where the conic part x+ ∶= PK(x).1 These errors are easy to meas-
ure, while the distance of a given point x to the solution is not. This paper shows 
how to establish an error bound for ( P ) that bounds the distance to the solution 
in terms of these measurable error metrics, for some constants ci, i = 1, 2, 3 and 
exponent p > 0 independent of x: 

 where ����(x,X⋆) ∶= infx⋆∈X⋆

‖‖x − x⋆
‖‖2 is the distance to x⋆.

• Sensitivity of the solution: We often wish to understand how the solution of 
the problem changes with perturbations of the problem data. Given new problem 
data (c�,A�, b�) ∈ � × �(�,�) × � for Problem ( P ), where �(�,�) is the set of 
linear maps from � to � , Problem ( P ) admits a new optimal solution set X′

⋆
 . This 

paper shows how to quantify the sensitivity of the solution, for some constants 
c�
i
, i = 1, 2, 3 and exponent p′ > 0 , via the inequality 

 where dist(X⋆,X
�
⋆
) ∶ = infx⋆∈X⋆,x

�∈X�
⋆

‖‖x⋆ − x�
⋆
‖‖2 is the distance between solu-

tion sets. In fact, once an error bound of the form (ERB) is available, we can 
prove an inequality of this form by bounding the error metrics of the new solu-
tion x�

⋆
∈ X�

⋆
 with respect to the original problem data (c,A, b) in terms of the 

perturbation (c − c�,A −A�, b − b�).
Importance of the error bound and sensitivity of solution. The error bound and sen-
sitivity of the solution can be regarded as condition numbers for Problem ( P ). They 
guarantee that the output of iterative algorithms to solve ( P ) is still useful despite 
optimization error (of the algorithm) and measurement error (of the problem data) 
[2, 3]. The error bound is also vital in proving faster convergence for first order algo-
rithms [4–7]. Hence a huge body of work has devoted to establish error bounds and 
sensitivity of solutions  [2, 4, 5, 8–10].

����(x,X⋆)
p ≤ c1�𝜖opt(x)� + c2‖Ax − b‖ + c3

��x−��, (ERB)

dist
p� (X⋆,X

�
⋆
) ≤ c�

1
‖‖c − c�‖‖ + c�

2
‖‖A −A�‖‖ + c�

3
‖‖b − b�‖‖, (SSB)

1 The orthogonal projector PK is defined as PK(x) = argminy∈K‖y − x‖2.
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Our Contribution. In this paper, we use the notion of strict complementarity 
(defined in Sect.  2.1) to provide an elementary, geometric, and unified frame-
work, described in detail in Sect. 2, to establish bounds of the form (ERB) and 
(SSB) for the conic program ( P ). Specifically, in Sects. 3 and 4, we show how to 
construct a bound with exponents p = p� = 1 for LP and p = p� = 2 for SOCP and 
SDP, under strict complementarity, and provide a way to obtain explicit estimates 
of ci, i = 1, 2, 3 in terms of the primal and dual solutions and problem data when 
the primal solution is unique. Table 1 summarizes our results.

The main contribution of this paper is a new and simple framework for proving 
bounds of this form. As discussed in Sect. 5, many particular bounds that we pre-
sent here have been discovered before. On the other hand, we believe that some 
of the bounds are new: in particular, bounds on the sensitivity of the solution that 
pertain when the primal or dual solution are not unique.

Paper organization. The rest of the paper is organized as follows. In Sect. 2.1, 
we discuss two important analytical conditions assumed throughout this paper: 
strong duality and dual strict complementarity. In Sect. 2.2, we describe the basic 
framework of the strict complementarity approach: linear regularity of convex 
sets, facial reduction, and extension via orthogonal decomposition. In Sect. 3, we 
apply the framework to specific examples, LP, SOCP, and SDP, to establish error 
bounds. We next demonstrate how to use the error bound established to character-
ize the sensitivity of solutions in Sect. 4 by bounding the error measures of the 
new solution x�

⋆
∈ X�

⋆
 in terms of the perturbation (c − c�,A −A�, b − b�) . Finally, 

we discuss previous results regarding (ERB) and (SSB), how this work relates to 
them, and potential new directions.

Notation. We use �,�,�′,�′ to represent generic finite dimensional Euclid-
ean spaces. For a set C in � , we denote its interior, boundary, affine hull, and 
relative interior as ���(C) , �C , aff ine(C) , and ������(C) respectively. We equip �n 
with the dot inner product, and �n and �n×n with the trace inner product. The 
distance to a set C is defined as ����(x, C) = infz∈C ‖x − z‖2 . We write ‖⋅‖ for an 
arbitrary norm, and ‖⋅‖2 for the �2 norm induced by the underlying inner prod-
uct. For matrices, the operator norm (maximum singular value), Frobenius norm, 
and nuclear norm (sum of singular values) are denoted as ‖⋅‖op , ‖⋅‖F , and ‖⋅‖∗ 
respectively. For a linear map B ∶ � → � and a linear space V ⊂ � , we write the 
restriction of B to V as BV . We define the largest and smallest singular value of 
B as �max(B) ∶ = max‖x‖2=1 ‖B(x)‖2 and �min(B) ∶ = min‖x‖2=1 ‖B(x)‖2 respectively.

2  The strict complementary slackness approach

In Sect. 2.1, we introduce two important structural conditions, strong duality and 
dual strict complementarity, that are essential to our approach. Next in Sect. 2.2, 
we describe the main ingredients of the strict complementary slackness approach: 
linear regularity (Sect.  2.2.1), facial reduction (Sect.  2.2.2), and orthogonal 
decomposition (Sect. 2.2.3). Our main result, Theorem 1, is in Sect. 2.2.3.
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2.1  Analytical conditions

Here we define two conditions that are essential to our framework: strong duality 
and dual strict complementarity. To start, let us recall the dual problem of ( P ) is

The vector y ∈ � is the decision variable, the linear map A∗ is the 
adjoint of the linear map A , and the cone K∗ is the dual cone of K , i.e., 
K∗ ∶= {s ∈ � ∣ ⟨s, x⟩ ≥ 0, ∀x ∈ K} . Let us introduce strong duality first.

Definition 1 (Strong duality) The primal and dual problems ( P ) and (D) satisfy 
strong duality (SD) if the primal and dual solution sets X⋆,Y⋆ are nonempty, X⋆ is 
compact, and there exists a primal and dual solution pair (x⋆, y⋆) ∈ X⋆ × Y⋆ such 
that

Equivalently, define the slack vector s⋆ = c −A∗y⋆ to rewrite the equality (SD) as

Note that we require the existence of primal and dual optimal solutions instead of 
just equality of optimal values. Strong duality in the stated form is ensured by pri-
mal and dual Slater’s condition: there is a primal and dual feasible pair (x, y) with 
(x, c −A∗y) ∈ ���(K) × ���(K∗).

Next we state the second condition: dual strict complementarity. This condition 
is the key to established error bounds for a variety of optimization problems [4, 5].

Definition 2 (Dual strict complementarity (DSC)) Given a solution pair 
(x⋆, y⋆) ∈ X⋆ × Y⋆ , define the complementary face F

s⋆
∶= {x ∣ ⟨x, s⋆⟩ = 0, s⋆ = c −A

∗
y⋆} ∩K . 

The solution pair (x⋆, y⋆) satisfies dual strict complementarity if

If ( P ) and (D) has one such pair, we say ( P ) and (D) (or simply ( P )) admits dual 
strict complementarity.

Let us now unpack the definition of Fs⋆
 and dual strict complementarity. Also see 

Fig. 1 for a graphical illustration of the condition.
Understanding the complementary face Fs⋆

 . To understand the name comple-
mentary face, let us introduce the complementary hyperplane, the hyperplane 
Hs⋆

= {x ∣ ⟨x, s⋆⟩ = 0} orthogonal to the slack vector s⋆ = c −A∗y⋆ . The comple-
mentary face Fs⋆

 is simply the intersection of Hs⋆
 and the cone K . The intersection 

is nonempty due to strong duality. We can see that Fs⋆
 is indeed a face because its 

intersection with K is nonempty (it contains x⋆ ), and every x ∈ K lies on the same 

maximize ⟨b, y⟩
subject to c −A

∗y ∈ K
∗.

(D)

⟨c, x⋆⟩ = ⟨b, y⋆⟩ = ⟨Ax⋆, y⋆⟩. (SD)

0 = ⟨c −A∗(y⋆), x⋆⟩ = ⟨s⋆, x⋆⟩.

x⋆ ∈ rel(Fs⋆
). (DSC)
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side of the hyperplane Hs⋆
 , ⟨x, s⋆⟩ ≥ 0 , as s⋆ ∈ K∗ . In particular, we see the face Fs⋆

 
is exposed.

Dual strict complementarity (DSC) and Slater’s condition. To better understand 
dual strict complementarity, define the complementary space as the affine hull of 
Fs⋆

 , Vs⋆
∶= aff ine(Fs⋆

) . The complementary face Fs⋆
= Hs⋆

∩K is a cone, so the 
complementary space Vs⋆

 is a linear subspace. Imagine modifying problem ( P ) by 
replacing the cone K by Fs⋆

 in problem ( P ) and restricting the decision variable x to 
the subspace Vs⋆

 . Note that x⋆ is still a solution to this problem, so this procedure is 
related to facial reduction: the modified problem restricts x to a face of the original 
cone K . DSC means that there is a primal x in the interior of the cone Fs⋆

⊂ Vs⋆
 , 

where the interior is taken w.r.t. the subspace Vs⋆
 . Hence DSC is equivalent to the 

usual Slater’s condition for the modified problem.
Primal strict complementarity and strict complementarity. Given dual strict com-

plementarity (DSC), a natural way to define primal strict complementarity (PSC) 
is to reverse the role of s⋆ and x⋆ in the definition of DSC. Precisely, PSC means 
that there exists (x⋆, y⋆) with c −A∗y⋆ = s⋆ ∈ rel({s ∣ ⟨x⋆, s⟩ = 0 and s ∈ K∗}) . Pri-
mal and dual strict complementarity are not always equivalent unless the cone K is 
exposed.2 Happily, all the symmetric cones are exposed, including K = �n

+
 , SOCn , 

Fig. 1  Strict Complementarity: For both plots, the indigo cone is the cone K ; the slack vector s⋆ is the 
blue ray; the complementary face Fs⋆

 is the dashed black ray; and the complementary space Vs⋆
 is the 

black line (both solid and dashed parts). In the 2D case, the complementary hyperplane Hs⋆
 and Vs⋆

 coin-
cide. In the 3D case, the complementary hyperplane Hs⋆

 is the yellow plane, which is tangent to the pur-
ple cone K at the point x⋆ and is orthogonal to s⋆

2 For a discussion on primal and dual strict complementarity, see [11, Remark 4.10].
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and �n
+
 . [11] shows that DSC and PSC actually hold “generically”3 for general conic 

programs. It is worth noting that the standard notion of strict complementarity (SC) 
for SDP [12, Definition 4] and LP, both defined algebraically, are equivalent to the 
geometric notion of DSC here.4 SC always holds for LP [13], holds “generically” for 
SDP as shown in [12], and even holds for some structured instances of SDP [3]. Due 
to the equivalence, DSC also holds under the same conditions for LP and SDP.

2.2  Defining the strict complementary slackness approach

In this section, we explain how to use the two assumptions in Sect. 2.1 to establish a 
framework to prove error bounds of the form (ERB) and sensitivity bounds of the 
form (SSB). As we explained in the introduction, an error bound (ERB) can be used 
to derive a sensitivity bound (SSB). Hence, we focus on proving an error bound first. 
Our main theorem, Theorem 1 in Sect. 2.2.3, reduces the task to bounding the quan-
tity ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2.

5 We explain how to further bound this quantity in Sect. 3.

2.2.1  From optimality to feasibility: linear regularity of convex sets

Our first step is to identify problem ( P ) with the feasibility problem of finding x 
such that

This transformation activates the following geometric result, called linear regulairty 
regularity of convex sets [14, Theorem 4.6], [15, Theorem 2.1], a classical result on 
error bounds for feasibility systems. This result states that the distance to the inter-
section of two sets is bounded by the sum of distances to the two sets.

Lemma 1 (Linear regularity) Suppose the C ⊂ � is an affine space with 
C = {x ∣ Bx = d} , where B ∶ � → � is a linear map, and D ⊂ � is a closed convex 
cone. If C ∩ ���(D) ≠ � and C ∩ D is compact, then there are some 𝛾 , 𝛾 ′ > 0 such 
that for all x ∈ �,

Now it is tempting to set C = {x ∣ ⟨c, x⟩ = p⋆, A(x) = b} and D = K , and con-
clude (ERB) holds with exponent p = 1 , since C ∩ D = X⋆ . The catch is that for 
most problems of interest, the optimal solution x⋆ ∈ 𝜕K lies on the boundary of 

(1)⟨c, x⟩ = p⋆, A(x) = b, and x ∈ K.

(2)����(x,C ∩ D) ≤ �‖Bx − d‖2 + � �����(x,D).

5 Here V⟂

s⋆
 is orthogonal complementary space of Vs⋆

= aff ine(Fs⋆
) , and PV

⟂

s⋆

 is the corresponding pro-
jection. Recall the conic part x+ is x+ = PK(x).

3 Roughly speaking, this condition holds except on a measure 0 set of problems parameterized by A, b, c , 
conditioning on the existence of a primal dual solution pair. We refer the reader to the references for 
more details.
4 The definition of SC for LP and SDP, and the proof of the equivalence can be found in Sect. 1.
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the cone K , and the condition ���(D) ∩ C = � does not hold! Indeed, unless c = 0 , 
which makes ( P ) a feasibility problem, we always have x⋆ ∈ 𝜕K.

2.2.2  Facial reduction

We may still use Lemma 1 to establish an error bound. The key is to use 
the facial reduction idea mentioned earlier. Recall the condition required is 
C ∩ ���(D) = {x ∣ ⟨c, x⟩ = p⋆, A(x) = b} ∩ ���(K) ≠ � , which does not hold for ( P ) 
with nonzero c . The problem is that the cone K lies in the large space � , so its interior 
(with respect to � ) does not contain x⋆ . Instead, consider restricting the variable x to 
the complementary space Vs⋆

= aff ine(Fs⋆
) and replacing the cone K by the comple-

mentary face Fs⋆
 . The interior of the cone Fs⋆

 with respect to the space Vs⋆
 does con-

tain x⋆ under strict complementarity, so we may activate Lemma 1.
This modification enables an error bound for x ∈ Vs⋆

 as stated in Lemma 2 
below. We also provide a more concrete estimate of the constants � , � ′ when X⋆ is a 
singleton.

Lemma 2 Suppose strong duality and dual strict complementarity hold. Then there 
are constants � , � ′ such that for any x ∈ Vs⋆

:

Moreover, if X⋆ is a singleton, then we may take � � = 0 and 𝛾 =
1

𝜎min(AVs⋆
)
 . Here, the 

linear map AVs⋆
 is A restricted to Vs⋆

 and 𝜎min(AVs⋆
) is the smallest singular value of 

AVs⋆
.

Proof The inequality 3 is immediate by using Lemma 1 with C = {x ∈ V
s⋆

∣ A(x) = b} ⊂ V
s⋆

 , 
D = Fs⋆

 , and � = Vs⋆
.

Indeed, this choice gives C ∩ D = X⋆ . The condition C ∩ ���(D) ≠ � , where the 
interior is taken with respect to the space Vs⋆

 , is exactly (DSC): ∃x⋆ ∈ X⋆ such that 
x⋆ ∈ ������(Fs⋆

).
Now we show that � � = 0 and 𝛾 =

1

𝜎min(AVs⋆
)
 when X⋆ is a singleton. First assume AVs⋆

 

has a trivial nullspace, so x⋆ is the only solution in Vs⋆
 to AVs⋆

(x) = b . Hence 
𝜎min(AVs⋆

) > 0 and so for any x ∈ Vs⋆
 , ��x − x⋆

��2 ≤
1

𝜎
min

(AVs⋆
)

���AV
s⋆
(x − x⋆)

���2 =
1

𝜎
min

(AVs⋆
)
‖A(x) − b‖

2
 . 

Finally, we show by contradiction that the nullspace of AVs⋆
 is trivial whenever X⋆ is a 

singleton. If the nullspace is not trivial, then there is some x� ∈ Vs⋆
 such that AVs⋆

(x�) = 0 . 
Hence x⋆ + 𝛼x� for some small enough � is still optimal, as x⋆ ∈ ������(Fs⋆

) , which 
contradicts our hypothesis that the solution set X⋆ is a singleton.   ◻

This choice of the face Fs⋆
 and the corresponding linear space Vs⋆

 correspond to 
the idea of facial reduction [16, 17]. Facial reduction is a conceptual and numerical 
technique designed to handle conic feasibility problems for which constraint qualifi-
cations (such as Slater’s condition) fail. Note that such failure is the interesting case 

(3)����(x,X⋆) ≤ 𝛾‖A(x) − b‖2 + 𝛾 �����(x,Fs⋆
).
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for a feasibility system (1) when the optimal solution x⋆ ∈ 𝜕K . Indeed, our choice 
of face can be considered as one step of the facial reduction procedure.

2.2.3  Extension to the whole space: orthogonal decomposition

In this section, we derive our main result, Theorem  1, by extending the previous 
result to the whole space using the orthogonal decomposition � = Vs⋆

⊕ V⟂

s⋆
 with 

Vs⋆
⟂ V⟂

s⋆
.

Theorem 1 Suppose strong duality and dual strict complementarity hold. Then for 
some constants � , � ′ described in Lemma 2 and for all x ∈ � , we have

where PVs⋆
 and PV⟂

s⋆

 are orthogonal projections to Vs⋆
 and V⟂

s⋆
 respectively. The 

terms ‖‖‖PVs⋆
(x−)

‖‖‖2 and ‖‖‖PV⟂

s⋆

(x−)
‖‖‖2 can themselves be bounded by ‖‖x−‖‖2.

Proof Recall Lemma 2 establishes an error bound for only those x ∈ Vs⋆
 . Using the 

orthogonal decomposition proposed, for any x ∈ �,

This decomposition immediately gives

The second term ����(PVs⋆
(x),X⋆) can be bounded using Lemma 2:

To translate the above bound to linear infeasibility A(x) − b and conic infeasibility 
x− , we note that x = PVs⋆

(x) + PV⟂

s⋆

(x) and x = x+ + x−
6. With these two decomposi-

tions, and tad more algebra, we arrive at the theorem.   ◻

To go further, we need to bound the following two terms in terms of �opt(x) , 
A(x) − b , and x− : 

(4)

����(x,X⋆) ≤(1 + 𝛾𝜎max(A))
���PV⟂

s⋆

(x+)
���2 + 𝛾‖A(x) − b‖2

+ (1 + 𝛾𝜎max(A))
���PV⟂

s⋆

(x−)
���2 + 𝛾 �

���PVs⋆
(x−)

���2
+ 𝛾 �����(PVs⋆

(x+),Fs⋆
),

x = PVs⋆
(x) + PV⟂

s⋆

(x).

(5)����(x,X⋆) ≤
‖‖‖PV⟂

s⋆

(x)
‖‖‖2 + ����(PVs⋆

(x),X⋆).

(6)����(PVs⋆
(x),X⋆) ≤ 𝛾

‖‖‖A(PVs⋆
(x)) − b

‖‖‖2 + 𝛾 �����(PVs⋆
(x),Fs⋆

).

6 Recall x+ = PK(x) and x = x+ + x−.
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1. The distance to the space Vs⋆
 : PV⟂

s⋆

(x+).
2. The term ����(PVs⋆

(x+),Fs⋆
).

In Sect. 3, we show how to bound both terms for the special cases of LP, SOCP, 
SDP, and more general conic programs ( P ) where K is a finite product of LP, SOCP, 
or SDP cones. A quick summary of results can be found in Table 1.

As we shall see in Sect. 3, the term ����(PVs⋆
(x+),Fs⋆

) is usually zero. Thus the 

major challenge is bounding ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2

7. Note that under this condition, for feasi-
ble x of ( P ), the bound (4) reduces to

If the solution set X⋆ is a singleton, then from Lemma 2, we know 𝛾 =
1

𝜎min(AVs⋆
)
 , and 

we encounter a condition number like quantity 𝜎max(A)

𝜎min(AVs⋆
)
 in (7). Depending on appli-

cations, the condition number may scale with the problem dimension but the bound 
is still tight as the following example shows.

Example 1 Consider an SDP with C = −��⊤ , where � ∈ �n is the all one vector, 
A = ����(⋅) , and b = � . This is a simplification of the SDP for ℤ2 synchronization 
[3, 18]. For this SDP, it is easily verified that the unique optimal solution is ��⊤ and 
dual strict complementarity holds with dual optimal slack S⋆ = −��⊤ + nI . The 
condition number like quantity 𝜎max(A)

𝜎min(AVs⋆
)
 in this case is 

√
n which does scale with the 

(7)����(x,X⋆) ≤ (1 + 𝛾𝜎max(A))
‖‖‖PV⟂

s⋆

(x)
‖‖‖2.

Table 1  This table presents the bound f (�(x+), ‖x‖) for ‖‖‖PV
s⋆
(x+)

‖‖‖2 , the power p in (ERB) and (SSB), 

and an estimate of c1 for feasible x for different cases based on s⋆ and K

For s⋆ ∈ ���(K ∗) , the quantity c⋆ = sup
x∈K

1

⟨s⋆ ,
x

‖x‖ ⟩
< ∞ . For LP, the quantity s

min>0 is the smallest 

nonzero element of s⋆ . For SDP, the quantity T is the smallest nonzero eigenvalue of S⋆ . The condition 
number � = 1 + ��

max
(A) and is 1 + 𝜎

max
(A)

𝜎
min

(AVs⋆
)
 when X⋆ is a singleton. We assume ‖x‖

2
≤ B for SOCP 

and ‖X‖
op

≤ B for SDP. We also assume �(X+)

T
≤

√
2
�(X+)B

T
 for SDP

Conic program s⋆ = 0 s⋆ ∈ ���(K∗) LP SOCP SDP

Violation of complementa-
rity f (�(x+), ‖x‖)

0 c⋆𝜖(x+)
𝜖(x+)

s
min>0

�
2

√
2‖x‖

2
𝜖(x+)

‖s⋆‖2

�(X+)

T
+

�
2�(X+)‖X‖op

T

Exponents p, p′ in 1 1 1 2 2
(ERB) and (SSB)
Constant c

1
 for �opt(x) 0 𝜅c⋆

𝜅

s
min>0

2

√
2𝜅2 B

‖s⋆‖2

�2 8B

T

7 Bounding this term is in some sense necessary in establishing an error bound. See more discussion in 
Appendix  C.
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dimension n . However, if in (7) we let x = In , the identity matrix which is feasible, 
then the LHS and RHS of (7) are 

√
n2 − n and 

√
n − 1 +

√
n2 − n respectively. Thus 

the bound is actually tight for large n.

3  Application: error bounds

In this section, we show how to use the framework established in Sect. 2 to analyze 
conic programs ( P ) over the nonnegative orthant, the second order cone, the set of 
positive semidefinite matrices, or a finite product of these cones. Our analysis has 
two main steps: 

1. Identify and write out the complementary face Fs⋆
 and Vs⋆

.

2. Bound the term ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 via a function f (⟨s⋆, x+⟩, ‖x‖) , called the violation 

of complementarity, using the explicit structure of Vs⋆
.

We summarize the findings of this section as the following lemma and corollary. 
Refer to Table 1 for a quick summary of the results.

Lemma 3 Define the complementarity error 𝜖(x) = ⟨s⋆, x⟩ . Suppose strong duality 
holds. The quantity ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 can be bounded by several different functions 

f (⟨s⋆, x+⟩, ‖x‖) , which we call the violation of complementarity, depending on the 
slack vector s⋆ and the cone K . The first two trivial cases are the following. 

1. If s⋆ = 0 , then ‖‖‖PV⟂

s⋆

(x+)
‖‖‖ = 0 =∶ f0(𝜖(x+)).

2. If s⋆ ∈ ���(K∗) , then ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 =

‖‖x+‖‖2 ≤ c⋆𝜖(x+) =∶ f���(𝜖(x+)) , where 

c⋆ = supx∈K
1

⟨s⋆,
x

‖x‖ ⟩
< ∞.

Moreover, for the nontrivial case s⋆ ∈ 𝜕K∗∕{0} , we have the following bounds: 

3. K = �n
+
 : ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 ≤

1

smin>0

𝜖(x+) =∶ f�n
+
(𝜖(x+)), where smin>0 is the smallest 

nonzero element of s⋆.

4. K = SOCn : 
���PV⟂

s⋆

(x+)
���2 ≤

�
2
√
2
‖x‖2𝜖(x+)
‖s⋆‖2

=∶ f SOCn
(𝜖(x+), ‖x‖2).

5. K = �n
+
 : ���PV⟂

S⋆

(X+)
���F ≤

𝜖(X+)

T
+

�
2
𝜖(X+)

T
‖X‖op =∶ f�n+

(𝜖(X+), ‖X‖op) . Here T is 
the smallest nonzero eigenvalue of S⋆.

Proof Let us first consider the two trivial cases (1) s⋆ = 0 and (2) s⋆ ∈ ���(K∗) . 
These cases are excluded whenever c and b are both nonzero. In the first case, 
V⟂

s⋆
= {0} , and we simply have ‖‖‖PV⟂

s⋆

(x+)
‖‖‖ = 0 . In the second case, we have V⟂

s⋆
= � , 
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and ���PV⟂

s⋆

(x+)
��� = ��x+�� ≤ c⋆⟨s⋆, x+⟩ , where c⋆ = supx∈K

1

⟨s⋆,
x

‖x‖ ⟩
< ∞ . We defer the 

proof for the other cases to Sect.  3.1, 3.2, and Sect.  3.3 for LP, SOCP, and SDP 
respectively.

Combining Lemma 3, and Theorem 1, we reach the following corollary. The 
quantity ����(PVs⋆

(x+),Fs⋆
) can be verified to be zero for the two trivial cases by 

noting (i) the complementary space Vs⋆
= � and Fs⋆

= K for the case s⋆ = 0 , and 
(ii) the complementary space Vs⋆

= {0} and Fs⋆
 is a closed cone for the case 

s⋆ ∈ ���(K∗) . It is also zero for other three cases as shown in Sects. 3.1–3.3.

Corollary 1 Suppose strong duality and dual strict complementarity hold, and one 
of the five cases in Lemma 3 pertains. Then there exists constants � , � ′ so that for all 
x ∈ �,

where the condition number � = 1 + ��max(A) . In particular, when X⋆ is a single-
ton, then � � = 0 and 𝛾 =

1

𝜎min(AVs⋆
)
 . Here the formula for f (�(x), ‖x‖) can be found in 

Lemma 3 for each of the different cases, and we can further decompose the comple-
mentarity error 𝜖(x+) = 𝜖opt(x) + ⟨y⋆, b −A(x)⟩ − ⟨s⋆, x−⟩ using x = x+ + x−.

A few remarks regarding the lemma and the corollary are in order.

Remark 1 (Global and local error bound) Note the formula for the violation of com-
plementarity f (�(x), ‖x‖) uses ‖x‖2 for SOCP and ‖X‖op for SDP. Hence the bound 
(8) for these two cases does not quite align with the form of the error bound (ERB) 
we seek. To eliminate the dependence on this norm (by bounding the norm), either 
of the following conditions suffices:

• ‖x‖ ≤ B for some constant B,
• max{𝜖opt(x) , ‖Ax − b‖ , ��x−��} ≤ c̄ for some constant c̄.

The second requirement combined with (8) for SOCP (SDP) implies ‖x‖2 ( ‖X‖op ) 
is bounded by some B̄ depending on c̄ but independent of x (X). We may then 
replace the term ‖x‖2 ( ‖X‖op ) by B or B̄ in f. Requiring either of these two condi-
tions produces a local error bound. Interestingly, no such condition on the norm 
is not necessary for the LP case and the other two trivial cases; hence the bounds 
(8) in these cases are global error bounds.
Remark 2 (Value of p and estimate of ci in (ERB)) Ignoring the term f, the bound (8) 
in Lemma 3 is linear in �opt(x), ‖Ax − b‖, ��x−�� . For LP and the two trivial cases, f is 
linear in �(x+) , hence the error bound (ERB) holds with exponent p = 1 . For SOCP 
and SDP, the square root of �(x+) appears in f, hence (8) gives an error bound of the 
form (ERB) with exponent p = 2 , under the assumption ‖x‖ ≤ B.

(8)
����(x,X⋆) ≤ 𝜅f (𝜖(x+), ‖x‖) + 𝛾‖A(x) − b‖2

+ 𝜅
���PV⟂

s⋆

(x−)
���2 + 𝛾 �

���PVs⋆
(x−)

���2,
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Now let’s consider the constants c1 , c2 , and c3 in the error bound (ERB). It is cum-
bersome to estimate these for general x; here, suppose x is feasible. For the SOCP 
and SDP cases, also suppose ‖x‖ ≤ B . Then the bound (8) reduces to

The resulting constant c1 for �opt(x) in the error bound (ERB) for each of the five 
cases appears in Table 1.

Remark 3 (Conditions for LP) Recall that for linear programming, dual strict com-
plementarity is the same as strict complementarity, which always holds under strong 
duality [13]. Hence we need not explicitly require the dual strict complementarity 
condition. Also the compactness condition for strong duality in Sect.  2.1 can be 
dropped if we establish Theorem 1 using Hoffman’s lemma [8] instead of Lemma 1.

Remark 4 (Finite product of cones) Error bounds for a conic program whose cone is 
a finite product of �n

+
, SOCn , and �n

+
 can be established by bounding the term 

‖‖‖PVs⋆
(x+)

‖‖‖2 by a sum of te correponding fs in Lemma 3. We omit the details.

Next, we prove the bound f, violation of complementarity, in Lemma 3 for the LP, 
SOCP, and SDP comes by following the aforementioned procedure: (i) identify and 
write out Fs⋆

 and Vs⋆
 , and (ii) bound the term ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2.

3.1  Linear programming (LP)

In linear programming, the cone K = �n
+
= {x ∈ �n ∣ xi ≥ 0, ∀ i = 1,… , n}.

Identify Fs⋆
 and Vs⋆

 . For a particular dual optimal solution (y⋆, s⋆) , satisfying dual 
strict complementarity, the complementary face F

s⋆
= {x ∈ �n

+ ∣ x
i
= 0, for all (s⋆)i > 0} , 

and the complementary space Vs⋆
= {x ∈ �n ∣ xi = 0 for all (s⋆)i > 0} . Hence, the 

term ����(PVs⋆
(x+),Fs⋆

) is simply zero as PVs⋆
(x+) ∈ Fs⋆

.

Bound the term ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 . For the term ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 , denote 

Is⋆ = {i ∣ (s⋆)i > 0} , Ic
s⋆
= {1,… , n} − Is⋆ , and smin>0 = mini∈Is si , we have

Hence, Lemma 3 for the LP case is established.

(9)����(x,X⋆) ≤ (1 + 𝛾𝜎max(A))f (𝜖opt(x),B).

(10)
���PV⟂

s⋆

(x+)
���2 =

���(x+)Is⋆
���2 ≤ ‖(x+)Is⋆‖1 ≤

1

smin>0

⟨s⋆, x+⟩.



1 3

A strict complementarity approach to error bound and sensitivity…

3.2  Second order programming (SOCP)

In second order cone programming, the cone K is SOC
n
= {x = (x1∶n, xn+1) ∣

‖‖x1∶n‖‖2
≤ x

n+1, x1∶n ∈ �n, x
n+1 ∈ �}.

Identify Fs⋆
 and Vs⋆

 . Given a dual solution s⋆ = (s⋆,1∶n, s⋆,n+1) ∈ ( SOCn)
∗ = SOCn 

satisfying dual strict complementarity, the complementary face is defined as 
Fs⋆

= {x ∣ ⟨s⋆,1∶n, x1∶n⟩ + xn+1s⋆,n+1 = 0, ;x ∈ SOCn} . We can further simplify this 
expression as

The complementary space Vs⋆
 for the nontrivial case s⋆ ∈ 𝜕 SOCn ⧵ (0, 0) is simply

For the dual optimal solution s⋆ , denote š⋆ =
1

‖s⋆‖ (−s⋆,1∶n, s⋆,n+1) . Note that the 
term ����(PVs⋆

(x+),Fs⋆
) is again simply zero as PVs⋆

(x+) ∈ Fs⋆
.

Bound the term ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 . We now turn to analyze PV⟂(x+) , which can be writ-

ten explicitly as

Now introduce the shorthand 𝜖(x) = ⟨x+,
s⋆

‖s⋆‖⟩ = ⟨x+,1∶n,
s⋆,1∶n

‖s⋆‖⟩ + x+,n+1
s⋆,n+1

‖s⋆‖ . The 
norm square of PV⟂(�+) can be written as

where in step (a), we use the fact that x+ ∈ SOCn and the definition of � . In step (b), 
we use the fact s⋆ ∈ 𝜕 SOCn . Lemma 3 for the SOCP case is established by noting 
x+,n+1 ≤

��x+�� ≤ ‖x‖.

3.3  Semidefinite programming (SDP)

In semidefinite programming, the cone K is �n
+
= {X ∈ �n ∣ X ⪰ 0} . Note that we 

use capital letter X and S for matrices.
Identify Fs⋆

 and Vs⋆
 . For a dual optimal solution (y⋆, S⋆) with S⋆ = C −Ay⋆ ⪰ 0 

satisfying dual strict complementarity, the complementary face 
FS⋆

∶= {X ∣ ⟨X, S⋆⟩ = 0,X ⪰ 0} = {X ∣ X = VRV⊤,R ∈ �r,R ⪰ 0} , where 

����(S⋆) = n − r , and V ∈ �n×r is a matrix with orthonormal columns that span 

Fs⋆
= {𝜆(−s⋆,1∶n, s⋆,n+1) ∣ 𝜆 ≥ 0}.

Vs⋆
= ����{(−s⋆,1∶n, s⋆,n+1)}.

(11)PV⟂(x+) = x+ − ⟨x+, š⋆⟩š⋆.

(12)

��PV⟂(x+)
��
2

2
= ��x+��

2

2
− ⟨x+, š⋆⟩2

= ��x+��
2

2
+ x2

+,n+1
−

�
−⟨x+,1∶n, s⋆,1∶n⟩ + x+,n+1

s⋆,n+1
��s⋆��

�2

(a)

≤ 2x2
+,n+1

− (2x+,n+1
s⋆,n+1
��s⋆��

− 𝜖(x))2
(b)

≤ −𝜖2(x) + 2
√
2x+,n+1𝜖(x),
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�����(S⋆) . In this case, the complementary space VS⋆
= {VRV⊤ ∣ R ∈ �r} . We note 

that the term ����(PVS⋆
(X+),FS⋆

) is again zero as PVS⋆
(X+) ∈ FS⋆

.

Bound the term  ‖‖‖PV⟂

s⋆

(X+)
‖‖‖F . We now turn to bound the term ‖‖‖PV⟂

S⋆

(X+)
‖‖‖F . We 

utilize Lemma 4 [19, Lemma 4.3] to bound the term ‖‖‖PV⟂

S⋆

(X+)
‖‖‖F with S = S⋆ , and 

use the observation that ��X+
��op ≤ ‖X‖op.

Lemma 4 Suppose X, S ∈ �n are both positive semidefinite. Let V ∈ �n×r be the 
matrix formed by the eigenvectors with the r smallest eigenvalues of S and define 
V = �����(V) . Let � = ��(XS) . If T = 𝜆n−r(S) > 0 , then

4  Application: sensitivity of solution

As discussed in the introduction, to study the sensitivity of the solution, we con-
sider a solution x′

⋆
 of the perturbed problem

where the problem data (A�, b�, c�) = (A, b, c) + (ΔA,Δb,Δc) for some small per-
turbation Δ = (ΔA,Δb,Δc) , and ask how the distance ‖‖x�⋆ − x⋆

‖‖2 changes accord-
ing to Δ.

Note that once the error bound (ERB) is established, we can understand the 
sensitivity of the solution by estimating the suboptimality, linear and conic infea-
sibility of the new solution x′

⋆
 with respect to the original problem ( P ) via the 

perturbation Δ . Following this strategy, we prove the following theorem:

Theorem 2 Suppose the primal and dual Slater’s condition holds for some (x0, y0) , 
and the map A is surjective. For any small enough 𝜀 > 0 , there is some constant c̄ , 
such that for any optimal x′

⋆
 of ( P′ ), and all ‖Δ‖ ∶= ‖ΔA‖op + ‖Δb‖2 + ‖Δc‖2 ≤ � , 

we have

Hence if (ERB) holds, then (SSB) holds with p = p�.

To facilitate the proof, we define the smallest nonzero singular value of A 
as 𝜎min>0(A) = min‖x‖2=1,x⟂���������(A) ‖A(x)‖2 , and the pseudoinverse of A′ as 
(A�)†(y) = argminA�(x)=y‖x‖2.

��PV⟂(X)��F ≤
�

T
+

�
2
�

T
‖X‖op and ��PV⟂(X)��∗ ≤

�

T
+ 2

�
r
�

T
‖X‖op.

minimize
x

⟨c�, x⟩

subject to A
�x = b�, (P�)

x ∈ K.

max{𝜖opt(x
�
⋆
), ��A(x�

⋆
) − b��2} ≤ c̄‖Δ‖.
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Proof Consider any solution x′
⋆
 to the problem ( P′ ). Suppose the following assump-

tions are satisfied (proved in Appendix A): 

1. Primal and dual Slater’s condition for ( P′ ): there exist a primal x′
0
 and dual y′

0
 

solution feasible for problem ( P′ )  and i ts  dual that  satisfy 
min{����(x�

0
, 𝜕K), ����(c −A∗y�

0
, 𝜕(K∗))} > 𝜌 for some � independent of Δ , and 

max{
‖‖‖x0 − x�

0

‖‖‖2,
‖‖‖y0 − y�

0

‖‖‖2} < 𝜉 for some � independent of Δ.
2. Boundedness of primal solutions of ( P′ ): There is some B > 0 independent of Δ 

such that any solution x⋆ to ( P′ ) satisfies ‖‖x⋆‖‖2 ≤ B.

Let us start with the linear infeasibility A(x�
⋆
) − b . Using the linear feasibility of x′

⋆
 , 

A�x�
⋆
= b� , w.r.t. ( P′ ), we have

This shows ��Ax�
⋆
− b��2 ≤ c‖Δ‖ for any c > B + 1.

Next, consider 𝜖opt(x�⋆) . We would like to use the optimality of x′
⋆
 to ( P′ ) and 

compare it against x⋆ . However, since x⋆ is not necessarily feasible for ( P′ ), we need 
more subtle reasoning. Consider x̂ ∶= (1 − 𝛼)

(
x⋆ + (A�)†(Δb − ΔAx⋆)

)
+ 𝛼x�

0
 with 

𝛼 =
‖(A�)†(Δb−ΔAx⋆)‖2

𝜌+‖(A�)†(Δb−ΔAx⋆)‖2

 . Here (A�)† exists and has largest singular value at most 
2

𝜎min>0(A)
 as long as 𝜎max(ΔA) ≤

𝜎min>0(A)

2
 . We have ‖x̂‖2 ≤ B1 for some Δ independent 

B1 as ‖‖‖x0 − x�
0

‖‖‖2 < 𝜉 . Note that x̂ ∈ K since

if 𝛼 > 0 . The case of � = 0 is trivial. We also know x̂ is feasible with respect to the 
linear constraints of ( P′):

Note by construction x̂ − x⋆ = 𝛼(x�
0
− x⋆ − 𝛼(A�)†(Δb − ΔAx⋆)) =∶ Δx with 

𝛼 =
‖(A�)†(Δb−ΔAx⋆)‖2

𝜌+‖(A�)†(Δb−ΔAx⋆)‖2

 . Hence ‖Δx‖2 ≤ c�
�
‖Δb‖2 + ‖ΔA‖op

�
 for some constant c′ . 

Now using the optimality of x′
⋆
 , we have

Hence 𝜖opt(x�⋆) ≤ c̄‖Δ‖ for large enough c̄ using ‖‖x′⋆‖‖2 ≤ B.

(13)
A�(x�

⋆
) = b� ⟹ (A + ΔA)x�

⋆
= b + Δb ⟹ Ax�

⋆
− b = Δb − ΔAx�

⋆

⟹ ��Ax�
⋆
− b��2 ≤ ‖Δb‖2 + ‖ΔA‖opB.

x̂ = (1 − 𝛼) x⋆
���

∈K

+𝛼
(
x�
0
+

1 − 𝛼

𝛼
(A�)†(Δb − ΔAx⋆)

)

�������������������������������������������������

∈K since
‖‖‖
1−𝛼

𝛼
(A�)†(Δb−ΔAx⋆)

‖‖‖2≤𝜌

,

(14)
A�(x̂) = (1 − 𝛼)A�(x⋆ + (A�)†(Δb − ΔAx⋆)) + 𝛼A�x�

0

= (1 − 𝛼)(b + ΔA(x⋆) + Δb − ΔAx⋆) + 𝛼b� = b�.

(15)c�x�
⋆
≤ c�x̂ ⟹ 𝜖opt(x

�
⋆
) = c⊤x�

⋆
− c⊤x⋆ ≤ Δc⊤(x̂ − x�

⋆
) + c⊤Δx.
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5  Discussion

Using the framework established in Sect. 2, we have shown an error bound of the 
form (ERB) and a bound on the sensitivity of the solution with respect to problem 
data (SSB) for a broad class of problems: LP, SOCP, and SDP, and conic programs 
for which the cone is a finite product of the LP, SOCP, and SDP cones. Let us now 
compare the results we have obtained with the literature on error bounds and sensi-
tivity of solution.

Error bound The celebrated results of [8] show that the error bound is linear for 
linear programming: in (ERB), the exponent p = 1 . The work of Sturm [9, Sec-
tion  4] shows that under strict complementarity and compactness of the solution 
set, SDPs satisfy a quadratic error bound: p = 2 in (ERB). Sturm also discusses 
the exponent of ����(x,X⋆) without strict complementarity: it can be bounded by 2d 
where d is the singularity degree, which is at most n − 1 [9, Lemma 3.6]. A recent 
result shows that p = 2 under dual strict complementarity type conditions when the 
cone K is a symmetric cone under the framework of amenable cones [20]. When the 
cone K is defined as a semialgebraic set (LP, SOCP, SDP are special cases), Drusvy-
atskiy, Ioffe, and Lewis [21, Corrollary 4.8] showed that for generic C, the exponent 
p is always 2 when the inequality is restricted to feasible x. We note that the proofs 
for these bounds do not provide estimates for ci . In our framework, estimates of ci 
(expressed in terms of the primal and dual solution) can be obtained supposing the 
primal solution is unique.

Sensitivity of solution When p� = 1 , the bound describing the sensitivity of the 
solution (SSB) is also called stability or metric regularity [22, Definition A.6], dis-
cussed in detail in [22, Appendix A], and [23, 24]. In the context of semidefinite 
programming, when the primal and dual solutions are unique and strict comple-
mentarity holds, Nayakkankuppam and Overton [10] shows that (SSB) holds with 
p� = 1 . When the cone K is a semialgebraic set, Drusvyatskiy, Ioffe, and Lewis [21, 
section 5] showed that for generic perturbations C − C�, b − b� , the sensitivity bound 
(SSB) holds with p� = 1.

In Sect. 4, we have seen that (SSB) holds whenever (ERB) with p� = p . Hence, 
using our results from Sect. 3, we see p� = 1 for LP, and p� = 2 for SOCP and SDP. 
This result improves on the previous bound for SOCPs and SDPs assuming only 
strict complementarity.

Extension to quadratic programming (QP)? A potential future direction is to use 
the approach of the paper to establish error bounds for QP. The strategy consists of 
three steps: (1) reducing the QP to an SOCP, (2) utilizing the error bound for the 
SOCP, and (3) translating the error bound to the QP setting. We leave the detail to 
future work.

Other Cones? An interesting future direction is the extension to other cones, e.g., 
the copositive cone, the completely positive cone, and the doubly positive cone (the 
intersection of nonnegative matrices and positive semidefinite matrices). Can we 
still bound the term ‖‖‖PV⟂

s⋆

(x)
‖‖‖2 ? For the cones �n

+
 , SOCn , and �n

+
 , our technique 

relies on the explicit structure of �n
+
 , SOCn , and �n

+
 to bound ‖‖‖PV⟂

s⋆

(x)
‖‖‖2 . Character-

izing the facial structure seems to be challenging for other cones.
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Appendix A: Proof for Section 4

We first show the Slater’s condition for ( P′ ) and its dual. Recall the Slater’s condi-
tion for the original ( P ) means that the two points x0, y0 satisfying 
(x0, c −A∗y) ∈ ���(K) × ���(K∗) . This implies that 
min{����(x0, �K), ����(c −A∗y0, �K

∗)} ≥ � for some constant 𝜂 > 0 . We now con-
struct x′

0
 and y′

0
 from x0 and y0 . It can be easily verified if ‖ΔA‖ ≤

𝜎min>0(A)

2
 , 

2

𝜎min>0(A)
(‖Δb‖ + ‖ΔA‖��x0��) ≤

𝜂

2
 , and ‖Δc‖ + ‖ΔA‖��y0�� ≤

�

2
 , then the choice

satisfy min{����(x�
0
, �K), ����(c� − (A∗)�y�

0
, �(K∗))} ≥

�

2
 , 

max{
‖‖‖x0 − x�

0

‖‖‖,
‖‖‖y0 − y�

0

‖‖‖ ≤
�

2
 , and are feasible for ( P′ ) and its dual.

Now for the boundedness condition of any solution x′
⋆
 to ( P′ ). Using the previous 

constructed x′
0
 and y′

0
 , we know

The rest is a simple consequence of the following lemma.

Lemma 5 Suppose K is closed and convex. Given 𝜖 > 0 and s0 ∈ (K∗)◦ with 
d = ����(s0, 𝜕K

∗) > 0 , there is a B > 0 such that for any x satisfying x ∈ K , and 
⟨x, s⟩ ≤ � for some s with ‖‖s − s0

‖‖ ≤
d

2
 , its norm satisfies ‖x‖ ≤ B.

Proof Suppose such B does not exist, then there is a sequence (xn, sn) ∈ K ×K∗ with 
‖‖sn − s0

‖‖ ≤
d

2
 , ⟨xn, sn⟩ ≤ � , and limn→∞

‖‖xn‖‖ = +∞.
Now consider ( xn

‖xn‖ , sn) ∈ K ×K∗ . Since xn

‖xn‖ and sn are bounded, we can choose 

a appropriate subsequence of (
xn

‖xn‖ , sn) which converges to certain 

(x, s) ∈ K × ���(K∗) as ‖‖sn − s0
‖‖ ≤

d

2
 . Call the subsequence ( xn

‖xn‖ , sn) still. Using 

⟨ xn

‖xn‖ , sn⟩ ≤
�

‖xn‖ and ‖‖xn‖‖ → +∞ , we see

This is not possible as s ∈ ���(K∗) . Hence such B must exist.

(16)x�
0
= x0 +A≃†(Δb − ΔAx0), y�

0
= y0

(17)

⟨x�
⋆
, c� − (A∗)�y�

0
⟩ ≤ ⟨x�

0
, c� − (A∗)�y�

0
⟩ = ⟨c�, x�

0
⟩ − ⟨b�, y�

0
⟩

= ⟨c, x0⟩ − ⟨b, y0⟩ + ⟨Δc, x�
0
⟩ − ⟨Δb, y�

0
⟩

≤ ⟨c, x0⟩ − ⟨b, y0⟩ +
𝜂

2
(��x0�� +

𝜂

2
+

𝜎min>0(A)

2
��y0��)

⟨x, s⟩ = 0.
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Appendix B: Equivalence between DSC and SC for LP and SDP

We define the strict complementarity of LP and SDP, and show it is equivalent 
to DSC defined in Sect.  2.1. For a vector x ∈ �n , denote ���(x) as its number of 
nonzeros.

Definition 3 For LP, if there exists optimal primal dual pair 
(x⋆, y⋆) ∈ X⋆ × Y⋆ ⊂ �n

+
× �m with s⋆ = c −A∗y⋆ ∈ �n

+
 such that

we say ( P ) satisfies strict complementarity. Similary, for SDP, if there exists optimal 
primal dual pair (X⋆, y⋆) ∈ X⋆ × Y⋆ ⊂ �n

+
× �m with S⋆ = C −A∗y⋆ ∈ �n

+
 such 

that

we say ( P ) satisfies strict complementarity.

Lemma 6 For both LP and SDP, under strong duality, the strict complementarity 
defined is equivalent to dual strict complementarity.

Proof For LP, under strong duality (see (SD)), we have for any optimal x⋆ , 
x⋆ ∈ Fs⋆

= {x ∈ �n
+
∣ xi = 0, for all (s⋆)i > 0} . The relative interior of Fs⋆

 is

The equivalence between DSC and SC is then immediate.
For SDP, under strong duality (see (SD)), we know that for any optimal X⋆ , 

X⋆ ∈ F
S⋆

= {X ∣ ⟨X, S⋆⟩ = 0,X ⪰ 0} = {X ∣ �����(X) ⊂ ���������(S⋆), and X ⪰ 0} . The 
relative interior of FS⋆

 is

The equivalence is immediate by using Rank-nullity theorem for S⋆.

Appendix C: A lower bound on distance to optimality: 
‖‖‖PV

⟂

s⋆

(x)
‖‖‖2 ≤ ����(x,X⋆)

We have shown how to establish upper bounds on ����(x,X⋆) with an upper bound 
on ‖‖‖PVs⋆

⟂(x+)
‖‖‖2 . In this section, we show that the same quantity ‖‖‖PVs⋆

⟂(x+)
‖‖‖2 also 

yields a lower bound. Hence, it is important to understand the behavior of 
‖‖‖PVs⋆

⟂(x+)
‖‖‖2 . For simplicity, we suppose in this section that x is feasible for the 

problem ( P ) : in this case, ‖‖‖PVs⋆
⟂(x+)

‖‖‖2 =
‖‖‖PVs⋆

⟂(x)
‖‖‖2 . The argument for infeasible 

x is essentially the same.

���(x⋆) + ���(s⋆) = n,

����(X⋆) + ����(S⋆) = n,

rel(Fs⋆
) = {x ∈ �n

+
∣ xi = 0 for all (s⋆)i > 0, and xi > 0 for all (s⋆)i = 0}.

rel(FS⋆
) = {X ∣ �����(X) = ���������(S⋆), and X ⪰ 0}.
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First recall for feasible x, the only nonzero error metric is the suboptimality 
𝜖opt(x) = ⟨c, x⟩ − p⋆ . Also note that 𝜖opt(x) = 0 ⟺

‖‖‖PV⟂

s⋆

(x)
‖‖‖2 using complemen-

tary slackness. Hence, there is some nonnegative function g ∶ � → �+ such that 
g(𝜖opt(x)) ≤

‖‖‖PV⟂

s⋆

(x)
‖‖‖2 . Now note that for any feasible x, we always have the lower 

bound on distance given by ‖‖‖PV⟂

s⋆

(x)
‖‖‖2 as Vs⋆

⊃ X⋆,

The lower bound (18) hence shows that ‖‖‖PV⟂

s⋆

(x+)
‖‖‖2 provides a lower bound on the 

distance ����(x,X⋆) , and provides hope that this bound might scale with the subopti-
mality �opt(x) . We summarize our findings in the following theorem.

Theorem 3 Suppose there exists a increasing continuous g with g(0) = 0 so that for 
any x feasible for Problem ( P)8 with 𝜖(x) ≤ c̄,

Then the following inequality holds:

Remark 5 We also have a partial converse for the above theorem that follows from 
the same proof. Assume ����(PVs⋆

(x),Fs⋆
) is 0. If the relation (20) holds for all fea-

sible x with 𝜖opt(x) ≤ c̄ , then ‖‖‖PV⟂

s⋆

(x)
‖‖‖2 ≥

g(𝜖opt(x))

1+𝛾𝜎max(A)
 . Here � is defined in (3).

Proof We have proved that (19) implies (20) using the motivating logic laid out at 
the beginning of this section.

Conversely, assume the term ����(PVs⋆
(x+),Fs⋆

) is zero, x is feasible, 𝜖opt(x) ≤ c̄ , 
and the inequality (20) holds. We see that for all feasible x,

where we use (7) for step (a).

Appendix D: Conic decomposition

In the main paper, we decompose a general x ∈ � according to the subspace Vs⋆
 . A 

different decomposition uses the cone Fs⋆
 : every x ∈ � admits the conic decomposi-

tion x = PFs⋆
(x) + PF◦

s⋆

(x) where F◦

s⋆
 is the polar cone of Fs⋆

 , i.e., the negative dual 
cone −F∗

s⋆
.

(18)g(𝜖opt(x)) ≤
‖‖‖PV⟂

s⋆

(x)
‖‖‖2 = ����(x,Vs⋆

) ≤ ����(x,X⋆).

(19)
‖‖‖PV⟂

s⋆

(x)
‖‖‖2 ≥ g(𝜖opt(x)).

(20)����(x,X⋆) ≥ g(𝜖opt(x)).

(21)𝛽g(𝜖opt(x)) ≤ ����(x,X⋆)
(a)

≤ (1 + 𝛾𝜎max(A))
‖‖‖PV⟂

s⋆

(x)
‖‖‖2.

8 The assumption x being feasible is just for convenience of presentation. The equivalence still holds for 
all x with suboptimality, infeasibility, and conic infeasibility bounded above by some constant c̄ > 0.
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Theorem 4 Suppose strong duality and dual strict complementarity hold. Then for 
some constants � , � ′ described in Lemma 2 and for all x ∈ � , we have

Let us compare the above bound (22) and (4) in Theorem 1. To make the com-
parison easier, first note that from the proof of Theorem 1, we can bound the dis-
tance from x to X⋆ using the decomposition x = PVs⋆

(x) + PV⟂

s⋆

(x):

The bound (4) in Theorem 1 is further obtained via the decomposition x = x+ + x−.
Comparing (23) and (22), we find that there is an extra term 𝛾 �����(PVs⋆

(x),Fs⋆
) in 

(23) and the term ‖‖‖PV⟂

s⋆

(x)
‖‖‖2 in (23) is replaced by ‖‖‖PF◦

s⋆

(x)
‖‖‖2 . Since 

‖‖‖PF◦

s⋆

(x)
‖‖‖2 ≥

‖‖‖PV⟂

s⋆

(x)
‖‖‖2 , it is not immediately clear which bound is tighter.

A more subtle difference between (22) and (4) in Theorem 1 is that we are not able 
to further bound ‖‖‖PF◦

s⋆

(x)
‖‖‖2 using the decomposition x = x+ + x− with respect to K . 

We reach this impasse because the projection operator PF◦

s⋆

 is not linear and so we can-

not rely on the triangle inequality ‖‖‖PF◦

s⋆

(x)
‖‖‖2 ≤

‖‖‖PF◦

s⋆

(x+)
‖‖‖2 +

‖‖‖PF◦

s⋆

(x−)
‖‖‖2 . Hence 

we cannot bound ‖‖‖PF◦

s⋆

(x)
‖‖‖2 using conic infeasibility.

Thus, to use (23), we must use x (which may be infeasible with respect to the cone 
K ) directly to bound ‖‖‖PF◦

s⋆

(x)
‖‖‖2 . We now consider how to bound this term for the cases 

considered in the main text.
Case  s⋆ = 0 . For s⋆ = 0 , we have Fs⋆

= K . Thus F◦

s⋆
= K◦ and PF◦

s⋆

(x) = x− . For 
s⋆ ∈ ���(K∗) , we have Fs⋆

= {0} . Thus F◦

s⋆
= � and 

���PF◦

s⋆

(x)
���2 = ‖x‖2 ≤ ��x+��2 + ��x−��2 . We can bound ‖‖x+‖‖2 as in Lemma 3.

Case  s⋆ = �+ . For K = �+ , the projection of PF◦

s⋆

(x) = x − (xIc
s⋆

)+ = (x+)Is⋆
+ x− 

where xIc
s⋆

 is the vector x zeroing all entries in the support of s⋆ and (x+)Is⋆ is the vector 
x+ zeroing out all entries not in the support of s⋆ . Hence, 
‖‖‖PF◦

s⋆

(x)
‖‖‖2 ≤

‖‖‖(x+)Is⋆
‖‖‖2 +

‖‖x−‖‖2 and we can further bound ‖‖‖(x+)Is⋆
‖‖‖2 as in Lemma 3.

Case  s⋆ = SOCn . For K = SOCn , considering the nontrivial case s⋆ ≠ 0 , the pro-
jection of PF◦

s⋆

(x) is

Thus we have

(22)����(x,X⋆) ≤(1 + 𝛾𝜎max(A))
���PF◦

s⋆

(x)
���2 + 𝛾‖A(x) − b‖2.

(23)
����(x,X⋆) ≤ (1 + 𝛾𝜎max(A))

���PV⟂

s⋆

(x)
���2 + 𝛾‖A(x) − b‖2 + 𝛾 �����(PVs⋆

(x),Fs⋆
).

x − (⟨x, š⋆⟩)+š⋆ = x+ − (⟨x, š⋆⟩)+š⋆ + x−.
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In the step (a), we use x = x+ + x− and ⟨x−, š⋆⟩ ≤ 0 . Hence, one can bound 
‖‖‖PF◦

s⋆

(x)
‖‖‖2 by combining the above bound and the bound on PV⟂(x+) established in 

the main text.
Case  s⋆ = �n

+
 . For K = �n

+
 , PF◦

S⋆

(X) is

Since PV⊤
S⋆

(X+) = X+ − VV⊤X+VV
⊤ , we know

In step (a), we use the fact that V has orthonormal columns, and in step (b), we use 
the fact that V⊤X+V  is still positive semidefinite and projection to the convex set �r

+
 

is nonexpansive. Thus, we can bound ‖‖‖PF◦

s⋆

(X)
‖‖‖F using the result for ‖‖PV⟂(X+)

‖‖F in 
the main text.

Case x is feasible. Finally, note that when x is feasible for ( P ), then in each of the 
five cases considered in the paper, the bound (22) and the bound (4) in Theorem 1 
coincide.

Proof Recall Lemma 2 establishes an error bound only for x ∈ Vs⋆
 . Using the conic 

decomposition into the face F  and its polar, for any x ∈ �,

This decomposition immediately gives

The second term ����(PFs⋆
(x),X⋆) can be bounded using Lemma 2 as Fs⋆

⊂ Vs⋆
:

Using the decomposition x = PFs⋆
(x) + PF◦

s⋆

(x) again for the term 
‖‖‖A(PFs⋆

(x)) − b
‖‖‖2 , we reach the bound (22).

(24)

���PF◦

s⋆

(x) − PV⟂

s⋆

(x+)
���2 =

���
�
⟨x+, š⋆⟩ − (⟨x, š⋆⟩)+

�
š⋆ + x−

���2
≤ �⟨x+, š⋆⟩ − (⟨x, š⋆⟩)+� + ��x−��2
(a)

≤ �⟨x+, š⋆⟩� + ��x−��2.

PF◦

S⋆

(X) = X − V(V⊤XV)+V
⊤ = X+ − V(V⊤XV)+V

⊤ + X−.

(25)

‖‖‖PF◦

s⋆

(X) − PV⟂(X+)
‖‖‖F =

‖‖‖V(V
⊤XV)+V

⊤ − VV⊤X+VV
⊤ + X−

‖‖‖F
(a)

≤
‖‖‖(V

⊤XV)+ − V⊤X+V
‖‖‖F +

‖‖X−
‖‖F

(b)

≤ 2‖‖X−
‖‖F.

x = PFs⋆
(x) + PF◦

s⋆

(x).

(26)����(x,X⋆) ≤
‖‖‖PF◦

s⋆

(x)
‖‖‖2 + ����(PFs⋆

(x),X⋆).

(27)����(PFs⋆
(x),X⋆) ≤ 𝛾

‖‖‖A(PFs⋆
(x)) − b

‖‖‖2.
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Appendix E: Numerical simulation for the bound (8)

Here we numerically verify the correctness of Inequality (8) for feasible x:

The function f can be found in Table 1.
Experiment setup We generated a random instance A, b, c for each of LP, SOCP, 

and SDP. We solved the corresponding conic problem and obtained the optimal 
solution x⋆ and a dual optimal s⋆ . We numerically verified that the strict comple-
mentarity (by checking Definition 3 for LP and SDP and (DSC) for SOCP) and the 
uniqueness of the primal (by checking whether 𝜎min(AV⋆

) > 0 ) both hold for the 
three cases. We compute 𝛾 =

1

𝜎min(AV⋆
)
 according to Lemma 2. Next, we randomly 

perturbed the solution x⋆ 70 many times and obtained (possibly infeasible) 
x�
i
, i = 1,… , 70 . We then projected x′

i
 to the feasible set to obtain xi . Finally, we plot-

ted the suboptimality of xi versus the distance to x⋆ (in blue), and the the subopti-
mality of xi versus the bound (1 + ��max(A))f (�opt(xi),

‖‖xi‖‖) (in red) in Fig. 2.

(28)����(x,X⋆) ≤ (1 + 𝛾𝜎max(A))f (𝜖opt(x), ‖x‖).

Fig. 2  Verification of the inequality (28). The asserted bound in red is (1 + ��
max

(A))f (�opt(x), ‖x‖) . The 
blue points represent suboptimality versus distance to solution (color figure online)
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From Fig. 2, we observe that the bounds are valid, as they lie uniformly above the 
true distance, so (28) holds. The bounds for SDP appear to be looser compared to 
the bounds for LP and SOCP.
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