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Figure 1: The Wyner-Ziv setup



Wyner Ziv Rate Distortion Function

RWZ(D) = min[I(X ;W ) − I(Y ; W )] = min I(X ;W |Y )

min over f : W ×Y → X̂ , |W| ≤ |X | + 1, and P (w|x) such that
Eρ(X, f(W,Y )) ≤ D.



Wyner Ziv Coding with Limited Lookahead in the S.I.

• (Xi, Yi) i.i.d. drawings of (X,Y )

• Encoding: T (Xn) ∈ {1 . . . , 2nR}

• Reconstruction: X̂i(T, Y i+d ), i.e., depends on the S.I. but with
limited lookahead d



Motivation I: Sequential Zero-Delay and Delay-Constrained

Source Coding

Source code specified by:

1. Encoder: sequence {Ei}, where Ei produces a code symbol Ui ∈ Ui based on
observation of the source with some lookahead l, Ui = Ei(X

i+l)

2. Decoder: sequence {Di}, where Di produces ith reconstruction symbol based
on lookahead m in the code symbols and d in the side information symbols, i.e.,
X̂i = Di(U

i+m, Y i+d)

Instantaneous rate is log |Ui|. Overall rate in encoding first n source symbols is
R = 1

n

∑n
i=1 log |Ui|.

Any source code with this structure is a member of family of schemes we allow



Motivation II: The Denoising/Filtering/Smoothing View

Given index from the encoder, decoder is a denoiser

d = 0 corresponds to filtering (sequential denoising), while d > 0 to fixed-lag
smoothing

Example: tracking moving target whose trajectory can be described to the tracker
via a rate-constrained link.



Motivation III: Broadening duality between source and

channel coding

• d = 0

Wyner-Ziv ⇔ Gel’fand-Pinsker WZCSI ⇔ Shannon Channel

• d > 0

will apply our approach to characterize channel capacity when state information
is available to sender with limited lookahead



Motivation IV: Connecting to Neuhoff & Gilbert Causality

• Case d = 0 close in spirit to causality a la Neuhoff and Gilbert. Constraint is
imposed on the reconstruction, rather than on the delay introduced by the code.

• Complements [W. and Merhav, ’05]



Wyner Ziv Coding with Causal S.I.

We begin by considering

• (Xi, Yi) i.i.d. drawings of (X,Y )

• Encoding: T (Xn) ∈ {1 . . . , 2nR}

• Reconstruction: X̂i(T, Y i ), i.e., depends on the S.I. but only causally



R-D Function for Wyner-Ziv Coding with Causal S.I.

Theorem 1. The rate distortion function for the Wyner Ziv problem with causal
side information is given by

R(D) = min I(X ;W )

where the minimum is over all functions f : W ×Y → X̂ , |W| ≤ |X | + 1, and
P (w|x) such that

Eρ(X, f(W,Y )) ≤ D

[Compare with RWZ(D)]



Proof of Theorem 1: Achievability

Encoder: Need no more than ≈ nI(X ;W ) bits to describe W n to decoder

Decoder: Knowing W n, reconstruct according to X̂i = f(Wi, Yi)

In words: “if not allowed to look at future, past is useless”
[Reminiscent of situation in zero-delay as well as in causal source coding]



Proof of Theorem 1: Converse

nR ≥ H(T ) ≥ I(Xn;T )

= H(Xn) − H(Xn|T ) =
n
∑

i=1

H(Xi) − H(Xi|T,Xi−1)

(a)

≥
n
∑

i=1

H(Xi) − H(Xi|T, Y i−1)
(b)
=

n
∑

i=1

I(Xi;Wi)

(c)

≥
n
∑

i=1

R(Eρ(Xi, X̂i))
(d)

≥ nR

(

1

n

n
∑

i=1

Eρ(Xi, X̂i)

)

≥ nR(D) �



On Duality

•

RWZ(D) = min[I(X ;W ) − I(Y ; W )] ⇔ R(D) = min I(X ;W )

CGP = max
p(u|s),p(x|u,s)

[I(U ;Y ) − I(U ;S)] ⇔ CShannon = max
p(u),p(x|u,s)

I(U ;Y )

• R(D) not improved with feedforward, as observed for the other cases in
[Merhav Weissman ’05]



The Common Information Random Variable
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• Bipartite graph has edge between xi and yj if and only if P (X = xi, Y = yj) > 0

• (xi, xj) ∈ GX if and only if there is y with (xi, y) and (xj, y) in bipartite graph

• GX in example has two maximally connected components, so Z is binary,
assuming one value on {x1, x2, x3} and another on {x4, x5, x6, x7}

• Generally, Z takes different value on each component of GX

• Z is referred to as the ‘common information random variable’



Equivalent Characterization of Rate Distortion Function

Proposition 1. The rate distortion function of Theorem 1 is equivalently given
by

R(D) = min I(X ;W |Z) ,

where minimum is over exactly same set as before.

Note:

• I(X ;W ) = H(W ) − H(W |X) ≥ H(W |Z) − H(W |X,Z) = I(X ;W |Z) with
equality if and only if W is independent of Z

• Note that for the Wyner-Ziv function R(D) = min I(W ;X |Y ) so conditioning
on Z has no effect



Example: Doubly Symmetric Binary Source

• X unbiased input to BSC(δ). Y is output (or vice versa)

• Distortion is Hamming

•
R(d) =

{

1 − h(d) 0 ≤ d ≤ dc

−h′(dc)d + h′(dc)δ dc < d ≤ δ,

where dc is solution to (1 − h(dc))/(dc − δ) = −h′(dc) , and h(·) is binary
entropy

• In words: optimum performance attained by time sharing between rate distortion
coding with no SI, and zero-rate decoding that uses only the SI

• In particular: side information is useless for small distortion
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Figure 2: Rate distortion curves for doubly symmetric binary source
with δ = 1/4. Figure shows RX(D), R(D), RWZ(D), RX|Y (D).
Dc in this case can be explicitly computed and is given by
Dc = (5 − 4(19 − 3

√
33)−1/3 − (19 − 3

√
33)1/3)/6 ≈ 0.0803566.



Example: X,Y Jointly Gaussian

• X,Y jointly Gaussian

• Squared error distortion

• Upper bound R(D) by taking W = αX + Z where Z ∼ N (0, σ2
Z) ⊥ X,Y

• This gives following upper bound on rate distortion function:

Rub(D) =











1
2 log

[

σ2
X

(

1
D − 1

σ2
N
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Xσ2
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σ2
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+σ2
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Example: X,Y Jointly Gaussian (cont.)

Rub(D) is not necessarily convex:

Lemma 1. 1. The case σ2
N ≥ σ2

X: Rub(d) is convex

2. The case σ2
N < σ2

X: Rub(d) has an inflection point at D = σ2
N/2: It is convex

for D < σ2
N/2 and concave for σ2

N/2 < D ≤ σ2
Xσ2

N

σ2
X+σ2

N
.

• In case σ2
N < σ2

X can improve by taking lower convex envelope Rub(D)

• Whether or not R(D) = Rub(D) remains to be determined



Example: X,Y Jointly Gaussian (cont.)
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Figure 3: Typical form of the curves RX(D), Rub(D), and RX|Y (D) when
σ2

N ≥ σ2
X. In this case, Lemma 1 implies that Rub(D) is convex. Figure shows

actual curves for the case σX = σN = 1.



Example: X,Y Jointly Gaussian (cont.)
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Figure 4: Curves for σ2
N < σ2

X. Lemma implies that Rub(D) is not convex and
can therefore be improved by its lower convex envelope Rub(D). Curves shown:
RX(D), Rub(D), Rub(D), RX|Y (D). Figure shows curves for σX = 1, σN = 1/6.
Dc = 5.352215 × 10−3. D = σ2

N/2 is the inflection point, as asserted in Lemma.



Slepian-Wolf Coding with Causal S.I.

• Encoder maps Xn into T ∈ {1, . . . , 2nR}

• Reconstruction is of form X̂i(T, Y i)

• R is achievable if exists sequence of schemes with P (Xn 6= X̂n) −→ 0

• Let RLSCSI denote infimum over achievable rates



Slepian-Wolf Coding with Causal S.I. (cont.)

Clearly H(X |Y ) ≤ RLSCSI ≤ H(X)

Where in [H(X |Y ),H(X)] is RLSCSI situated ?

Consider first three trivial cases:

X = Y a.s.: RLSCSI = H(X |Y )(= 0).

X and Y independent: RLSCSI = H(X |Y )(= H(X)).

U and Y independent, and X = (U, Y ): RLSCSI = H(X |Y )(= H(U)).

In these cases, RLSCSI = H(X |Y )

We will see that this is the exception rather than the rule



Slepian-Wolf Coding with Causal S.I. (cont.)

Theorem 2.

RLSCSI = min I(X ;W ) = min I(X ;W |Z)

where Z is the common information r.v. and (in both minima) the minimization
is over all P (w|x), |W| ≤ |X | + 1, such that H(X |W,Y ) = 0.

Note: writing RLSCSI(PX,Y ), Theorem 2 implies

RLSCSI(PX,Y ) =
∑

z

p(z)RLSCSI(PX,Y |Z=z)

That is, when GX has more than one maximally connected component, finding
RLSCSI(PX,Y ) reduces to computing RLSCSI for each component.



Slepian-Wolf Coding with Causal S.I. (cont.)

Lemma 2. Let W, X, Y be discrete random variables with the Markov relation
W → X → Y . For each x define NW (x) = {w : p(w|x) > 0}. Then
H(X |W,Y ) = 0 if and only if NW (x) ∩ NW (x′) = ∅ whenever (x, x′) ∈ GX

Note: When combined with Theorem 2 this implies that RLSCSI depends only
on the distribution of X and on GX (on P (y|x) only through its effect on GX)

x

x′

yw3

w1
w2

w4

w6

w5

Figure 5: Illustration of condition in Lemma 2



Slepian-Wolf Coding with Causal S.I. (cont.)

Corollary 1. RLSCSI = H(X) whenever GX is complete.

Proof: When GX is complete, condition for H(X |W,Y ) = 0 is, by lemma,

NW (x) ∩ NW (x′) = ∅ ∀x 6= x′

implying
H(X |W ) = 0

completing proof by an appeal to Theorem 2. �



A note on (dis)continuity

• Corollary 1 gives
RLSCSI(PX,Y ) = H(X)

in the interior of the simplex of distributions on X × Y. This implies a
discontinuity at the boundary of the simplex

• While discontinuities of this type are well-known to arise in problems such
as zero-error channel coding [Shannon 1956] and the zero-error Slepian-Wolf
problem [Witsenhausen 1976], it is interesting to see it arising in our setting,
which assumes the standard ‘near-lossless’ formulation.
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|X | GX RLSCSI

1 1 0 = H(X)

2 1 0

2 2 H(X)

3 1 0

3 2 [p(a) + p(b)]h
(

p(a)
p(a)+p(b)

)

3 3 h (p(a))

3 4 H(X)

4 1 0

4 2 [p(a) + p(b)] · h
(

p(a
p(a)+p(b)

)

4 3 [1 − p(d)]h
(

p(a)
1−p(d)

)

4 4 [p(a) + p(b)]h
(

p(a)
p(a)+p(b)

)

+ [p(c) + p(d)]h
(

p(c)
p(c)+p(d)

)

4 5 h (p(a))

4 6 [1 − p(d)]h
(

p(a)
1−p(d)

)

≤ RLSCSI ≤ h (p(a) + p(d))

4 7 p(a) log 1−p(d)
p(a) + p(b) log 1−p(d)

p(b) + p(c) log 1−p(d)
p(c)

4 8 h (p(a) + p(d))

4 9 Iα∗(X; W ′), where α∗ = p(a)/[p(a) + p(c)]

4 10 −p(a) log p(a) − p(d) log p(d) − [p(b) + p(c)] log[p(b) + p(c)]

4 11 H(X)



RLSCSI for the Uniform Quaternary Source

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

RLSCSI

Configuration

Figure 7: RLSCSI for the uniform quaternary source. The x-axis corresponds to
the category that GX belongs to, as enumerated in Figure 6.



Rate Distortion with Positive S.I. Lookahead

• (Xi, Yi) i.i.d. drawings of (X,Y )

• Encoding: T (Xn) ∈ {1 . . . , 2nR}

• Reconstruction: X̂i(T, Y i+d ), for d > 0



Rate Distortion with S.I. Lookahead (cont.)

For integer k ≥ 1 define

Rk,d(D) =
1

k
min I(Xk; W )

where the minimum is over all functions fi : W × Yi+d → X̂ , 1 ≤ i ≤ k − d,
|W| ≤ |X |k + 1, and P (w|xk) such that

1

k − d

k−d
∑

i=1

Eρ(Xi, fi(W,Y i+d)) ≤ D



Rate Distortion Function for S.I. Lookahead (cont.)

Theorem 3. The rate distortion function for d lookahead, Rd(D), is bounded,
for any k ≥ 1, 0 < d < ∞ and D ≥ Dmin, as

Rk,d(D) ≤ Rd(D) ≤ Rk,d(D) +
d

k
H(X)

and, consequently,
Rd(D) = lim

k→∞
Rk,d(D)

Remarks:

• Upper bound can be refined

• Computability: Given ε > 0, can obtain Rd(D) to within ε

• In contrast with usual characterizations in source and in channel coding that do
not give a computable approximation



Proof of Converse

knR ≥ kH(T )

≥ kI(Xn; T )

= kH(Xn) − k
n
∑

i=1

H(Xi|T, Xi−1)

= kH(Xn) −
k−1
∑

j=0

n−j
∑

i=1−j

H(Xi+j|T,Xi+j−1)

= kH(Xn) −
k−1
∑

j=0

n
∑

i=1

H(Xi+j|T,Xi+j−1)

+
k−1
∑

j=0





n
∑

i=n−j+1

H(Xi+j|T, Xi+j−1) −
0
∑

i=1−j

H(Xi+j|T, Xi+j−1)







(a)
= kH(Xn) −

k−1
∑

j=0

n
∑

i=1

H(Xi+j|T,Xi+j−1)

+
k−1
∑

j=0





n
∑

i=n−j+1

H(Xi+j) −
0
∑

i=1−j

H(Xi+j|T,Xi+j−1)





= kH(Xn) −
k−1
∑

j=0

n
∑

i=1

H(Xi+j|T,Xi+j−1)

+
k−1
∑

j=0

0
∑

i=1−j

[

H(Xi+j) − H(Xi+j|T, Xi+j−1)
]

= kH(Xn) −
k−1
∑

j=0

n
∑

i=1

H(Xi+j|T,Xi+j−1)

+
k−1
∑

j=0

0
∑

i=1−j

I(Xi+j; T,Xi+j−1)



≥
n
∑

i=1

H(Xi+k−1
i ) −

n
∑

i=1

k−1
∑

j=0

H(Xi+j|T,Xi+j−1)

=
n
∑

i=1

H(Xi+k−1
i ) −

n
∑

i=1

H(Xi+k−1
i |T, Xi−1)

=
n
∑

i=1

I(Xi+k−1
i ; T,Xi−1)

(b)

≥
n
∑

i=1

I(Xi+k−1
i ; Wi)

(c)

≥
n
∑

i=1

kRk,1





1

k − 1

k−2
∑

j=0

Eρ(Xi+j, X̂i+j)





(d)

≥ knRk,1





1

n

n
∑

i=1

1

k − 1

k−2
∑

j=0

Eρ(Xi+j, X̂i+j)







(e)

≥ knRk,1

(

kDmax

n
+

1

n

n
∑

i=1

Eρ(Xi, X̂i)

)

(f)

≥ knRk,1

(

D +
kDmax

n

)



Process Characterization of Rd(D)

For jointly stationary processes X = {Xi} and W = {Wi} let I(X;W) denote the
mutual information rate defined by

I(X;W) = lim
n→∞

1

n
I(Xn; W n)

Theorem 4.

Rd(D) = inf{I(X;W) : Eρ(X0, X̂
opt
0 (W, Y d

−∞)) ≤ D}

where the inf is over jointly stationary W,X,Y with W − X − Y, and
X̂opt

0 (W, Y d
−∞) is the optimum estimate of X0 based on W, Y d

−∞



Gaussian W is Ineffectual for Gaussian X,Y

Motivated by Theorem 4, consider upper bound to Rd(D)

RG
d (D) = inf{I(X;W) : E(X0 − X̂opt

0 (W, Y d
−∞))2 ≤ D},

where the inf is over jointly stationary and Gaussian W,X,Y with the Markov
relation W − X − Y.

If RG
d (D) is not convex, can be further improved to its convex envelope RG

d (D)

Unfortunately, RG
d (D) turns out to be trivial in the following sense:

Theorem 5. For every d ≥ 0

RG
d (D) = Rub(D),

where Rub(D) is the lower convex envelope of Rub(D), the upper bound on R(D)
of the causal case.



Lossless Source Coding with Side Information Lookahead

• Encoder maps Xn into T ∈ {1, . . . , 2nR}

• Reconstruction is of form X̂i(T, Y i+d )

• R is achievable if exists sequence of schemes with P (Xn 6= X̂n) −→ 0

• Let Rd
LSCSI denote infimum over achievable rates



Lossless Source Coding with S.I. Lookahead (cont.)

We have seen that, under say positivity condition, R0
LSCSI = H(X), in contrast

with H(X |Y ) which is achievable with no delay constraint.

It is perhaps then natural to expect limd→∞ Rd
LSCSI = H(X |Y )

This, as it turns out, is not the case

In fact, we will see that, not only is limd→∞ Rd
LSCSI > H(X |Y ) but

Rd
LSCSI = H(X) for all 0 ≤ d < ∞

That is, the side information is useless



Lossless Source Coding with S.I. Lookahead (cont.)

Rk,d
LSCSI =

1

k
min I(Xk; W )

where the minimum is over all P (w|xk), |W| ≤ |X |k + 1, such that

H(Xi|W, Y i+d) = 0 for all 1 ≤ i ≤ k − d.

Theorem 6. For every k, d

Rk,d
LSCSI ≤ Rd

LSCSI ≤ Rk,d
LSCSI +

d

k
RLSCSI.

So, in particular,
Rd

LSCSI = lim
k→∞

Rk,d
LSCSI.



Lossless Source Coding with S.I. Lookahead (cont.)

Proposition 2. Rd
LSCSI depends on the distribution of the pair X,Y only

through the distribution of X and the bipartite graph whose edges are the pairs
(x, y) for which P (x, y) > 0.

Corollary 2. Let X,Y satisfy the positivity condition P (x, y) > 0. Then, for
any 0 ≤ d < ∞, Rd

LSCSI = H(X).



Block-Length-Dependent Lookahead

Let R
{dn}
LSCSI denote infimum of achievable rates when d = dn

Evidently, under positivity condition, R
{dn}
LSCSI = H(X) whenever dn ≡ d

On the other hand, by Slepian-Wolf, R
{dn}
LSCSI = H(X |Y ) when dn = n

As it turns out:

1. R
{dn}
LSCSI = H(X |Y ) provided increase of dn with n is more than logarithmic

2. any R > H(X |Y ) is achievable if dn = C(R) log n for appropriate C(R)

More concretely:



Block-Length-Dependent Lookahead (cont.)

Define
E(R) = min

QX,Y

[D(QX,Y ‖PX,Y ) + max{0, R − HQ(X |Y )}]

This is a “random coding error exponent” for the Slepian-Wolf problem.

Theorem 7.
For every R > H(X |Y ), R

{dn}
LSCSI ≤ R provided dn = 1

E(R) · log n.

In particular, R
{dn}
LSCSI = H(X |Y ) if increase of dn is more than logarithmic.



Consolidation between the Lossless and Lossy Settings

Consider rate distortion functions when ρ is Hamming.

We have seen that
Rd(0) = H(X) ∀0 ≤ d < ∞

whereas
RWZ(0) = H(X |Y )

On the other hand, by considering Wyner-Ziv codes for d-blocks, can show

lim
d→∞

Rd(D) = RWZ(D) ∀D > 0

This implies a sensitivity to the order of the limits:

H(X |Y ) = lim
D↓0

lim
d→∞

Rd(D) < lim
d→∞

lim
D↓0

Rd(D) = H(X)



Consolidation between the Lossless and Lossy Settings (cont.)

H(X)

H(X |Y )

Figure 8: H(X |Y ) = limD↓0 limd→∞ Rd(D) < limd→∞ limD↓0 Rd(D) = H(X).



Channel Coding with Limited-Delay S.I. at the Transmitter

• Si i.i.d.∼ P (s)

• For message index W ∈ {1, . . . , 2nR}, i-th channel input is Xi(W,Si+d )

• Memoryless channel P (y|x, s) generates Yi

• Decoder gives Ŵ (Y n)

Let Cd denote the capacity

Note this bridges between Shannon and Gel’fand-Pinkser channels:

• Xi(W,Si ) is Shannon’s channel: C0 = maxp(u),p(x|u,s) I(U ;Y )

• Xi(W,Sn ) is the Gel’fand-Pinsker: C∞ = maxp(u|s),p(x|u,s)[I(U ;Y )−I(U ;S)]



Channel Coding with Limited-Delay Transmitter S.I. (cont.)

Theorem 8. Let

Cd,k =
1

k
max I(U ;Y k),

where the max is over all P (u|sd), |U| ≤ min{|X |k, |Y|k} + |S|k − 1, and fi,
1 ≤ i ≤ k, such that Xi = fi(U,Si+d). Then

k

k − d
Cd,k − d log |Y|

k − d
≤ Cd ≤ Cd,k

In particular,
Cd = lim

k→∞
Cd,k

Note:
• Characterization in spirit of one for the source coding problem
• Lower bound can be refined
• Computability



Open Directions

• Does Gaussian W attain min for X,Y Gaussian in case d = 0 ? More precisely,
is rate distortion function given by convexified version of Rub(D) ?

• Recall that limd→∞ Rd(D) = RWZ(D) for D > Dmin. What is convergence
rate ? Techniques for computation of the redundancy of rate distortion codes
would extend to give upper bound Rd(D) − RWZ(D) = O

(

1
d log d

)

. Lower
bound may prove more challenging.

• In lossless case, have seen that logarithmic growth of dn suffices to achieve any
point R ∈ (H(X |Y ),H(X)). Is this also necessary ? Can we characterize α(R)

such that R
{dn}
LSCSI = R when dn = α(R) · log n ?

• Does feedback/feedforward improve on the fundamental limits for d > 0 ?


