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Abstract. This paper describes new algorithms for constructing a low-rank approximation of an4
input matrix from a sketch, a random low-dimensional linear image of the matrix. These algorithms5
come with rigorous performance guarantees. Empirically, the proposed methods achieve significantly6
smaller relative errors than other approaches that have appeared in the literature. For a concrete7
application, the paper outlines how the algorithms support on-the-fly compression of data from a8
direct Navier–Stokes (DNS) simulation.9
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1. Motivation. A sketch is a compressed data representation that supports13

updates to the underlying data and provides approximate answers to queries about14

the data. Over the last decade, sketches have emerged as a powerful tool for large-15

scale numerical linear algebra [51, 13, 25, 32, 50]. In particular, we can use a sketch to16

track a matrix that is presented as a sequence of linear updates, and we can extract17

a low-rank approximation of the induced matrix from the sketch. See [9, 21, 46, 45]18

for some recent work.19

The purpose of this paper is to develop a new sketching method for low-rank20

matrix approximation in the streaming data model (section 2). We provide an infor-21

mative mathematical analysis that explains the behavior of our algorithm (section 5).22

We also discuss implementation issues (section 4), and we present extensive numeri-23

cal experiments on real and simulated data (section 6). The empirical performance of24

our technique is significantly better than earlier approaches (see subsection 6.1) that25

apply in the same setting.26

Sketching methods for low-rank matrix approximation have many compelling ap-27

plications. For instance, we have used these ideas to develop a storage-optimal algo-28

rithm for convex low-rank matrix optimization [52]. As a motivating example for this29

paper, we explain how sketching allows us to perform on-the-fly compression of data30

generated by large-scale computer simulations.31

1.1. Vignette: On-the-Fly Compression for Simulation. Computer simu-32

lations often produce data matrices that are too large to store, process, or transmit in33

full. This challenge arises in a wide range of areas, including weather and climate fore-34

casting [49, 17, 4], heat transfer and fluid flow [40, 6], computational fluid dynamics35

[5, 20], and aircraft design [36, 42]. Nevertheless, in these settings, the data matrix36
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2 TROPP, YURTSEVER, UDELL, AND CEVHER

often admits a good low-rank approximation. For many downstream applications,37

the low-rank approximation serves as well as—or even better then—the full data ma-38

trix because the approximation exposes latent structure [43, 11]. This observation39

raises the question of how to construct a low-rank approximation of simulation data40

efficiently.41

We can model a simulation as a process that computes the state at+1 ∈ Rm of a42

system at time t+ 1 from the state at ∈ Rm of the system at time t. The dimension43

m of the state increases with the resolution of the simulation. We may collect the44

data generated by the simulation into a matrix A = [a1, . . . ,an] ∈ Rm×n.45

The standard computational practice is to compute the full matrix A and then46

to compress it. Methods include direct computation of a low-rank matrix or tensor47

approximation [53, 3] or fitting a statistical model [12, 23, 33]. These approaches48

usually involve storage costs of O (mn).49

In contrast, we consider replacing these techniques by a sketching algorithm. As50

each new state is computed, we update the sketch to reflect the arrival of a new51

column at of the data matrix A. Then we discard the state at. Once the simulation52

is complete, we can extract a provably good rank-r approximation of A from the53

sketch. As we will see, this approach succeeds using total storage O (r(m + n)). For54

large matrices, the savings can be substantial. Subsection 6.7 contains a numerical55

demonstration of this idea.56

1.2. Summary of Related Work. Randomized algorithms for low-rank ma-57

trix approximation were proposed in the theoretical computer science (TCS) literature58

in the late 1990s [39, 19]. Soon after, numerical analysts developed practical versions59

of these algorithms [34, 51, 41, 25, 24]. For more background on the history of ran-60

domized linear algebra, see [25, 32, 50].61

Sketching algorithms are specifically designed for the streaming model; that is,62

for data that is presented as a sequence of updates. The paper [51] contains the63

first algorithm for low-rank approximation that can operate in this setting. The first64

explicit treatment of numerical linear algebra in the streaming model appears in [13].65

Recent papers on low-rank matrix approximation in the streaming model include [9,66

21, 46, 45]. We refer the reader to the latter works for additional background and67

information. This paper also includes detailed citations throughout.68

1.3. Notation. We write F for the scalar field, which is either real R or complex69

C. The symbol ∗ refers to the (conjugate) transpose of a matrix or vector. The dagger70
† denotes the Moore–Penrose pseudoinverse. We write ‖ · ‖p for the Schatten p-norm71

for p ∈ [1,∞]. The operator J·Kr returns a (simultaneous) best rank-r approximation72

of its argument with respect to the Schatten p-norms.73

2. Sketching and Low-Rank Approximation of a Matrix. In this section,74

we describe the basic procedure for sketching a matrix and for computing a low-rank75

approximation from the sketch. We postpone the discussion of implementation details76

and variants to section 4.77

2.1. Dimension Reduction Maps. We will use dimension reduction to col-78

lect information about an input matrix. Assume that k ≤ n. A randomized linear79

dimension reduction map is a random matrix Ξ ∈ Fk×n with the property that80

(2.1) E ‖Ξu‖2 = const · ‖u‖2 for all u ∈ Fn.81

In other words, the map reduces a vector of dimension n to dimension k, but it still82

preserves distances on average. It is also desirable that we can store the map Ξ and83
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MORE MATRIX SKETCHING ALGORITHMS 3

apply it to vectors efficiently. See section 3 for several concrete examples.84

Remark 2.1 (Geometry). The analysis of algorithms that use randomized dimen-85

sion reduction often depends on more detailed properties than the embedding condi-86

tion (2.1). See [25, 50] for more discussion.87

2.2. The Input Matrix. Let A ∈ Fm×n be an arbitrary matrix that we wish88

to approximate. In many applications where sketching is appropriate, the matrix is89

presented implicitly as a sequence of linear updates; see subsection 2.4.90

To apply sketching methods for low-rank matrix approximation, the user specifies91

a value r for the target rank of the approximation. The target rank r is typically far92

smaller than the smaller dimension min{m,n} of the matrix.93

2.3. The Sketch. Let us describe the sketching method we propose to acquire
data about the input matrix. The sketch is parameterized by two natural numbers
k, s that satisfy

r ≤ k ≤ s ≤ min{m,n},
where r is the target rank. In subsection 5.6, we offer specific parameter recommen-94

dations that are supported by theoretical analysis. In subsection 6.5, we demonstrate95

that these parameter choices are effective in practice.96

Independently, draw and fix four randomized linear dimension reduction maps:97

(2.2)
Υ ∈ Fk×m and Ω ∈ Fk×n;

Φ ∈ Fs×m and Ψ ∈ Fs×n.
98

The sketch itself consists of three matrices:99

X := ΥA ∈ Fk×n and Y := AΩ∗ ∈ Fm×k;(2.3)100

Z := ΦAΨ∗ ∈ Fs×s.(2.4)101102

The first two matrices (X,Y ) capture information about the co-range and the range103

of A. The third matrix (Z) contains information about the action of A.104

Remark 2.2 (Prior Work). The paper [48, Sec. 3] uses a sketch of the form (2.3)105

and (2.4) for low-rank matrix approximation. Related (but distinct) sketches appear106

in the papers [51, 13, 25, 50, 16, 10, 47, 46].107

2.4. Linear Updates. In streaming data applications, the input matrix A ∈108

Fm×n is presented as a sequence of linear updates of the form109

(2.5) A← θA + τH110

where θ, τ ∈ F and the matrix H ∈ Fm×n.111

In view of the construction (2.3) and (2.4), we can update the sketch (X,Y ,Z)112

of the matrix A to reflect the innovation (2.5) by means of the formulae113

(2.6)

X ← θX + τΥH

Y ← θY + τHΩ∗

Z ← θZ + τΦHΨ∗.

114

Remark 2.3 (Streaming Model). For the linear update model (2.5), randomized115

linear sketches are more or less the only way to track the input matrix [30]. There116

are more restrictive streaming models (e.g., the columns of the matrix are presented117

in sequence) where it is possible to design other types of algorithms [18, 21].118
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4 TROPP, YURTSEVER, UDELL, AND CEVHER

2.5. Computing a Low-Rank Approximation. Once we have acquired a119

sketch (X,Y ,Z) of an input matrix A, our goal is to produce a low-rank approxi-120

mation. Let us outline the computations we propose. The intuition appears below in121

subsection 2.6, and Section 5 presents the theoretical analysis.122

The first two components (X,Y ) of the sketch are used to estimate the co-range123

and the range of the matrix A. Compute thin orthogonal–triangular factorizations:124

(2.7)
X∗ =: PR1 where P ∈ Fn×k;

Y =: QR2 where Q ∈ Fm×k.
125

Both P and Q have orthonormal columns; we discard the triangular parts R1 and126

R2. The third sketch Z is used to compute the core matrix W , which describes the127

predominant action of the matrix:128

(2.8) W := (ΦQ)†Z((ΨP )†)∗ ∈ Fk×k.129

Last, we construct a rank-k approximation Â of the input matrix A:130

(2.9) Â := QWP ∗131

In some situations, it is more desirable to produce an approximation with exact rank132

r. To do so, we simply replace Â by its best rank-r approximation:133

(2.10) JÂKr = QJW KrP ∗.134

[The formula (2.10) is an easy consequence of the Eckart–Young Theorem [26, Sec. 6]135

and the fact that Q,P have orthonormal columns.]136

Remark 2.4 (Extensions). We can construct other structured approximations of137

A by projecting Â onto a set of structured matrices. See [46, Secs. 5–6] for a discussion138

of this idea in the context of another sketching technique. See our paper [45] for a139

sketching method designed for positive-semidefinite matrices.140

Remark 2.5 (Prior Work). The reconstruction formulae (2.9) and (2.10) are new.141

The papers [51, 13, 25, 50, 16, 10, 48, 47, 46] describe alternative methods for low-rank142

matrix approximation from a sketch. The numerical work in section 6 demonstrates143

that the performance of our method is uniformly superior to the earlier techniques.144

2.6. Intuition. The low-rank approximations (2.9) and (2.10) are based on some145

well-known insights from randomized linear algebra [25, Sec. 1]. Since P and Q146

capture the co-range and range of the input matrix, we expect that147

(2.11) A ≈ Q(Q∗AP )P ∗148

(See Lemma SM1.5 for justification.) We cannot compute the core matrix Q∗AP
directly from a linear sketch because P and Q are functions of A. Even so, we can
estimate the core matrix using the action sketch Z. Observe that

Z = ΦAΨ∗ = Φ(QQ∗APP ∗)Ψ∗ + Φ(A−QQ∗APP ∗)Ψ∗.

The approximation (2.11) allows us to drop the second term, so

Z ≈ (ΦQ)(Q∗AP )(P ∗Ψ∗).
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MORE MATRIX SKETCHING ALGORITHMS 5

Transfer the outer matrices to the left-hand side to discover that149

(2.12) W = (ΦQ)†Z((ΨP )†)∗ ≈ Q∗AP .150

In view of (2.11) and (2.12), we arrive at

A ≈ Q(Q∗AP )P ∗ ≈ QWP ∗ = Â.

When Â is a good approximation of A, we can project it onto the set of rank-r
matrices without increasing the error substantially:

A ≈ JÂKr = QJW KrP ∗.

Theorem 5.1 and Corollary 5.3 justify these heuristics completely for Gaussian di-151

mension reduction maps.152

Remark 2.6 (Prior Work). Our method is inspired by the intuition in [25, Sec. 1],153

which also motivates the low-rank sketching algorithms in [47, 46]. The sketching154

techniques in the TCS literature [13, 50, 16, 10, 48] are based on a different idea.155

3. Randomized Linear Dimension Reduction Maps. In this section, we156

describe several randomized linear dimension reduction maps that are suitable for157

implementing sketching algorithms for low-rank matrix approximation. See [31, 25,158

50, 46] for additional discussion and examples.159

3.1. Gaussian Maps. The most basic dimension reduction map is simply a160

Gaussian matrix. That is, Ξ ∈ Fk×n is a k × n matrix with independent standard161

normal entries.1162

Algorithm SM3.6 describes an implementation of Gaussian dimension reduction.163

The map Ξ requires storage of kn floating-point numbers in the field F. The cost of164

applying the map to a vector is O (kn) arithmetic operations.165

Gaussian dimension reduction maps are simple, and they are effective in random-166

ized algorithms for low-rank matrix approximation [25]. We can also analyze their167

behavior in full detail; see section 5. On the other hand, it is expensive to draw a168

large number of Gaussian random variables, and the cost of storage and arithmetic169

renders these maps less appealing for sketching applications.170

Remark 3.1 (History). Gaussian dimension reduction has been used as an algo-171

rithmic tool since the paper of Indyk & Motwani [28]. In spirit, this approach is172

quite similar to the earlier theoretical work of Johnson & Lindenstrauss [29], which173

performs dimension reduction by projection onto a random subspace.174

3.2. Scrambled SRFT Maps. Next, we describe a structured dimension re-175

duction map, called a scrambled subsampled randomized Fourier transform (SSRFT).176

We recommend this approach for practical implementations.177

An SSRFT map takes the form

Ξ = RFΠFΠ′ ∈ Fk×n.

The matrices Π,Π′ ∈ Fn×n are signed permutations,2 drawn independently and178

uniformly at random. The matrix F ∈ Fn×n denotes a discrete cosine transform179

1A real standard normal variable follows the Gaussian distribution with mean zero and variance
one. A complex standard normal variable takes the form g1 + ig2, where gi are independent real
standard normal variables.

2A signed permutation matrix has precisely one nonzero entry in each row and column, and each
nonzero entry of the matrix has modulus one.
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6 TROPP, YURTSEVER, UDELL, AND CEVHER

(F = R) or a discrete Fourier transform (F = C). The matrix R ∈ Fk×n is a restriction180

to k coordinates, chosen uniformly at random.181

Algorithm SM3.7 presents an implementation of an SSRFT. The cost of storing182

Ξ is just O (n) numbers. The cost of applying Ξ to a vector is O (n log n) arithmetic183

operations, using the Fast Fourier Transform (FFT) or the Fast Cosine Transform184

(FCT). This cost can be reduced [51] further to O (n log k), but the improvement is185

rarely worth the implementation effort.186

In practice, SSRFTs behave almost the same way as Gaussian matrices, but their187

storage cost does not scale with the output dimension k. On the other hand, the188

analysis [2, 44, 8] is less complete than in the Gaussian case [25]. A proper implemen-189

tation requires fast trigonometric transforms. Last, the random permutations and190

FFTs require data movement, which could be a challenge in the distributed setting.191

Remark 3.2 (History). SSRFTs are inspired by the work of Ailon & Chazelle [2] on192

fast Johnson–Lindstrauss transforms. For applications in randomized linear algebra,193

see the papers [51, 31, 25, 44, 8].194

3.3. Sparse Sign Matrices. Last, we describe another type of randomized195

dimension reduction map, called a sparse sign matrix. We recommend these maps for196

practical implementations where data movement (i.e., coherency) is a concern.197

To construct a sparse sign matrix Ξ ∈ Fk×n, we fix a sparsity parameter ζ in the198

range 2 ≤ ζ ≤ k. The columns of the matrix are drawn independently at random.199

To construct each column, we take ζ iid draws from the uniform{z ∈ F : |z| = 1}200

distribution, and we place these random variables in p coordinates, chosen uniformly201

at random. Empirically, we have found that ζ = min{k, 2 log(1 + n)} is an effective202

parameter selection. See [15] for some theoretical justification.203

Algorithm SM3.8 describes an implementation of sparse dimension reduction.204

Since the matrix Ξ ∈ Fk×n has ζ nonzeros per column, we can store the matrix with205

O (ζn log(1 + k/ζ)) numbers. The cost of applying the map to a vector is O (ζn)206

arithmetic operations.207

Sparse sign matrices have benefits for data coherency because the columns are208

generated independently and the matrices can be applied using (blocked) matrix mul-209

tiplication. One weakness is that we must use sparse data structures and arithmetic210

to enjoy the benefit of these maps.211

Remark 3.3 (History). Sparse dimension reduction maps are inspired by the work212

of Achlioptas [1] on database-friendly random projections. For applications in ran-213

domized linear algebra, see [14, 35, 37, 38, 7, 15].214

4. Implementation and Costs. This section contains further details about the215

implementation of the sketching and reconstruction methods from section 2, including216

an account of storage and arithmetic costs. All pseudocode appears in section SM2.217

The supplementary materials include Matlab code for the algorithms.218

4.1. Sketching and Updates. Algorithms SM3.1 and SM3.2 contain the pseu-219

docode for initializing the sketch and for performing the linear update (2.5).220

The sketch requires the storage of four dimension reduction maps with size k×m,221

k×n, s×m, s×n. We recommend using SSRFTs or sparse sign matrices to minimize222

the storage costs associated with the dimension reduction maps.223

The sketch itself consists of three matrices with dimensions k×n, m×k, and s×s.224

In general, the sketch matrices are dense, so they require k(m+n) + s2 floating-point225

numbers in the field F.226

The arithmetic cost of the linear update A ← θA + τH is dominated by the227
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minimum cost of computing ΦH or HΨ. That is, we apply the dimension reduction228

map to s vectors of length min{m,n}. The cost of the update depends heavily on the229

structure of the matrix H and the type of dimension reduction map.230

4.2. Low-Rank Approximation. Algorithm SM3.3 lists the pseudocode for231

computing a rank-k approximation Â of the matrix A contained in the sketch;232

see (2.9).233

The method requires additional storage of k(m+n) numbers for the orthonormal234

matrices P and Q, as well as k2 numbers for the core matrix W . The arithmetic cost235

is usually dominated by the computation of the orthogonal–triangular factorizations236

of X∗ and Y , which require O (k2(m+ n)) operations. When the parameters satisfy237

s� k, it is possible that the cost O (ks2) of forming the core matrix W will be larger.238

4.3. Fixed-Rank Approximation. Algorithm SM3.4 presents the pseudocode239

for computing the rank-r approximation JÂKr of the matrix A contained in the sketch;240

see (2.10).241

The working storage cost O (k(m + n)) is dominated by the call to the routine242

Algorithm SM3.3. Typically, the arithmetic cost is also dominated by the O (k2(m+243

n)) cost of the call to Algorithm SM3.3. When s � k, it is possible that the O (s3)244

cost of the truncated SVD will drive the arithmetic cost.245

5. Theoretical Results. It is always important to characterize the behavior of246

numerical algorithms, but the challenge is more acute for sketching methods. Indeed,247

we cannot store the stream of updates, so we cannot repeat the computation with248

new parameters if it is unsuccessful. As a consequence, we must perform a priori249

theoretical analysis to be able to implement sketching algorithms with confidence.250

In this section, we analyze our sketching and reconstruction algorithms in the251

ideal case where all of the dimension reduction maps are standard normal. These252

results allow us to make concrete recommendations for the sketch size parameters.253

Empirically, other types of dimension reduction exhibit the identical performance254

(subsection 6.4), so our analysis also supports more practical implementations based255

on SSRFTs or sparse sign matrices. The numerical work in section 6 confirms the256

value of this analysis.257

5.1. The Tail Energy. For each natural number r, define the rth tail energy of
the input matrix

τ2r (A) := min
rankB<r

‖A−B‖22 =
∑
j≥r

σ2
j (A),

where σj returns the jth largest singular value of a matrix. The second identity258

follows from the Eckart–Young Theorem [26, Sec. 6].259

5.2. The Field Parameter. We also introduce a parameter that reflects the260

field over which we are working:261

(5.1) α := α(F) :=

{
1, F = R
0, F = C.

262

This quantity allows us to capture the behavior of real and complex Gaussian matrices263

within the same formula.264

5.3. Analysis of Low-Rank Approximation. The first result gives a bound265

for the expected error in the rank-k approximation Â of the input matrix A.266
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8 TROPP, YURTSEVER, UDELL, AND CEVHER

Theorem 5.1 (Low-Rank Approximation: Error Bound). Let A ∈ Fm×n be267

an arbitrary input matrix. Assume that the sketch size parameters satisfy s ≥ 2k +268

α. Draw independent Gaussian dimension reduction maps (Υ,Ω,Φ,Ψ), as in (2.2).269

Extract a sketch (2.3) and (2.4) of the input matrix. Then the rank-k approximation270

Â, constructed in (2.9), satisfies the error bound271

(5.2) E ‖A− Â‖22 ≤
s− α

s− k − α
· min
%<k−α

k + %− α
k − %− α

· τ2%+1(A).272

We postpone the proof to section SM1. The analysis is similar in spirit to the proof273

of [46, Thm. 4.3], but it is somewhat more challenging.274

Theorem 5.1 contains explicit and reasonable constants, so we can use it to design275

algorithms that achieve a specific error tolerance. For example, suppose that r is the276

target rank of the approximation. Then the choice277

(5.3) k = 5r + α and s = 2k + α278

ensures that the error in the rank-k approximation Â is within a constant factor 3 of
the optimal rank-r approximation:

E ‖A− Â‖22 ≤ 3 · τ2r+1(A).

In practice, we have found the parameter selection (5.3) to be effective for a range279

of examples. Moreover, if k/r → ∞ and s/k → ∞, we drive the leading constant in280

(5.2) to one.281

The true meaning of Theorem 5.1 is more subtle. The minimum over % indicates282

that the approximation automatically adapts to the spectral decay of the input matrix.283

This effect is usually more significant than any benefit we may achieve by adjusting284

the parameters to control the leading constant. In subsection 5.6, we exploit this idea285

to recommend sketch size parameters for a given storage budget.286

Remark 5.2 (Failure probability). It is well known that the expected performance287

of randomized linear algebra methods also characterizes the typical performance [25,288

Fig. 7.3]. The probability that the error is significantly larger than (5.2) is negligible.289

5.4. Analysis of Fixed-Rank Approximation. Our second result gives a290

bound for the error in the rank-r approximation JÂKr of the input matrix A.291

Corollary 5.3 (Fixed-Rank Approximation: Error Bound). Instate the as-

sumptions of Theorem 5.1. Then the rank-r approximation JÂKr satisfies the error
bound

E ‖A− JÂKr‖2 ≤ τr+1(A) + 2

[
s− α

s− k − α
· min
%<k−α

k + %− α
k − %− α

· τ2%+1(A)

]1/2
.

This statement is an immediate consequence of Theorem 5.1 and the result [46,292

Prop. 6.1]. We omit the details.293

Let us elaborate on Corollary 5.3. When the approximation Â is a good rank-k294

approximation of A, then the matrix JÂKr is also a good rank-r approximation of295

A. In particular, the rank-r approximation can exploit decay in the spectrum of the296

input matrix. The empirical work in section 6 highlights the practical importance of297

this phenomenon.298
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5.5. The Storage Budget. It is important to understand the storage we need299

to maintain a sketch of an input matrix. We have recommended using structured300

dimension reduction maps (Υ,Ω,Φ,Ψ) so the storage cost for the dimension reduction301

maps does not increase with the sketch size parameters (k, s). In this case, we may302

focus on the cost of maintaining the sketch (X,Y ,Z) itself.303

Counting dimensions, via (2.3) and (2.4), we see that the three sketch matrices304

require a total storage budget of305

(5.4) T := k(m+ n) + s2306

floating-point numbers in the field F. To achieve a rank-r approximation, the min-
imum allowable values for the sketch size parameters are kmin = r + α + 1 and
smin = 2kmin + α. Therefore, the minimum storage budget is

Tmin(r) := (r + α+ 1)(m+ n) + (2r + 3α+ 1)2.

Of course, larger parameters (k, s) support better approximations. In the next section,307

we offer a more practical approach for choosing (k, s).308

5.6. Theoretical Guidance for Sketch Size Parameters. Suppose that we309

fix the storage budget T , defined in (5.4). We may ask how to apportion the sketch310

size parameters (k, s) to achieve superior empirical performance. Theorem 5.1 offers311

insight on this question; see subsection 6.5 for numerical support.312

5.6.1. General Spectrum. To control the theoretical bound Theorem 5.1 on313

the approximation error, it is natural to make the parameter k as large as possible.314

Indeed, when k is large, the parameter % in the error bound (5.2) has more room to315

adapt to decay in the spectrum of A. Note that the condition s ≥ 2k + α ensures316

that the first fraction in the error bound cannot exceed two.317

Therefore, for T ≥ Tmin(r), we pose the optimization problem318

(5.5) max k subject to s ≥ 2k + α, and k(m+ n) + s2 = T.319

Up to rounding, the solution is320

(5.6)

k\ :=

⌊
1

8

(√
(m+ n+ 4α)2 + 16(T − α2)− (m+ n+ 4α)

)⌋
;

s\ :=

⌊√
T − k\(m+ n)

⌋
.

321

The parameter choice (k\, s\) is suitable for a wide range of examples.322

5.6.2. Flat Spectrum. Suppose we know that the spectrum of the input matrix323

does not decay past a certain point: σj(A) ≈ σr̂(A) for j > r̂. In this case, the324

minimum value of the error (5.2) tends to occur when % = r̂.325

In this case, we can obtain a theoretically supported parameter choice (k[, s[) by326

numerical solution of the optimization problem327

(5.7)
min

s− α
s− k − α

· k + r̂ − α
k − r̂ − α

subject to s ≥ 2k + α, k ≥ r̂ + α+ 1,

and k(m+ n) + s2 = T.

328

In fact, this problem admits a closed-form solution, but we have chosen to omit the329

complicated formula.330
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6. Numerical Experiments. This section presents computer experiments that331

are designed to evaluate the performance of the proposed sketching algorithms for low-332

rank matrix approximation. We include comparisons with alternative methods from333

the literature, and we argue that the proposed approach produces superior results.334

6.1. Alternative Sketching and Reconstruction Methods. We compare335

our approach with two sketching algorithms for low-rank matrix approximation that336

have appeared in the literature. Our recent work [46] identifies these two algorithms337

as the best techniques available, so we omit comparisons with additional methods.338

6.1.1. A Three-Sketch Method. Boutsidis et al. [10, Sec. 6] recently intro-339

duced a new method for low-rank matrix approximation from a sketch; Upadhyay [48,340

Sec. 3] later proposed some refinements.341

Upadhyay’s variant is based on the same kind of sketch (2.2)–(2.4) that we are
using in this paper. He develops the following formula for approximating the input
matrix. First, compute orthonormal bases Q and P for the range and co-range
via (2.7). Then form thin singular value decompositions:

ΦQ = U1S1V
∗
1 and ΨP = U2S2V

∗
2 .

Construct the rank-r approximation342

(6.1) Âupa = QV1S
†
1 JU∗1ZU2Kr S

†
2V
∗
2 P ∗.343

Superficially, the approximation Âupa may look similar to the approximation we de-344

veloped in (2.10). Nevertheless, they are designed using different principles, and their345

performance is quite different in practice.346

6.1.2. A Two-Sketch Method. In [46], we developed and analyzed a very
simple sketching algorithm for low-rank matrix approximation. This approach uses
only two dimension reduction maps:

Υ ∈ F`×m and Ω ∈ Fk×n where k ≤ `.

The sketch takes the form

X = ΥA and Y = AΩ∗.

To obtain a rank-r approximation from this sketch, we compute347

(6.2) Y = QR and Âtwo = QJ(ΥQ)†XKr.348

The numerically stable implementation is a little more complicated; see [46, Alg. 7]349

for details.350

6.2. Experimental Setup. Our experimental design is quite similar to our351

previous papers [46, 45] on sketching algorithms for low-rank matrix approximation.352

6.2.1. Procedure. Fix an input matrix A ∈ Fn×n and a target rank r. Then353

select the sketch size parameters (k, s) or (k, `). For each trial, we draw dimension354

reduction maps from a specified distribution and form the sketch of the input matrix.355

We compute a rank-r approximation Âout using a specified reconstruction formula.356

The approximation error is calculated relative to the best rank-r approximation error357

in Schatten p-norm:358

(6.3) Sp relative error =
‖A− Âout‖p
‖A− JAKr‖p

− 1.359
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Fig. 1: Spectra of input matrices. Plots of the singular value spectrum for an
input matrix from each of the synthetic classes (LowRank, PolyDecay, ExpDecay with
effective rank R = 10) and from each of the real data classes (MinTemp, StreamVel,
MaxCut, PhaseRetrieval) described in subsection 6.3.

We perform 20 independent trials and report the average error. Owing the measure360

concentration effects, the average error is also the typical error; cf. [25, Fig. 7.3].361

The body of this paper presents a limited selection of results. Section SM3 con-362

tains additional numerical evidence. The supplementary materials also include Mat-363

lab code that can reproduce these experiments.364

6.2.2. The Oracle Error. To make fair comparisons among algorithms, we365

fix the storage budget and identify the parameter choices that minimize the relative366

error (6.3) incurred. We refer to the minimum as the oracle error for an algorithm.367

For our new reconstruction (2.10) and for the Upadhyay method (6.1), we compute368

the total storage cost as T = k(m+n)+s2 and we require that k > r+α and s ≥ 2k+α.369

For the two-sketch method (6.2), the total storage cost is T = km+`n and we require370

that k > r+α and ` > k+α. Note that the storage budget neglects the cost of storing371

the dimension reduction maps because this cost has lower order than the sketch when372

we use structured dimension reduction maps.373

6.3. Classes of Input Matrices. As in our previous papers [46, 45], we consider374

several different types of synthetic and real input matrices. See Figure 1 for a plot of375

the spectra of these input matrices.376

6.3.1. Synthetic Examples. We work over the complex field C. The matrix di-377

mensions m = n = 103, and we introduce an effective rank parameter R ∈ {5, 10, 20}.378
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12 TROPP, YURTSEVER, UDELL, AND CEVHER

We compute an approximation with actual rank r = 10.379

1. Low-rank + noise: Let ξ ≥ 0 be a signal-to-noise parameter. These matri-
ces take the form

A = diag(1, . . . , 1︸ ︷︷ ︸
R

, 0, . . . , 0) + ξn−1W ∈ Cn×n,

where W = GG∗ for a standard normal matrix G ∈ Fn×n. We consider380

several parameter values: LowRankLowNoise (ξ = 10−4), LowRankMedNoise381

(ξ = 10−2), LowRankHiNoise (ξ = 10−1).382

2. Polynomial decay: For a decay parameter p > 0, consider matrices

A = diag(1, . . . , 1︸ ︷︷ ︸
R

, 2−p, 3−p, . . . , (n−R+ 1)−p) ∈ Cn×n.

We study three examples: PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1),383

PolyDecayFast (p = 2).384

3. Exponential decay: For a decay parameter q > 0, consider matrices

A = diag(1, . . . , 1︸ ︷︷ ︸
R

, 10−q, 10−2q, . . . , 10−(n−R)q) ∈ Cn×n.

We consider the cases ExpDecaySlow (q = 0.01), ExpDecayMed (q = 0.1),385

ExpDecayFast (q = 0.5).386

6.3.2. Application Examples. We also consider instances of low-rank data387

matrices that arise in applications. For these matrices, we consider a range of values388

for the actual rank r of the approximation.389

1. Navier–Stokes: We test the hypothesis, discussed in subsection 1.1, that390

sketching methods can be used to perform on-the-fly compression of the out-391

put of a PDE simulation. We have obtained a 2D Direct Navier–Stokes (DNS)392

simulation of low-Reynolds number flow around a cylinder on a coarse mesh.393

The simulation is started impulsively from a rest state. Transient dynamics394

emerge in the first third of the simulation, while the remaining time steps395

capture the limit cycle. Each of the velocity and pressure fields is centered396

around its temporal mean. This data is courtesy of Beverley McKeon and397

Sean Symon.398

The real m × n matrix StreamVel contains streamwise velocities at m =399

10, 738 points for each of n = 5, 001 time instants. The first 20 singular400

values of the matrix decay by two orders of magnitude, and the rest of the401

spectrum exhibits slow exponential decay. This is typical for physical models.402

2. Weather: We also test the hypothesis that sketching methods can be used403

to perform on-the-fly compression of temporal data as it is collected. We have404

obtained a matrix that tabulates meteorological variables at weather stations405

across the northeastern United States on days during the years 1981–2016.406

This data is courtesy of William North.407
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The real m×n matrix MinTemp contains the minimum temperature recorded408

at each of m = 19, 264 stations on each of n = 7, 305 days. The first 10 singu-409

lar values decay by two orders of magnitude, while the rest of the spectrum410

has medium polynomial decay. This is typical for measured data.411

3. Sketchy Decisions: Last, we consider matrices that arise from an opti-412

mization algorithm for solving large-scale semidefinite programs [52]. In this413

application, the data matrices are presented as a long series of rank-one up-414

dates, and sketching is a key element of the algorithm.415

(a) MaxCut: This is a real psd matrix with m = n = 2, 000 that gives a416

high-accuracy solution to the MaxCut SDP for a sparse graph [22].417

This matrix is effectively rank deficient with R = 14, and the spec-418

trum has fast exponentially decay after this point.419

(b) PhaseRetrieval: This is a complex psd matrix withm = n = 25, 921420

that gives a low-accuracy solution to a phase retrieval SDP [27]. This421

matrix is effectively rank deficient with R = 5, and the spectrum has422

fast exponential decay after this point.423

6.4. Insensitivity to Dimension Reduction Map. Our first experiment is424

designed to show that the proposed rank-r reconstruction formula (2.10) is insensitive425

to the distribution of the dimension reduction map at the oracle parameter values426

(subsection 6.2.2).427

Figure 2 presents experiments with synthetic test matrices with effective rank428

R = 10, approximation rank r = 10, and the Schatten 2-norm error (6.3). For most429

storage budgets T , the Gaussian, SSRFT, and sparse dimension reduction maps yield430

equivalent values for the oracle error. In fact, because it is unitary, the SSRFT map431

even performs slightly better than the others when the storage budget is very large.432

See subsection SM3.1 for more numerics, which transmit the same message.433

The other reconstruction methods (6.1) and (6.2) are also insensitive to the choice434

of dimension reduction maps. We omit the numerical evidence. These observations435

justify the transfer of theoretical and empirical results for Gaussians to SSRFT and436

sparse dimension reduction maps.437

6.5. Approaching the Oracle Performance. Next, we show that theoretical438

parameter choices in (2.10) produce results almost as good as the oracle performance.439

Figures 3 and 4 display the outcome of the following experiment. For synthetic440

test matrices with effective rank R = 10 and approximation rank r = 10, we compare441

the oracle performance (subsection 6.2.2) of our rank-r approximation (2.10) with442

its performance at the theoretical parameters proposed in subsection 5.6. (In the443

formula (5.7) for a flat spectrum, we set the tail location r̂ = r.) We use Gaussian444

dimension reduction maps, but equivalent results hold for other types of dimension445

reduction maps. See subsection SM3.2 for effective rank R = 5 and R = 20.446

For most of the examples, the general parameter choice (5.6) is able to deliver a447

relative error that tracks the oracle error closely. The parameter choice (5.7) for a448

flat spectrum works somewhat better for matrices whose spectral tail exhibits slow449

decay (LowRankLowNoise, LowRankMedNoise, LowRankHiNoise). We also learn that450

the theoretical formulas are not entirely reliable when the storage budget is very small.451

Matrices with a lot of tail energy (LowRankHiNoise, PolyDecaySlow) are very hard452

to approximate accurately with a sketching algorithm, so it is not surprising that our453

theoretical parameter choices fall short of the oracle parameters in these cases.454
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6.6. Comparison of Reconstruction Formulas: Synthetic Examples. Let455

us now compare the proposed rank-r reconstruction formula (2.10) with the Upadhyay456

approximation (6.1) and the two-sketch approximation (6.2).457

Figures 5 and 6 present the results of the following experiment. For synthetic458

matrices with effective rank R = 10 and approximation rank r = 10, we compare the459

relative error (6.3) achieved by each of the three rank-r reconstructions as a function460

of storage (subsection 6.2.2). We use Gaussian dimension reduction maps in these461

experiments; similar results are evident for other types of maps. Results for effective462

rank R = 5 and R = 20 appear in subsection SM3.3.463

Let us make some remarks:464

• This experiment demonstrates clearly that the proposed approximation (2.10)465

dominates the earlier methods for all the synthetic input matrices, almost466

uniformly and sometimes by orders of magnitude.467

• For input matrices where the spectral tail decays slowly (PolyDecaySlow,468

LowRankLowNoise, LowRankMedNoise, LowRankHiNoise), the newly proposed469

method (2.10) has identical behavior to the Upadhyay method (6.1).470

• For input matrices whose spectral tail decays more quickly (ExpDecaySlow,471

ExpDecayMed, ExpDecayFast, PolyDecayMed, PolyDecayFast), the proposed472

method improves massively over Upadhyay (6.1).473

• The new method (2.10) shows its strength over the two-sketch method (6.2)474

when the storage budget is small. It also yields superior performance in475

Schatten ∞-norm. These differences are most evident for matrices with slow476

spectral decay.477

In summary, the proposed method (2.10) enjoys the advantages of the Upad-478

hyay (6.1) method and our previous approach (6.2), with no evident disadvantages.479

6.7. Comparison of Reconstruction Formulas: Real Data Examples.480

Our last set of experiments is designed to show that our sketching and reconstruction481

pipeline is effective for real data.482

Figures 7 and 8 contains the results of the following experiment. For each of483

the three rank-r reconstruction methods, we display the relative error (6.3) as a484

function of storage. We use sparse dimension reduction maps, which is justified by485

the experiments in subsection 6.4.486

We plot the oracle error (subsection 6.2.2) attained by each method. Since the
oracle error is not achievable in practice, we also chart the performance of each method
at an a priori selection of parameters. For the proposed method (2.10), we use
the natural parameter choice (5.6) that follows from our theoretical analysis. The
Upadhyay sketch takes the same form as ours but lacks a comparable theory, so we
instantiate his method with the same parameters (5.6) we used in our sketch. Last,
for the two-sketch method (6.2), we assume that the input matrix A ∈ Fm×n is tall
(m ≥ n), and we use the theoretically motivated parameter values

k = max{r + α+ 1, b(T − nα)/(m+ 2n)c} and ` = b(T − km)/nc.

This choice adapts the arguments in [46, Sec. 4.5.2] to use the current definition of487

the storage budget T .488

As with the synthetic examples, the proposed method (2.10) dominates the com-489

peting methods for all the examples we considered. This is true when we compare490

oracle errors or when we compare the errors using a priori parameter choices. The491

benefits of the new method are least pronounced for the matrix MinTemp, whose spec-492
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trum has medium polynomial decay. The benefits of the new method are quite clear493

for the matrix StreamVel, which has an exponentially decaying spectrum. The ad-494

vantages are even more striking for the two matrices MaxCut and PhaseRetrieval,495

which are effectively rank deficient.496

In summary, we believe that the numerical work here supports the use of our new497

method (2.10). The Upadhyay (6.1) method cannot achieve a small relative error (6.3),498

even with a large amount of storage. The two-sketch method (6.2) can achieve small499

relative error, but it often requires more storage to achieve this goal—especially at500

the a priori parameter choices.501

6.8. Example: Flow-Field Reconstruction. Finally, we elaborate on using502

sketching to compress the DNS data matrix StreamVel. We compute the best rank-503

10 approximation of the matrix via (2.10) using storage T/(m + n) = 48 and the504

parameter choices (5.6). For this example, we can use plots of the flow field to make505

visual comparisons.506

Figure 9 illustrates the leading left singular vectors of the streamwise velocity507

field StreamVel, as computed from the sketch and the full matrix. We see that508

the approximate left singular vectors closely match the actual left singular vectors,509

although some small errors appear, especially at the inlet (on the left-hand side of the510

images). See subsection SM3.4 for additional numerics.511

If we normalize StreamVel so that its largest singular value equals one, then512

the best rank-10 approximation of StreamVel has absolute S∞ error 2.223 · 10−2.513

Meanwhile, the computed rank-10 approximation has absolute S∞ error 2.226 · 10−2.514

(The S∞ relative error (6.3) is 1.3 · 10−3.) We can easily improve these numbers by515

computing a higher-rank approximation and/or increasing the storage budget.516

We learn that the sketched matrix supports an excellent rank-10 reconstruction,517

even though it only uses 5.8 MB of storage in double precision. For comparison,518

the full matrix requires 409.7 MB of storage. The compression rate is 70.6×. This519

demonstration suggests that it is indeed possible to automatically compress the output520

of the DNS simulation using sketching.521

7. Conclusions. This paper exhibits a sketching method and a new reconstruc-522

tion algorithm for low-rank approximation of matrices that are presented as a sequence523

of linear updates (section 2). We have described how to implement the method using524

SSRFTs or sparse dimension reduction methods (section 3), and we have argued that525

the performance of the method is insensitive to the choice of dimension reduction map526

(subsection 6.4). In addition, a detailed theoretical analysis (section 5) prescribes how527

to select parameter values for the sketch a priori, and we have shown that these pa-528

rameter values yield good performance across a range of examples (subsection 6.5).529

Finally, we have demonstrated that the new reconstruction method dominates existing530

techniques for both synthetic matrices (subsection 6.6) and real data (subsection 6.7).531

A potential application of these techniques is for on-the-fly-compression of data532

from large-scale simulations. Our work with DNS data indicates that we can achieve533

significant data reduction A key advantage of our new approach over (6.2) is that it534

extends to higher-dimensional (i.e., tensor) data. This generalization should allow for535

higher compression rates, and we plan to explore this idea in a future work.536

Acknowledgments. The authors wish to thank Beverley McKeon and Sean537

Symon for providing DNS simulation data and visualization software. William North538

contributed the weather data.539

This manuscript is for review purposes only.



16 TROPP, YURTSEVER, UDELL, AND CEVHER

REFERENCES540

[1] D. Achlioptas, Database-friendly random projections: Johnson–Lindenstrauss with binary541
coins, J. Comput. System Sci., 66 (2003), pp. 671–687.542

[2] N. Ailon and B. Chazelle, The fast Johnson-Lindenstrauss transform and approximate543
nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302–322, https://doi.org/10.1137/544
060673096, http://dx.doi.org/10.1137/060673096.545

[3] W. Austin, G. Ballard, and T. G. Kolda, Parallel tensor compression for large-scale scien-546
tific data, in 2016 IEEE Intl. Symp. Parallel and Distributed Processing, 2016, pp. 912–922.547

[4] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mickelson, J. Edwards,548
M. Vertenstein, and A. Wegener, A methodology for evaluating the impact of data549
compression on climate simulation data, in Proc. 23rd ACM Intl. Symp. High-Performance550
Parallel and Distributed Computing, 2014, pp. 203–214.551

[5] R. Baurle, Modeling of high speed reacting flows: Established practices and future challenges,552
in 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, p. 267.553

[6] A. Bejan, Convection heat transfer, John Wiley & Sons, 2013.554
[7] J. Bourgain, S. Dirksen, and J. Nelson, Toward a unified theory of sparse dimensionality555

reduction in Euclidean space, Geom. Funct. Anal., 25 (2015), pp. 1009–1088, https://doi.556
org/10.1007/s00039-015-0332-9, http://dx.doi.org/10.1007/s00039-015-0332-9.557

[8] C. Boutsidis and A. Gittens, Improved matrix algorithms via the subsampled randomized558
Hadamard transform, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1301–1340, https://doi.559
org/10.1137/120874540, http://dx.doi.org/10.1137/120874540.560

[9] C. Boutsidis, D. Woodruff, and P. Zhong, Optimal principal component analysis in dis-561
tributed and streaming models. Available at http://arXiv.org/abs/1504.06729, July 2016.562

[10] C. Boutsidis, D. Woodruff, and P. Zhong, Optimal principal component analysis in dis-563
tributed and streaming models, in Proc. 48th ACM Symp. Theory of Computing (STOC564
2016), Cambridge, MA, 2016.565

[11] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D. Gropp, Exploring the feasi-566
bility of lossy compression for PDE simulations, The International Journal of High Per-567
formance Computing Applications, (2018), p. 1094342018762036, https://doi.org/10.1177/568
1094342018762036.569

[12] S. Castruccio and M. G. Genton, Compressing an ensemble with statistical models: An570
algorithm for global 3D spatio-temporal temperature, Technometrics, 58 (2016), pp. 319–571
328.572

[13] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in573
Proc. 41st ACM Symp. Theory of Computing (STOC), Bethesda, 2009.574

[14] K. L. Clarkson and D. P. Woodruff, Low rank approximation and regression in input spar-575
sity time, in Proc. 45th ACM Symp. Theory of Computing (STOC), ACM, New York, 2013,576
pp. 81–90, https://doi.org/10.1145/2488608.2488620, http://dx.doi.org/10.1145/2488608.577
2488620.578

[15] M. Cohen, Nearly tight oblivious subspace embeddings by trace inequalities, in Proc. 27th579
ACM-SIAM Symp. Discrete Algorithms (SODA), Arlington, Jan. 2016, pp. 278–287.580

[16] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, Dimensionality reduction581
for k-means clustering and low rank approximation, in Proc. 47th ACM Symp. Theory of582
Computing (STOC), ACM, 2015, pp. 163–172.583

[17] J. B. Drake, Climate modeling for scientists and engineers, SIAM, 2014.584
[18] D. Feldman, M. Volkov, and D. Rus, Dimensionality reduction of massive sparse datasets585

using coresets, in Adv. Neural Information Processing Systems 29 (NIPS), 2016.586
[19] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank587

approximations, J. Assoc. Comput. Mach., 51 (2004), pp. 1025–1041, https://doi.org/10.588
1145/1039488.1039494, http://dx.doi.org/10.1145/1039488.1039494.589

[20] E. Garnier, N. Adams, and P. Sagaut, Large eddy simulation for compressible flows, Springer590
Science & Business Media, 2009.591

[21] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff, Frequent directions:592
simple and deterministic matrix sketching, SIAM J. Comput., 45 (2016), pp. 1762–593
1792, https://doi.org/10.1137/15M1009718, https://doi-org.clsproxy.library.caltech.edu/594
10.1137/15M1009718.595

[22] M. X. Goemans and D. Williamson, Improved approximation algorithms for maximum cut596
and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42597
(1995), pp. 1115–1145.598

[23] J. Guinness and D. Hammerling, Compression and conditional emulation of climate model599
output, J. Amer. Stat. Assoc., (2017).600

This manuscript is for review purposes only.

https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
http://dx.doi.org/10.1137/060673096
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1007/s00039-015-0332-9
http://dx.doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1137/120874540
https://doi.org/10.1137/120874540
https://doi.org/10.1137/120874540
http://dx.doi.org/10.1137/120874540
http://arXiv.org/abs/1504.06729
https://doi.org/10.1177/1094342018762036
https://doi.org/10.1177/1094342018762036
https://doi.org/10.1177/1094342018762036
https://doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1145/2488608.2488620
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/1039488.1039494
http://dx.doi.org/10.1145/1039488.1039494
https://doi.org/10.1137/15M1009718
https://doi-org.clsproxy.library.caltech.edu/10.1137/15M1009718
https://doi-org.clsproxy.library.caltech.edu/10.1137/15M1009718
https://doi-org.clsproxy.library.caltech.edu/10.1137/15M1009718


MORE MATRIX SKETCHING ALGORITHMS 17

[24] N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert, An algorithm for the prin-601
cipal component analysis of large data sets, SIAM J. Sci. Comput., 33 (2011), pp. 2580–602
2594, https://doi.org/10.1137/100804139, https://doi-org.clsproxy.library.caltech.edu/10.603
1137/100804139.604

[25] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: prob-605
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53606
(2011), pp. 217–288.607

[26] N. J. Higham, Matrix nearness problems and applications, in Applications of matrix theory608
(Bradford, 1988), Oxford Univ. Press, New York, 1989, pp. 1–27.609

[27] R. Horstmeyer, R. Y. Chen, X. Ou, B. Ames, J. A. Tropp, and C. Yang, Solving ptychog-610
raphy with a convex relaxation, New J. Physics, 17 (2015), p. 053044.611

[28] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse612
of dimensionality, in Proc. 30th ACM Symp. Theory of Computing (STOC), STOC ’98,613
New York, NY, USA, 1998, ACM, pp. 604–613, https://doi.org/10.1145/276698.276876,614
http://doi.acm.org/10.1145/276698.276876.615

[29] W. B. Johnson and J. Lindenstrauss, Extensions of Lipszhitz mapping into Hilbert space,616
Contemp. Math., 26 (1984), pp. 189–206.617

[30] Y. Li, H. L. Nguyen, and D. P. Woodruff, Turnstile streaming algorithms might as well618
be linear sketches, in Proc. 46th ACM Symp. Theory of Computing (STOC), ACM, New619
York, 2014, pp. 174–183.620

[31] E. Liberty, Accelerated dense random projections, PhD thesis, Yale Univ., New Haven, 2009.621
[32] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn-622

ing, 3 (2011), pp. 123–224.623
[33] M. R. Malik, B. J. Isaac, A. Coussement, P. J. Smith, and A. Parente, Principal compo-624

nent analysis coupled with nonlinear regression for chemistry reduction, Combustion and625
Flame, 187 (2018), pp. 30–41.626

[34] P.-G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the de-627
composition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68, https:628
//doi.org/10.1016/j.acha.2010.02.003, http://dx.doi.org/10.1016/j.acha.2010.02.003.629

[35] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in input-sparsity time and630
applications to robust linear regression, in Proc. 45th ACM Symp. Theory of Computing631
(STOC), ACM, New York, 2013, pp. 91–100, https://doi.org/10.1145/2488608.2488621,632
http://dx.doi.org/10.1145/2488608.2488621.633

[36] F. R. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the sst634
turbulence model, Turbulence, heat and mass transfer, 4 (2003), pp. 625–632.635

[37] J. Nelson and H. L. Nguyen, OSNAP: faster numerical linear algebra algorithms via sparser636
subspace embeddings, in 2013 IEEE 54th Symp. Foundations of Computer Science (FOCS),637
IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 117–126, https://doi.org/10.1109/638
FOCS.2013.21, http://dx.doi.org/10.1109/FOCS.2013.21.639

[38] J. Nelson and H. L. Nguyen, Lower bounds for oblivious subspace embeddings, in Automata,640
languages, and programming. Part I, vol. 8572 of Lecture Notes in Comput. Sci., Springer,641
Heidelberg, 2014, pp. 883–894, https://doi.org/10.1007/978-3-662-43948-7 73, http://dx.642
doi.org/10.1007/978-3-662-43948-7 73.643

[39] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic in-644
dexing: a probabilistic analysis, J. Comput. System Sci., 61 (2000), pp. 217–235, https:645
//doi.org/10.1006/jcss.2000.1711, http://dx.doi.org/10.1006/jcss.2000.1711. Special is-646
sue on the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of647
Database Systems (Seattle, WA, 1998).648

[40] S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.649
[41] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component650

analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124, https://doi.org/10.1137/651
080736417, https://doi-org.clsproxy.library.caltech.edu/10.1137/080736417.652

[42] P. Sagaut, Large eddy simulation for incompressible flows: an introduction, Springer Science653
& Business Media, 2006.654

[43] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choudhary, Data com-655
pression for the exascale computing era-survey, Supercomputing frontiers and innovations,656
1 (2014), pp. 76–88.657

[44] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv.658
Adapt. Data Anal., 3 (2011), pp. 115–126, https://doi.org/10.1142/S1793536911000787,659
http://dx.doi.org/10.1142/S1793536911000787.660

[45] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-rank approximation of a661
positive-semidefinite matrix from streaming data, in Adv. Neural Information Processing662

This manuscript is for review purposes only.

https://doi.org/10.1137/100804139
https://doi-org.clsproxy.library.caltech.edu/10.1137/100804139
https://doi-org.clsproxy.library.caltech.edu/10.1137/100804139
https://doi-org.clsproxy.library.caltech.edu/10.1137/100804139
https://doi.org/10.1145/276698.276876
http://doi.acm.org/10.1145/276698.276876
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1016/j.acha.2010.02.003
http://dx.doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1145/2488608.2488621
http://dx.doi.org/10.1145/2488608.2488621
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1109/FOCS.2013.21
http://dx.doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1007/978-3-662-43948-7_73
http://dx.doi.org/10.1007/978-3-662-43948-7_73
https://doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1006/jcss.2000.1711
http://dx.doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1137/080736417
https://doi.org/10.1137/080736417
https://doi.org/10.1137/080736417
https://doi-org.clsproxy.library.caltech.edu/10.1137/080736417
https://doi.org/10.1142/S1793536911000787
http://dx.doi.org/10.1142/S1793536911000787


18 TROPP, YURTSEVER, UDELL, AND CEVHER

Systems 30 (NIPS), Long Beach, Dec. 2017.663
[46] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for664

low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454–1485.665
[47] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Randomized single-view algorithms666

for low-rank matrix approximation, ACM Report 2017-01, Caltech, Pasadena, Jan. 2017.667
Available at http://arXiv.org/abs/1609.00048, v1.668

[48] J. Upadhyay, Fast and space-optimal low-rank factorization in the streaming model with ap-669
plication in differential privacy. Available at http://arXiv.org/abs/1604.01429, Apr. 2016.670

[49] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens, Revisiting wavelet671
compression for large-scale climate data using JPEG 2000 and ensuring data precision, in672
2011 IEEE Symp. Large Data Analysis and Visualization (LDAV), 2011, pp. 31–38.673

[50] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.674
Comput. Sci., 10 (2014), pp. iv+157.675

[51] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the676
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366.677

[52] A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher, Sketchy decisions: Convex low-rank678
matrix optimization with optimal storage, in 2017 Intl. Conf. Artificial Intelligence and679
Statistics (AISTATS), 2017.680

[53] G. Zhou, A. Cichocki, and S. Xie, Decomposition of big tensors with low multilinear rank,681
arXiv preprint arXiv:1412.1885, (2014).682

This manuscript is for review purposes only.

http://arXiv.org/abs/1609.00048
http://arXiv.org/abs/1604.01429


MORE MATRIX SKETCHING ALGORITHMS 19

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

2
)

10
-2

10
-1

Gauss

SSRFT

Sparse

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

2
)

10
-2

10
-1

10
0

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-6

10
-4

10
-2

10
0

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

2
)

10
-3

10
-2

10
-1

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(i) ExpDecayFast

Fig. 2: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 10, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. 3: Relative error for proposed method with a priori parameters.
(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.

This manuscript is for review purposes only.



MORE MATRIX SKETCHING ALGORITHMS 21

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

∞
)

10
-1

10
0

Oracle

Natural (5.6)

Flat (5.7)

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-1

10
0

10
1

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
0

10
1

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

∞
)

10
-2

10
-1

10
0

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-4

10
-3

10
-2

10
-1

10
0

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
v
e
E
rr
o
r
(S

∞
)

10
-3

10
-2

10
-1

10
0

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(i) ExpDecayFast

Fig. 4: Relative error for proposed method with a priori parameters.
(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
∞-norm.) We compare the oracle performance of the proposed fixed-rank approx-
imation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fig. 5: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
2-norm.) We compare the oracle error achieved by the proposed fixed-rank ap-
proximation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-
tion 6.2.2 for details.
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Fig. 6: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
∞-norm.) We compare the oracle error achieved by the proposed fixed-rank ap-
proximation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-
tion 6.2.2 for details.
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Fig. 7: Comparison of reconstruction formulas: Real data examples.
(Sparse maps, Schatten 2-norm.) We compare the relative error achieved by
the proposed fixed-rank approximation (2.10) against methods (6.1) and (6.2) from
the literature. Solid lines are oracle errors; dashed lines are errors with “natural”
parameter choices. See subsection 6.7 for details.
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Fig. 8: Comparison of reconstruction formulas: Real data examples.
(Sparse maps, Schatten ∞-norm.) We compare the relative error achieved by
the proposed fixed-rank approximation (2.10) against methods (6.1) and (6.2) from
the literature. Solid lines are oracle errors; dashed lines are errors with “natural”
parameter choices. See subsection 6.7 for details.
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Fig. 9: Left singular vectors of StreamVel. (Sparse maps, approximation rank
r = 10, storage budget T = 48(m + n).) The columns of the matrix StreamVel

describe the fluctuations of the streamwise velocity field about its mean value as a
function of time. From top to bottom, the panels show the first nine computed left
singular vectors of the matrix. The left-hand side is computed from the sketch,
while the right-hand side is computed from the exact flow field. The heatmap
indicates the magnitude of the fluctuation. See subsection 6.8 for details.
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SUPPLEMENTARY MATERIALS: MORE PRACTICAL SKETCHING1

ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION∗2

JOEL A. TROPP† , ALP YURTSEVER‡ , MADELEINE UDELL§ , AND VOLKAN CEVHER‡3

SM1. Analysis of the Low-Rank Approximation. This section contains4

the proof of Theorem 5.1, the theoretical result on the behavior of the basic low-rank5

approximation (2.9). We maintain the notation from section 2.6

SM1.1. Facts about Random Matrices. First, let us state a useful formula7

that allows us to compute some expectations involving a Gaussian random matrix.8

This identity is drawn from [SM1, Prop. A.1 and A.6]. See also [SM2, Fact A.1].9

Fact SM1.1. Assume that t > q + α. Let G1 ∈ Ft×q and G2 ∈ Ft×p be indepen-
dent standard normal matrices. For any matrix B with conforming dimensions,

E ‖G†1G2B‖22 =
q

t− q − α
· ‖B‖22.

The number α is given by (5.1).10

SM1.2. Results from Randomized Linear Algebra. Our argument also11

depends on the analysis of randomized low-rank approximation developed in [SM1,12

Sec. 10].13

Fact SM1.2 (Halko et al. 2011). Fix A ∈ Fm×n. Let % be a natural number such
that % < k − α. Draw the random test matrix Ω ∈ Fk×n from the standard normal
distribution. Then the matrix Q computed by (2.7) satisfies

EΩ ‖A−QQ∗A‖22 ≤
(

1 +
%

k − %− α

)
· τ2%+1(A).

The number α is given by (5.1).14

This result follows immediately from the proof of [SM1, Thm. 10.5] using Fact SM1.115

to handle both the real and complex case simultaneously. See also [SM3, Sec. 8.2].16

SM1.3. Decomposition of the Core Matrix Approximation Error. The17

first step in the argument is to obtain a formula for the error in the approximation18

W − Q∗AP . The core matrix W ∈ Fs×s is defined in (2.8). We constructed the19

orthonormal matrices P ∈ Fn×k and Q ∈ Fm×k in (2.7).20

Let us introduce matrices whose ranges are complementary to those of P and Q:

P⊥P
∗
⊥ := I− PP ∗ where P⊥ ∈ Fn×(n−k);

Q⊥Q
∗
⊥ := I−QQ∗ where Q⊥ ∈ Fm×(m−k).

∗First draft: 22 March 2017. First release: 16 July 2018.
Funding: JAT was supported in part by ONR Awards N00014-11-1002, N00014-17-1-214,

N00014-17-1-2146, and the Gordon & Betty Moore Foundation. MU was supported in part by
DARPA Award FA8750-17-2-0101. VC has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under the
grant agreement number 725594 (time-data) and the Swiss National Science Foundation (SNSF)
under the grant number 200021 178865.
†California Institute of Technology, Pasadena, CA (jtropp@cms.caltech.edu).
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The columns of P⊥ and Q⊥ are orthonormal. Next, introduce the submatrices21

(SM1.1)
Φ1 = ΦQ ∈ Fs×k and Φ2 = ΦQ⊥ ∈ Fs×(m−k);

Ψ∗1 = P ∗Ψ∗ ∈ Fk×s and Ψ∗2 = P ∗⊥Ψ∗ ∈ F(n−k)×s.
22

With this notation at hand, we can state and prove the first result.23

Lemma SM1.3 (Decomposition of the Core Matrix Approximation). Assume24

that the matrices Φ1 and Ψ1 have full column rank. Then25

W −Q∗AP = Φ†1Φ2(Q∗⊥AP ) + (Q∗AP⊥)Ψ∗2(Ψ†1)∗26

+ Φ†1Φ2(Q∗⊥AP⊥)Ψ∗2(Ψ†1)∗.2728

Proof. Adding and subtracting terms, we write the core sketch Z as

Z = ΦAΨ∗ = Φ(A−QQ∗APP ∗)Ψ∗ + (ΦQ)(Q∗AP )(P ∗Ψ∗).

Using (SM1.1), we identify the matrices Φ1 and Ψ1. Then left-multiply by Φ†1 and

right-multiply by (Ψ†1)∗ to arrive at

W = Φ†1Z(Ψ†1)∗ = Φ†1Φ(A−QQ∗APP ∗)Ψ∗(Ψ†1)∗ + Q∗AP .

We have identified the core matrix W , defined in (2.8). Move the term Q∗AP to the29

left-hand side to isolate the approximation error.30

To continue, notice that

Φ†1Φ = Φ†1ΦQQ∗ + Φ†1ΦQ⊥Q
∗
⊥ = Q∗ + Φ†1Φ2Q

∗
⊥.

Likewise,

Ψ∗(Ψ†1)∗ = PP ∗Ψ∗(Ψ†1)∗ + P⊥P
∗
⊥Ψ∗(Ψ†1)∗ = P + P⊥Ψ∗2(Ψ†1)∗.

Combine the last three displays to arrive at

W −Q∗AP = (Q∗ + Φ†1Φ2Q
∗
⊥)(A−QQ∗APP ∗)(P + P⊥Ψ∗2(Ψ†1)∗).

Expand the expression and use the orthogonality relations Q∗Q = I and Q∗⊥Q = 031

and P ∗P = I and P ∗P⊥ = 0 to arrive at the desired representation.32

SM1.4. Probabilistic Analysis of the Core Matrix. Next, we make distri-33

butional assumptions on the dimension reduction maps Φ and Ψ. We can then study34

the probabilistic behavior of the error W −Q∗AP .35

Lemma SM1.4 (Probabilistic Analysis of the Core Matrix). Assume that the
dimension reduction matrices Φ and Ψ are drawn independently from the standard
normal distribution. When s ≥ k, it holds that

EΦ,Ψ[W −Q∗AP ] = 0.

When s > k + α, we can express the error as

EΦ,Ψ ‖W −Q∗AP ‖22 =
k

s− k − α
· ‖A−QQ∗APP ∗‖22

+
k(2k + α− s)
(s− k − α)2

· ‖Q∗⊥AP⊥‖22.

When s ≥ 2k + α, the last term is always nonpositive.36
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Proof. Since Φ is standard normal, the orthogonal submatrices Φ1 and Φ2 are37

statistically independent standard normal matrices because of the marginal property38

of the normal distribution. Likewise, Ψ1 and Ψ2 are statistically independent stan-39

dard normal matrices. Provided that s ≥ k, both matrices have full column rank with40

probability one.41

To establish the first point, notice that42

EΦ,Ψ[W −Q∗AP ] = EΦ1
EΦ2

[Φ†1Φ2(Q∗⊥AP )] + EΨ1 EΨ2
[(Q∗AP⊥)Ψ∗2(Ψ†1)∗]43

+ EEΦ2
[Φ†1Φ2(Q∗⊥AP⊥)Ψ∗2(Ψ†1)∗].4445

We have used the decomposition of the approximation error from Lemma SM1.3. Then46

we invoke independence to write the expectations as iterated expectations. Since Φ247

and Ψ2 have mean zero, this formula makes it clear that the approximation error has48

mean zero.49

To study the fluctuations, apply the independence and zero-mean property of Φ250

and Ψ2 to decompose51

EΦ,Ψ ‖W −Q∗AP ‖22 = EΦ ‖Φ†1Φ2(Q∗⊥AP )‖22 + EΨ ‖(Q∗AP⊥)Ψ∗2(Ψ†1)∗‖2252

+ EΦ EΨ ‖Φ†1Φ2(Q∗⊥AP⊥)Ψ∗2(Ψ†1)∗‖22.5354

Continuing, we invoke Fact SM1.1 four times to see that55

56

EΦ,Ψ ‖W −Q∗AP ‖2257

=
k

s− k − α
·
[
‖Q∗⊥AP ‖22 + ‖Q∗AP⊥‖22 +

k

s− k − α
· ‖Q∗⊥AP⊥‖22

]
.58

59

Add and subtract ‖Q∗⊥AP⊥‖22 in the bracket to arrive at60

E ‖W −Q∗AP ‖22 =
k

s− k − α
·
[
‖Q∗⊥AP ‖22 + ‖Q∗AP⊥‖22 + ‖Q∗⊥AP⊥‖2261

+
2k + α− s
s− k − α

· ‖Q∗⊥AP⊥‖22
]
.62

63

Use the Pythagorean Theorem to combine the terms on the first line.64

SM1.5. Probabilistic Analysis of the Compression Error. Next, we es-65

tablish a bound for the expected error in the compression of the matrix A onto the66

range of the matrices Q and P , computed in (2.7). This result is similar in spirit to67

the analysis in [SM1], so we pass lightly over the details.68

Lemma SM1.5 (Probabilistic Analysis of the Compression Error). For any nat-
ural number % < k − α, it holds that

E ‖A−QQ∗APP ∗‖22 ≤
(

1 +
2%

k − %− α

)
· τ2%+1(A).

Proof Sketch. Introduce the partitioned SVD of the matrix A:

A = UΣV ∗ =
[
U1 U2

] [Σ1

Σ2

] [
V ∗1
V ∗2

]
where Σ1 ∈ F%×%.
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Define the matrices69

Υ1 := ΥU1 ∈ Fs×% and Υ2 := ΥU2 ∈ F s×(m−%);70

Ω∗1 := V ∗1 Ω∗ ∈ F%×s and Ω∗2 := V ∗2 Ω∗ ∈ F(n−%)×s;71

P1 := V ∗1 P ∈ F%×k and P2 := V ∗2 P ∈ F(n−%)×k.7273

With this notation, we proceed to the proof.74

First, add and subtract terms and apply the Pythagorean Theorem to obtain

‖A−QQ∗APP ∗‖22 = ‖A(I− PP ∗)‖22 + ‖(I−QQ∗)APP ∗‖22.

Use the SVD to decompose the matrix A in the first term, and apply the Pythagorean75

Theorem again:76

77

‖A−QQ∗APP ∗‖22 = ‖(U2Σ2V
∗
2 )(I− PP ∗)‖2278

+ ‖(U1Σ1V
∗
1 )(I− PP ∗)‖22 + ‖(I−QQ∗)AP ‖22.7980

The result [SM3, Prop. 9.2] implies that the second term satisfies

‖(U1Σ1V
∗
1 )(I− PP ∗)‖22 ≤ ‖Υ

†
1Υ2Σ2‖22.

We can obtain a bound for the third term using the formula [SM1, p. 270, disp. 1].
After a short computation, this result yields

‖(I−QQ∗)AP ‖22 ≤ ‖Σ2P2‖22 + ‖Σ2Ω
∗
2(Ω∗1)†P1‖22

≤ ‖(U2Σ2V
∗
2 )P ‖22 + ‖Σ2Ω

∗
2(Ω∗1)†‖22.

We can remove P1 because its spectral norm is bounded by one, being a submatrix
of an orthonormal matrix. Combine the last three displays to obtain

‖A−QQ∗APP ∗‖22 ≤ ‖U2Σ2V
∗
2 ‖22 + ‖Υ†1Υ2Σ2‖22 + ‖Σ2Ω

∗
2(Ω∗1)†‖22.

We have used the Pythagorean Theorem again.81

Take the expectation with respect to Υ and Ω to arrive at

E ‖A−QQ∗APP ∗‖22 ≤ ‖Σ2‖22 + E ‖Υ†1Υ2Σ2‖22 + E ‖Σ2Ω
∗
2(Ω∗1)†‖22

= ‖Σ2‖22 +
2%

k − %− α
· ‖Σ2‖22.

Finally, note that ‖Σ2‖22 = τ2%+1(A).82

SM1.6. The Endgame. At last, we are prepared to finish the proof of Theo-
rem 5.1. Fix a natural number % < k − α. Using the formula (2.9) for the approxi-

mation Â, we see that

‖A− Â‖22 = ‖A−QWP ∗‖22
= ‖A−QQ∗APP ∗ + Q(Q∗AP −W )P ∗‖22
= ‖A−QQ∗APP ∗‖22 + ‖Q(Q∗AP −W )P ∗‖22.

The last identity is the Pythagorean theorem. Drop the orthonormal matrices in the
last term. Then take the expectation with respect to Φ and Ψ:

EΦ,Ψ ‖A− Â‖22 = ‖A−QQ∗APP ∗‖22 + EΦ,Ψ ‖Q∗AP −W ‖22
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We treat the two terms sequentially.83

To continue, invoke the expression Lemma SM1.4 for the expected error in the
core matrix W :

EΦ,Ψ ‖A− Â‖22 ≤
(

1 +
k

s− k − α

)
· ‖A−QQ∗APP ∗‖22

+
k(2k + α− s)
(s− k − α)2

· ‖Q∗⊥AP⊥‖22.

Now, take the expectation with respect to Υ and Ω to arrive at84

(SM1.2)

E ‖A− Â‖22 ≤
(

1 +
k

s− k − α

)
·
(

1 +
2%

k − %− α

)
· τ2%+1(A)

+
k(2k + α− s)
(s− k − α)2

· E ‖Q∗⊥AP⊥‖22.
85

We have invoked Lemma SM1.5. The last term is nonpositive because we require86

s ≥ 2k + α, so we may drop it from consideration. Finally, we optimize over eligible87

choices % < k − α to complete the argument. The result stated in Theorem 5.1 is88

algebraically equivalent.89

SM2. Code & Pseudocode. This supplement contains pseudocode for the90

sketching and low-rank reconstruction algorithms described in this paper. In many91

places, we use the same mathematical notation as the rest of the paper. We also rely92

on Matlab R2018a commands, which appear in typewriter font. The electronic93

materials include a Matlab implementation of these methods.94

• Algorithm SM3.1 contains the constructor for the Sketch object. It draws95

random test matrices and initializes the sketch for the zero input matrix. This96

code implements (2.2)–(2.4).97

• Algorithm SM3.2 implements a general rank-one linear update (2.5) to the98

input matrix contained in the sketch.99

• Algorithm SM3.3 implements the basic low-rank reconstruction formula (2.9).100

It returns the approximation in factored form.101

• Algorithm SM3.4 implements the rank-r reconstruction formula (2.10). It102

returns the approximation in factored form.103

• Algorithm SM3.5 is the template for the dimension reduction (DimRedux)104

class for input matrices over the field F. It outlines the methods that a105

DimRedux needs to implement.106

• Algorithm SM3.6 defines the Gaussian dimension reduction (Gauss) class,107

which is a subclass of DimRedux. It describes the constructor and the left108

and right action of this dimension reduction map. See subsection 3.1 for the109

explanation.110

• Algorithm SM3.7 defines the SSRFT dimension reduction (SSRFT) class,111

which is a subclass of DimRedux. It describes the constructor and the left112

and right action of this dimension reduction map. See subsection 3.2 for the113

explanation.114

• Algorithm SM3.8 defines the sparse dimension reduction (Sparse) class,115

which is a subclass of DimRedux. It describes the constructor and the left116

and right action of this dimension reduction map. See subsection 3.3 for the117

explanation.118
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SM3. Supplemental Numerical Results. This section summarizes the addi-119

tional numerical results that are presented in this supplement. The Matlab code in120

the electronic materials can reproduce these experiments.121

SM3.1. Insensitivity to the Dimension Reduction Map. We undertook122

a more comprehensive set of experiments to demonstrate that our reconstruction123

formula (2.10) is insensitive to the choice of dimension reduction map at the oracle124

parameters. See subsection 6.4 for details.125

Figures SM1 to SM5 contain the results for matrices with effective rank R = 5,126

R = 10, and R = 20 with relative error measured in Schatten 2-norm and Schatten127

∞-norm.128

SM3.2. Achieving the Oracle Performance. We also performed experi-129

ments to see how closely the theoretical parameter choices allow us to approach the130

oracle performance of our reconstruction formula (2.10). See subsection 6.5 for details.131

Figures SM6 to SM9 contain the results for matrices with effective rank R = 5132

and R = 20 with relative error measured in Schatten 2-norm and Schatten ∞-norm.133

SM3.3. Algorithm Comparisons for Synthetic Instances. We compared134

all three of the reconstruction formulas (2.10), (6.1), and (6.2) at the oracle parameters135

for a wide range of synthetic problem instances. See subsection 6.6 for details.136

Figures SM10 to SM13 contain the results for matrices with effective rank R = 5137

and R = 20 with relative error measured in Schatten 2-norm and Schatten ∞-norm.138

SM3.4. Flow-Field Reconstruction. Figure SM14 illustrates the streamwise139

velocity field StreamVel and its rank-10 approximation via (2.10) using storage budget140

T/(m + n) = 48 and the parameter choices (5.6). We see that the approximation141

captures the large-scale features of the flow, although there are small errors visible,142

especially at the inlet (on the left-hand side of the images).143
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Algorithm SM3.1 Sketch for Low-Rank Approximation. Implements (2.2)–(2.4).

Input: Input matrix dimensions m× n; sketch size parameters k ≤ s ≤ min{m,n}
Output: Draw dimension reduction maps (2.2); sketch (2.3) and (2.4) of A = 0

1 class Sketch
2 local variables Υ,Ω,Φ,Ψ (DimRedux)
3 local variables X,Y ,Z (matrices)

4 function Sketch(m,n, k, s; DR) . Constructor; DR is a DimRedux
5 Υ← DR(k,m) . Draw new dimension reduction maps
6 Ω← DR(k, n)
7 Φ← DR(s,m)
8 Ψ← DR(s, n)
9 X ← zeros(k, n) . Sketch of zero matrix

10 Y ← zeros(m, k)
11 Z ← zeros(s, s)

Algorithm SM3.2 Linear Update to Sketch. Implements (2.5).

Input: Innovation H ∈ Fm×n; scalars θ, τ ∈ F
Output: Modifies sketch to reflect linear update A← θA + τH

1 function Sketch.LinearUpdate(H; θ, τ)
2 X ← θX + τΥH
3 Y ← θY + τHΩ∗

4 Z ← θZ + τΦHΨ∗

Algorithm SM3.3 Low-Rank Approximation. Implements (2.9).

Output: Rank-k approximation of sketched matrix in form Â = QWP ∗ with or-
thonormal Q ∈ Fm×k and P ∈ Fn×k

1 function Sketch.LowRankApprox( )
2 (Q,∼)← qr(Y , 0)
3 (P ,∼)← qr(X∗, 0)
4 W ← ((ΦQ)\Z)/((ΨP )∗) . Least-squares via QR or SVD
5 return (Q,W ,P )
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Algorithm SM3.4 Fixed-Rank Approximation. Implements (2.10).

Input: Rank r of approximation
Output: Rank-r approximation of sketched matrix in form Â = UΣV ∗ with or-

thonormal U ∈ Fn×r and V ∈ Fm×r and nonnegative diagonal Σ ∈ Rr×r

1 function Sketch.FixedRankApprox(r)
2 (Q,W ,P )← Sketch.LowRankApprox( )
3 (U ,Σ,V )← svds(W , r) . Truncate full SVD to rank r
4 U ← QU . Consolidate unitary factors
5 V ← PV
6 return (U ,Σ,V )

Algorithm SM3.5 Dimension Reduction Map Class.

1 class DimRedux (F) . Dimension reduction map over field F
2 function DimRedux(k, n) . Construct map Ξ : Fn → Fk

3 function DimRedux.mtimes(DRmap, M) . Left action of map

4 function DimRedux.mtimes(M , DRmap∗) . Right action of adjoint
5 return (DimRedux.mtimes(DRmap,M∗))∗ . Default behavior

Algorithm SM3.6 Gaussian Dimension Reduction Map. (subsection 3.1)

1 class Gauss (DimRedux) . Subclass of DimRedux

2 local variable Ξ (dense matrix)

3 function randn(k, n;F) . Gaussian matrix over field F
4 if F = R then return randn(k, n)

5 if F = C then return randn(k, n) + 1i * randn(k, n)

6 function Gauss(k, n) . Constructor
7 Ξ← randn(k, n;F) . Gaussian over F

8 function Gauss.mtimes(DRmap, M)
9 return mtimes(Ξ, M)
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Algorithm SM3.7 SSRFT Dimension Reduction Map. (subsection 3.2)

1 class SSRFT (DimRedux) . Subclass of DimRedux
2 local variables coords, permj , εj for j = 1, 2

3 function SSRFT(k, n) . Constructor
4 coords← randperm(n, k)
5 permj ← randperm(n) for j = 1, 2
6 εj ← sign(randn(n, 1;F)) for j = 1, 2

7 function SSRFT.mtimes(DRmap, M)
8 if F = R then
9 M ← dct(diag(ε1)M(perm1, :))

10 M ← dct(diag(ε2)M(perm2, :))

11 if F = C then
12 M ← dft(diag(ε1)M(perm1, :))
13 M ← dft(diag(ε2)M(perm2, :))

14 return M(coords, :)

Algorithm SM3.8 Sparse Dimension Reduction Map. (subsection 3.3)

1 class Sparse (DimRedux) . Subclass of DimRedux
2 local variable Ξ (sparse matrix)

3 function Sparse(k, n) . Constructor
4 ζ ← min{k, b2 log(1 + n)c} . Sparsity of each column
5 for j = 1, . . . , n do
6 Ξ(randperm(k, ζ), j)← sign(randn(ζ, 1;F))

7 function Sparse.mtimes(DRmap, M)
8 return mtimes(Ξ, M)
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Fig. SM1: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 5, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. SM2: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 5, approximation rank r = 10, Schatten ∞-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. SM3: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 10, approximation rank r = 10, Schatten ∞-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. SM4: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 20, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. SM5: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 20, approximation rank r = 10, Schatten ∞-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fig. SM6: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fig. SM7: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten
∞-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fig. SM8: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fig. SM9: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten
∞-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fig. SM10: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten 2-
norm.) We compare the oracle error achieved by the proposed fixed-rank approx-
imation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-
tion 6.2.2 for details.
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Fig. SM11: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten ∞-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2
for details.
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Fig. SM12: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten 2-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2
for details.
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Fig. SM13: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten ∞-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2
for details.
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Fig. SM14: Approximation of StreamVel. (Sparse maps, approximation
rank r = 10, storage budget T = 48(m + n).) The columns of the matrix
StreamVel describe the fluctuations of the streamwise velocity field about its mean
value as a function of time. From top to bottom, the panels show columns
1, 501, 1001, 1501, 2001, 2501, 3001, 3501, 4001. The left-hand side displays the ap-
proximation of the flow field, and the right-hand side displays the exact flow
field. The heatmap indicates the magnitude of the fluctuation. See subsection 6.8
for details.
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