Source Coding with Limited Horizon Side Information at the Decoder

Abbas El Gamal
Tsachy Weissman

EE Dept.
Stanford

Wyner Ziv Problem

Figure 1: The Wyner-Ziv setup

Wyner Ziv Rate Distortion Function

$$
R_{W Z}(D)=\min [I(X ; W)-I(Y ; W)]=\min I(X ; W \mid Y)
$$

min over $f: \mathcal{W} \times \mathcal{Y} \rightarrow \hat{\mathcal{X}},|\mathcal{W}| \leq|\mathcal{X}|+1$, and $P(w \mid x)$ such that $E \rho(X, f(W, Y)) \leq D$.

Wyner Ziv Coding with Limited Lookahead in the S.I.

- $\left(X_{i}, Y_{i}\right)$ i.i.d. drawings of (X, Y)
- Encoding: $T\left(X^{n}\right) \in\left\{1 \ldots, 2^{n R}\right\}$
- Reconstruction: $\hat{X}_{i}\left(T, Y^{i+d}\right)$, i.e., depends on the S.I. but with limited lookahead d

Motivation I: Sequential Zero-Delay and Delay-Constrained Source Coding

Source code specified by:

1. Encoder: sequence $\left\{E_{i}\right\}$, where E_{i} produces a code symbol $U_{i} \in \mathcal{U}_{i}$ based on observation of the source with some lookahead $l, U_{i}=E_{i}\left(X^{i+l}\right)$
2. Decoder: sequence $\left\{D_{i}\right\}$, where D_{i} produces i th reconstruction symbol based on lookahead m in the code symbols and d in the side information symbols, i.e., $\hat{X}_{i}=D_{i}\left(U^{i+m}, Y^{i+d}\right)$

Instantaneous rate is $\log \left|\mathcal{U}_{i}\right|$. Overall rate in encoding first n source symbols is $R=\frac{1}{n} \sum_{i=1}^{n} \log \left|\mathcal{U}_{i}\right|$.

Any source code with this structure is a member of family of schemes we allow

Motivation II: The Denoising/Filtering/Smoothing View

Given index from the encoder, decoder is a denoiser
$d=0$ corresponds to filtering (sequential denoising), while $d>0$ to fixed-lag smoothing

Example: tracking moving target whose trajectory can be described to the tracker via a rate-constrained link.

Motivation III: Broadening duality between source and channel coding

- $d=0$

$$
\text { Wyner-Ziv } \Leftrightarrow \text { Gel'fand-Pinsker }
$$

WZCSI \Leftrightarrow Shannon Channel

- $d>0$
will apply our approach to characterize channel capacity when state information is available to sender with limited lookahead

Motivation IV: Connecting to Neuhoff \& Gilbert Causality

- Case $d=0$ close in spirit to causality a la Neuhoff and Gilbert. Constraint is imposed on the reconstruction, rather than on the delay introduced by the code.
- Complements [W. and Merhav, '05]

Wyner Ziv Coding with Causal S.I.

We begin by considering

- $\left(X_{i}, Y_{i}\right)$ i.i.d. drawings of (X, Y)
- Encoding: $T\left(X^{n}\right) \in\left\{1 \ldots, 2^{n R}\right\}$
- Reconstruction: $\hat{X}_{i}\left(T, Y^{i}\right)$, i.e., depends on the S.I. but only causally

R-D Function for Wyner-Ziv Coding with Causal S.I.

Theorem 1. The rate distortion function for the Wyner Ziv problem with causal side information is given by

$$
R(D)=\min I(X ; W)
$$

where the minimum is over all functions $f: \mathcal{W} \times \mathcal{Y} \rightarrow \hat{\mathcal{X}}, \quad|\mathcal{W}| \leq|\mathcal{X}|+1$, and $P(w \mid x)$ such that

$$
E \rho(X, f(W, Y)) \leq D
$$

[Compare with $R_{W Z}(D)$]

Proof of Theorem 1: Achievability

Encoder: Need no more than $\approx n I(X ; W)$ bits to describe W^{n} to decoder
Decoder: Knowing W^{n}, reconstruct according to $\hat{X}_{i}=f\left(W_{i}, Y_{i}\right)$

In words: "if not allowed to look at future, past is useless" [Reminiscent of situation in zero-delay as well as in causal source coding]

Proof of Theorem 1: Converse

$$
\begin{aligned}
n R & \geq H(T) \geq I\left(X^{n} ; T\right) \\
& =H\left(X^{n}\right)-H\left(X^{n} \mid T\right)=\sum_{i=1}^{n} H\left(X_{i}\right)-H\left(X_{i} \mid T, X^{i-1}\right) \\
& \stackrel{(a)}{\geq} \sum_{i=1}^{n} H\left(X_{i}\right)-H\left(X_{i} \mid T, Y^{i-1}\right) \stackrel{(b)}{=} \sum_{i=1}^{n} I\left(X_{i} ; W_{i}\right) \\
& \stackrel{(c)}{\geq} \sum_{i=1}^{n} R\left(E \rho\left(X_{i}, \hat{X}_{i}\right)\right) \stackrel{(d)}{\geq} n R\left(\frac{1}{n} \sum_{i=1}^{n} E \rho\left(X_{i}, \hat{X}_{i}\right)\right) \geq n R(D) \quad \square
\end{aligned}
$$

On Duality

$$
\begin{aligned}
R_{W Z}(D)=\min [I(X ; W)-I(Y ; W)] & \Leftrightarrow R(D)=\min I(X ; W) \\
C_{G P}=\max _{p(u \mid s), p(x \mid u, s)}[I(U ; Y)-I(U ; S)] & \Leftrightarrow C_{\text {Shannon }}=\max _{p(u), p(x \mid u, s)} I(U ; Y)
\end{aligned}
$$

- $R(D)$ not improved with feedforward, as observed for the other cases in [Merhav Weissman '05]

The Common Information Random Variable

- Bipartite graph has edge between x_{i} and y_{j} if and only if $P\left(X=x_{i}, Y=y_{j}\right)>0$
- $\left(x_{i}, x_{j}\right) \in G_{X}$ if and only if there is y with $\left(x_{i}, y\right)$ and $\left(x_{j}, y\right)$ in bipartite graph
- G_{X} in example has two maximally connected components, so Z is binary, assuming one value on $\left\{x_{1}, x_{2}, x_{3}\right\}$ and another on $\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$
- Generally, Z takes different value on each component of G_{X}
- Z is referred to as the 'common information random variable'

Equivalent Characterization of Rate Distortion Function

Proposition 1. The rate distortion function of Theorem 1 is equivalently given by

$$
R(D)=\min I(X ; W \mid Z),
$$

where minimum is over exactly same set as before.
Note:

- $I(X ; W)=H(W)-H(W \mid X) \geq H(W \mid Z)-H(W \mid X, Z)=I(X ; W \mid Z)$ with equality if and only if W is independent of Z
- Note that for the Wyner-Ziv function $R(D)=\min I(W ; X \mid Y)$ so conditioning on Z has no effect

Example: Doubly Symmetric Binary Source

- X unbiased input to $\operatorname{BSC}(\delta) . Y$ is output (or vice versa)
- Distortion is Hamming

$$
R(d)=\left\{\begin{array}{cl}
1-h(d) & 0 \leq d \leq d_{c} \\
-h^{\prime}\left(d_{c}\right) d+h^{\prime}\left(d_{c}\right) \delta & d_{c}<d \leq \delta
\end{array}\right.
$$

where d_{c} is solution to $\left(1-h\left(d_{c}\right)\right) /\left(d_{c}-\delta\right)=-h^{\prime}\left(d_{c}\right)$, and $h(\cdot)$ is binary entropy

- In words: optimum performance attained by time sharing between rate distortion coding with no SI, and zero-rate decoding that uses only the SI
- In particular: side information is useless for small distortion

Figure 2: Rate distortion curves for doubly symmetric binary source with $\delta=1 / 4$. Figure shows $R_{X}(D), \quad R(D), \quad R_{W Z}(D), \quad R_{X \mid Y}(D)$. D_{c} in this case can be explicitly computed and is given by $D_{c}=\left(5-4(19-3 \sqrt{33})^{-1 / 3}-(19-3 \sqrt{33})^{1 / 3}\right) / 6 \approx 0.0803566$.

Example: X, Y Jointly Gaussian

- X, Y jointly Gaussian
- Squared error distortion
- Upper bound $R(D)$ by taking $W=\alpha X+Z$ where $Z \sim \mathcal{N}\left(0, \sigma_{Z}^{2}\right) \perp X, Y$
- This gives following upper bound on rate distortion function:

$$
R_{u b}(D)=\left\{\begin{array}{cc}
\frac{1}{2} \log \left[\sigma_{X}^{2}\left(\frac{1}{D}-\frac{1}{\sigma_{N}^{2}}\right)\right] & 0<D \leq \frac{\sigma_{X}^{2} \sigma_{N}^{2}}{\sigma_{X}^{2}+\sigma_{N}^{2}} \\
0 & D \geq \frac{\sigma_{X}^{2} \sigma_{N}^{2}}{\sigma_{X}^{2}+\sigma_{N}^{2}}
\end{array}\right.
$$

Example: X, Y Jointly Gaussian (cont.)

$R_{u b}(D)$ is not necessarily convex:
Lemma 1. 1. The case $\sigma_{N}^{2} \geq \sigma_{X}^{2}: R_{u b}(d)$ is convex
2. The case $\sigma_{N}^{2}<\sigma_{X}^{2}$: $R_{u b}(d)$ has an inflection point at $D=\sigma_{N}^{2} / 2$: It is convex for $D<\sigma_{N}^{2} / 2$ and concave for $\sigma_{N}^{2} / 2<D \leq \frac{\sigma_{X}^{2} \sigma_{N}^{2}}{\sigma_{X}^{2}+\sigma_{N}^{2}}$.

- In case $\sigma_{N}^{2}<\sigma_{X}^{2}$ can improve by taking lower convex envelope $\underline{R}_{u b}(D)$
- Whether or not $R(D)=\underline{R}_{u b}(D)$ remains to be determined

Example: X, Y Jointly Gaussian (cont.)

Figure 3: Typical form of the curves $R_{X}(D), R_{u b}(D)$, and $R_{X \mid Y}(D)$ when $\sigma_{N}^{2} \geq \sigma_{X}^{2}$. In this case, Lemma 1 implies that $R_{u b}(D)$ is convex. Figure shows actual curves for the case $\sigma_{X}=\sigma_{N}=1$.

Example: X, Y Jointly Gaussian (cont.)

Figure 4: Curves for $\sigma_{N}^{2}<\sigma_{X}^{2}$. Lemma implies that $R_{u b}(D)$ is not convex and can therefore be improved by its lower convex envelope $\underline{R}_{u b}(D)$. Curves shown: $R_{X}(D), R_{u b}(D), \underline{R}_{u b}(D), R_{X \mid Y}(D)$. Figure shows curves for $\sigma_{X}=1, \sigma_{N}=1 / 6$. $D_{c}=5.352215 \times 10^{-3} . D=\sigma_{N}^{2} / 2$ is the inflection point, as asserted in Lemma.

Slepian-Wolf Coding with Causal S.I.

- Encoder maps X^{n} into $T \in\left\{1, \ldots, 2^{n R}\right\}$
- Reconstruction is of form $\hat{X}_{i}\left(T, Y^{i}\right)$
- R is achievable if exists sequence of schemes with $P\left(X^{n} \neq \hat{X}^{n}\right) \longrightarrow 0$
- Let $R_{L S C S I}$ denote infimum over achievable rates

Slepian-Wolf Coding with Causal S.I. (cont.)

Clearly $H(X \mid Y) \leq R_{\mathrm{LSCSI}} \leq H(X)$
Where in $[H(X \mid Y), H(X)]$ is $R_{L S C S I}$ situated?
Consider first three trivial cases:
$X=Y$ a.s.: $R_{L S C S I}=H(X \mid Y)(=0)$.
X and Y independent: $R_{L S C S I}=H(X \mid Y)(=H(X))$.
U and Y independent, and $X=(U, Y): R_{L S C S I}=H(X \mid Y)(=H(U))$.
In these cases, $R_{\text {LSCSI }}=H(X \mid Y)$
We will see that this is the exception rather than the rule

Slepian-Wolf Coding with Causal S.I. (cont.)

Theorem 2.

$$
R_{L S C S I}=\min I(X ; W)=\min I(X ; W \mid Z)
$$

where Z is the common information r.v. and (in both minima) the minimization is over all $P(w \mid x), \quad|\mathcal{W}| \leq|\mathcal{X}|+1$, such that $H(X \mid W, Y)=0$.

Note: writing $R_{\mathrm{LSCSI}}\left(P_{X, Y}\right)$, Theorem 2 implies

$$
R_{\mathrm{LSCSI}}\left(P_{X, Y}\right)=\sum_{z} p(z) R_{\mathrm{LSCSI}}\left(P_{X, Y \mid Z=z}\right)
$$

That is, when G_{X} has more than one maximally connected component, finding $R_{\mathrm{LSCSI}}\left(P_{X, Y}\right)$ reduces to computing R_{LSCSI} for each component.

Slepian-Wolf Coding with Causal S.I. (cont.)

Lemma 2. Let W, X, Y be discrete random variables with the Markov relation $W \rightarrow X \rightarrow Y$. For each x define $N_{W}(x)=\{w: p(w \mid x)>0\}$. Then $H(X \mid W, Y)=0$ if and only if $N_{W}(x) \cap N_{W}\left(x^{\prime}\right)=\emptyset$ whenever $\left(x, x^{\prime}\right) \in G_{X}$

Note: When combined with Theorem 2 this implies that $R_{L S C S I}$ depends only on the distribution of X and on G_{X} (on $P(y \mid x)$ only through its effect on G_{X})

Figure 5: Illustration of condition in Lemma 2

Slepian-Wolf Coding with Causal S.I. (cont.)

Corollary 1. $\quad R_{\mathrm{LSCSI}}=H(X)$ whenever G_{X} is complete.
Proof: When G_{X} is complete, condition for $H(X \mid W, Y)=0$ is, by lemma,

$$
N_{W}(x) \cap N_{W}\left(x^{\prime}\right)=\emptyset \quad \forall x \neq x^{\prime}
$$

implying

$$
H(X \mid W)=0
$$

completing proof by an appeal to Theorem 2. \square

A note on (dis)continuity

- Corollary 1 gives

$$
R_{\mathrm{LSCSI}}\left(P_{X, Y}\right)=H(X)
$$

in the interior of the simplex of distributions on $\mathcal{X} \times \mathcal{Y}$. This implies a discontinuity at the boundary of the simplex

- While discontinuities of this type are well-known to arise in problems such as zero-error channel coding [Shannon 1956] and the zero-error Slepian-Wolf problem [Witsenhausen 1976], it is interesting to see it arising in our setting, which assumes the standard 'near-lossless' formulation.
Evaluation of $R_{L S C S I}$ for $|\mathcal{X}|=1,2,3,4$

000
$Q_{0}^{O} \sim$
$\frac{\|}{\underline{\partial}}<0^{0}-1$

$00+0-0$
of G_{X} for $|\mathcal{X}|=1,2,3,4$

$\|\mathcal{X}\|$	G_{X}	$R_{L S C S I}$
1	1	$0=H(X)$
2	1	0
2	2	$H(X)$
3	1	0
3	2	$[p(a)+p(b)] h\left(\frac{p(a)}{p(a)+p(b)}\right)$
3	3	$h(p(a))$
3	4	$H(X)$
4	1	0
4	2	$[p(a)+p(b)] \cdot h\left(\frac{p(a}{p(a)+p(b)}\right)$
4	3	$[1-p(d)] h\left(\frac{p(a)}{1-p(d)}\right)$
4	4	$[p(a)+p(b)] h\left(\frac{p(a)}{p(a)+p(b)}\right)+[p(c)+p(d)] h\left(\frac{p(c)}{p(c)+p(d)}\right)$
4	5	$h(p(a))$
4	6	$[1-p(d)] h\left(\frac{p(a)}{1-p(d)}\right) \leq R_{\mathrm{LSCSI}} \leq h(p(a)+p(d))$
4	7	$p(a) \log \frac{1-p(d)}{p(a)}+p(b) \log \frac{1-p(d)}{p(b)}+p(c) \log \frac{1-p(d)}{p(c)}$
4	8	$h(p(a)+p(d))$
4	9	$I_{\alpha^{*}}\left(X ; W^{\prime}\right)$, where $\alpha^{*}=p(a) /[p(a)+p(c)]$
4	10	$-p(a) \log p(a)-p(d) \log p(d)-[p(b)+p(c)] \log [p(b)+p(c)]$
4	11	$H(X)$

$R_{\text {LSCSI }}$ for the Uniform Quaternary Source

Figure 7: $R_{L S C S I}$ for the uniform quaternary source. The x-axis corresponds to the category that G_{X} belongs to, as enumerated in Figure 6.

Rate Distortion with Positive S.I. Lookahead

- $\left(X_{i}, Y_{i}\right)$ i.i.d. drawings of (X, Y)
- Encoding: $T\left(X^{n}\right) \in\left\{1 \ldots, 2^{n R}\right\}$
- Reconstruction: $\hat{X}_{i}\left(T, Y^{i+d}\right)$, for $d>0$

Rate Distortion with S.I. Lookahead (cont.)

For integer $k \geq 1$ define

$$
R_{k, d}(D)=\frac{1}{k} \min I\left(X^{k} ; W\right)
$$

where the minimum is over all functions $f_{i}: \mathcal{W} \times \mathcal{Y}^{i+d} \rightarrow \hat{\mathcal{X}}, 1 \leq i \leq k-d$, $|\mathcal{W}| \leq|\mathcal{X}|^{k}+1$, and $P\left(w \mid x^{k}\right)$ such that

$$
\frac{1}{k-d} \sum_{i=1}^{k-d} E \rho\left(X_{i}, f_{i}\left(W, Y^{i+d}\right)\right) \leq D
$$

Rate Distortion Function for S.I. Lookahead (cont.)

Theorem 3. The rate distortion function for d lookahead, $R_{d}(D)$, is bounded, for any $k \geq 1, \quad 0<d<\infty$ and $D \geq D_{\min }$, as

$$
R_{k, d}(D) \leq R_{d}(D) \leq R_{k, d}(D)+\frac{d}{k} H(X)
$$

and, consequently,

$$
R_{d}(D)=\lim _{k \rightarrow \infty} R_{k, d}(D)
$$

Remarks:

- Upper bound can be refined
- Computability: Given $\varepsilon>0$, can obtain $R_{d}(D)$ to within ε
- In contrast with usual characterizations in source and in channel coding that do not give a computable approximation

Proof of Converse

$$
\begin{aligned}
k n R \geq & k H(T) \\
\geq & k I\left(X^{n} ; T\right) \\
= & k H\left(X^{n}\right)-k \sum_{i=1}^{n} H\left(X_{i} \mid T, X^{i-1}\right) \\
= & k H\left(X^{n}\right)-\sum_{j=0}^{k-1} \sum_{i=1-j}^{n-j} H\left(X_{i+j} \mid T, X^{i+j-1}\right) \\
= & k H\left(X^{n}\right)-\sum_{j=0}^{k-1} \sum_{i=1}^{n} H\left(X_{i+j} \mid T, X^{i+j-1}\right) \\
& +\sum_{j=0}^{k-1}\left[\sum_{i=n-j+1}^{n} H\left(X_{i+j} \mid T, X^{i+j-1}\right)-\sum_{i=1-j}^{0} H\left(X_{i+j} \mid T, X^{i+j-1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(a)}{=} \quad k H\left(X^{n}\right)-\sum_{j=0}^{k-1} \sum_{i=1}^{n} H\left(X_{i+j} \mid T, X^{i+j-1}\right) \\
& \\
& \quad+\sum_{j=0}^{k-1}\left[\sum_{i=n-j+1}^{n} H\left(X_{i+j}\right)-\sum_{i=1-j}^{0} H\left(X_{i+j} \mid T, X^{i+j-1}\right)\right] \\
& = \\
& \quad \\
& \quad+\sum_{j=0}^{k-1} \sum_{i=1-j}^{0}\left[H\left(X^{n}\right)-\sum_{j=0}^{k-1} \sum_{i=1}^{n} H\left(X_{i+j} \mid T, X^{i+j-1}\right)\right. \\
& = \\
& k H\left(X^{n}\right)-\sum_{j=0}^{k-1} \sum_{i=1}^{n} H\left(X_{i+j} \mid T, X^{i+j-1}\right) \\
& \\
& \quad+\sum_{j=0}^{k-1} \sum_{i=1-j}^{0} I\left(X_{i+j} ; T, X_{i+j}^{i+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sum_{i=1}^{n} H\left(X_{i}^{i+k-1}\right)-\sum_{i=1}^{n} \sum_{j=0}^{k-1} H\left(X_{i+j} \mid T, X^{i+j-1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i}^{i+k-1}\right)-\sum_{i=1}^{n} H\left(X_{i}^{i+k-1} \mid T, X^{i-1}\right) \\
& =\sum_{i=1}^{n} I\left(X_{i}^{i+k-1} ; T, X^{i-1}\right) \\
& \stackrel{(b)}{\geq} \sum_{i=1}^{n} I\left(X_{i}^{i+k-1} ; W_{i}\right) \\
& \stackrel{(c)}{\geq} \sum_{i=1}^{n} k R_{k, 1}\left(\frac{1}{k-1} \sum_{j=0}^{k-2} E \rho\left(X_{i+j}, \hat{X}_{i+j}\right)\right) \\
& \stackrel{(d)}{\geq} k n R_{k, 1}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{k-1} \sum_{j=0}^{k-2} E \rho\left(X_{i+j}, \hat{X}_{i+j}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(e)}{\geq} k n R_{k, 1}\left(\frac{k D_{\max }}{n}+\frac{1}{n} \sum_{i=1}^{n} E \rho\left(X_{i}, \hat{X}_{i}\right)\right) \\
& \stackrel{(f)}{\geq} \\
& \quad k n R_{k, 1}\left(D+\frac{k D_{\max }}{n}\right)
\end{aligned}
$$

Process Characterization of $R_{d}(D)$

For jointly stationary processes $\mathbf{X}=\left\{X_{i}\right\}$ and $\mathbf{W}=\left\{W_{i}\right\}$ let $\bar{I}(\mathbf{X} ; \mathbf{W})$ denote the mutual information rate defined by

$$
\bar{I}(\mathbf{X} ; \mathbf{W})=\lim _{n \rightarrow \infty} \frac{1}{n} I\left(X^{n} ; W^{n}\right)
$$

Theorem 4.

$$
R_{d}(D)=\inf \left\{\bar{I}(\mathbf{X} ; \mathbf{W}): E \rho\left(X_{0}, \hat{X}_{0}^{\text {opt }}\left(\mathbf{W}, Y_{-\infty}^{d}\right)\right) \leq D\right\}
$$

where the inf is over jointly stationary $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ with $\mathbf{W}-\mathbf{X}-\mathbf{Y}$, and $\hat{X}_{0}^{\text {opt }}\left(\mathbf{W}, Y_{-\infty}^{d}\right)$ is the optimum estimate of X_{0} based on $\mathbf{W}, Y_{-\infty}^{d}$

Gaussian W is Ineffectual for Gaussian X, Y

Motivated by Theorem 4, consider upper bound to $R_{d}(D)$

$$
R_{d}^{G}(D)=\inf \left\{\bar{I}(\mathbf{X} ; \mathbf{W}): E\left(X_{0}-\hat{X}_{0}^{o p t}\left(\mathbf{W}, Y_{-\infty}^{d}\right)\right)^{2} \leq D\right\}
$$

where the inf is over jointly stationary and Gaussian $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ with the Markov relation $\mathbf{W}-\mathbf{X}-\mathbf{Y}$.

If $R_{d}^{G}(D)$ is not convex, can be further improved to its convex envelope $\underline{R}_{d}^{G}(D)$ Unfortunately, $\underline{R}_{d}^{G}(D)$ turns out to be trivial in the following sense:

Theorem 5. For every $d \geq 0$

$$
\underline{R}_{d}^{G}(D)=\underline{R}_{u b}(D)
$$

where $\underline{R}_{u b}(D)$ is the lower convex envelope of $R_{u b}(D)$, the upper bound on $R(D)$ of the causal case.

Lossless Source Coding with Side Information Lookahead

- Encoder maps X^{n} into $T \in\left\{1, \ldots, 2^{n R}\right\}$
- Reconstruction is of form $\hat{X}_{i}\left(T, Y^{i+d}\right)$
- R is achievable if exists sequence of schemes with $P\left(X^{n} \neq \hat{X}^{n}\right) \longrightarrow 0$
- Let $R_{L S C S I}^{d}$ denote infimum over achievable rates

Lossless Source Coding with S.I. Lookahead (cont.)

We have seen that, under say positivity condition, $R_{L S C S I}^{0}=H(X)$, in contrast with $H(X \mid Y)$ which is achievable with no delay constraint.

It is perhaps then natural to expect $\lim _{d \rightarrow \infty} R_{L S C S I}^{d}=H(X \mid Y)$
This, as it turns out, is not the case
In fact, we will see that, not only is $\lim _{d \rightarrow \infty} R_{L S C S I}^{d}>H(X \mid Y)$ but
$R_{L S C S I}^{d}=H(X)$ for all $0 \leq d<\infty$
That is, the side information is useless

Lossless Source Coding with S.I. Lookahead (cont.)

$$
R_{L S C S I}^{k, d}=\frac{1}{k} \min I\left(X^{k} ; W\right)
$$

where the minimum is over all $P\left(w \mid x^{k}\right),|\mathcal{W}| \leq|\mathcal{X}|^{k}+1$, such that

$$
H\left(X_{i} \mid W, Y^{i+d}\right)=0 \quad \text { for all } 1 \leq i \leq k-d
$$

Theorem 6. For every k, d

$$
R_{L S C S I}^{k, d} \leq R_{L S C S I}^{d} \leq R_{L S C S I}^{k, d}+\frac{d}{k} R_{L S C S I}
$$

So, in particular,

$$
R_{L S C S I}^{d}=\lim _{k \rightarrow \infty} R_{L S C S I}^{k, d}
$$

Lossless Source Coding with S.I. Lookahead (cont.)

Proposition 2. $R_{L S C S I}^{d}$ depends on the distribution of the pair X, Y only through the distribution of X and the bipartite graph whose edges are the pairs (x, y) for which $P(x, y)>0$.

Corollary 2. Let X, Y satisfy the positivity condition $P(x, y)>0$. Then, for any $0 \leq d<\infty, \quad R_{\mathrm{LSCSI}}^{d}=H(X)$.

Block-Length-Dependent Lookahead

Let $R_{L S C S I}^{\left\{d_{n}\right\}}$ denote infimum of achievable rates when $d=d_{n}$
Evidently, under positivity condition, $R_{L S C S I}^{\left\{d_{n}\right\}}=H(X)$ whenever $d_{n} \equiv d$
On the other hand, by Slepian-Wolf, $R_{L S C S I}^{\left\{d_{n}\right\}}=H(X \mid Y)$ when $d_{n}=n$
As it turns out:

1. $R_{L S C S I}^{\left\{d_{n}\right\}}=H(X \mid Y)$ provided increase of d_{n} with n is more than logarithmic
2. any $R>H(X \mid Y)$ is achievable if $d_{n}=C(R) \log n$ for appropriate $C(R)$

More concretely:

Block-Length-Dependent Lookahead (cont.)

Define

$$
E(R)=\min _{Q_{X, Y}}\left[D\left(Q_{X, Y} \| P_{X, Y}\right)+\max \left\{0, R-H_{Q}(X \mid Y)\right\}\right]
$$

This is a "random coding error exponent" for the Slepian-Wolf problem.

Theorem 7.

For every $R>H(X \mid Y), \quad R_{L S C S I}^{\left\{d_{n}\right\}} \leq R \quad$ provided $d_{n}=\frac{1}{E(R)} \cdot \log n$. In particular, $R_{L S C S I}^{\left\{d_{n}\right\}}=H(X \mid Y)$ if increase of d_{n} is more than logarithmic.

Consolidation between the Lossless and Lossy Settings

Consider rate distortion functions when ρ is Hamming.
We have seen that

$$
R_{d}(0)=H(X) \quad \forall 0 \leq d<\infty
$$

whereas

$$
R_{W Z}(0)=H(X \mid Y)
$$

On the other hand, by considering Wyner-Ziv codes for d-blocks, can show

$$
\lim _{d \rightarrow \infty} R_{d}(D)=R_{W Z}(D) \quad \forall D>0
$$

This implies a sensitivity to the order of the limits:

$$
H(X \mid Y)=\lim _{D \downarrow 0} \lim _{d \rightarrow \infty} R_{d}(D)<\lim _{d \rightarrow \infty} \lim _{D \downarrow 0} R_{d}(D)=H(X)
$$

Consolidation between the Lossless and Lossy Settings (cont.)

Figure 8: $H(X \mid Y)=\lim _{D \downarrow 0} \lim _{d \rightarrow \infty} R_{d}(D)<\lim _{d \rightarrow \infty} \lim _{D \downarrow 0} R_{d}(D)=H(X)$.

Channel Coding with Limited-Delay S.I. at the Transmitter

- S_{i} i.i.d. $\sim P(s)$
- For message index $W \in\left\{1, \ldots, 2^{n R}\right\}$, i-th channel input is $X_{i}\left(W, S^{i+d}\right)$
- Memoryless channel $P(y \mid x, s)$ generates Y_{i}
- Decoder gives $\hat{W}\left(Y^{n}\right)$

Let C_{d} denote the capacity
Note this bridges between Shannon and Gel'fand-Pinkser channels:

- $X_{i}\left(W, S^{i}\right)$ is Shannon's channel: $C_{0}=\max _{p(u), p(x \mid u, s)} I(U ; Y)$
- $X_{i}\left(W, S^{n}\right)$ is the Gel'fand-Pinsker: $C_{\infty}=\max _{p(u \mid s), p(x \mid u, s)}[I(U ; Y)-I(U ; S)]$

Channel Coding with Limited-Delay Transmitter S.I. (cont.)

Theorem 8. Let

$$
C_{d, k}=\frac{1}{k} \max I\left(U ; Y^{k}\right),
$$

where the max is over all $P\left(u \mid s^{d}\right), \quad|\mathcal{U}| \leq \min \left\{|\mathcal{X}|^{k},|\mathcal{Y}|^{k}\right\}+|\mathcal{S}|^{k}-1$, and f_{i}, $1 \leq i \leq k$, such that $X_{i}=f_{i}\left(U, S^{i+d}\right)$. Then

$$
\frac{k}{k-d} C_{d, k}-\frac{d \log |\mathcal{Y}|}{k-d} \leq C_{d} \leq C_{d, k}
$$

In particular,

$$
C_{d}=\lim _{k \rightarrow \infty} C_{d, k}
$$

Note:

- Characterization in spirit of one for the source coding problem
- Lower bound can be refined
- Computability

Open Directions

- Does Gaussian W attain min for X, Y Gaussian in case $d=0$? More precisely, is rate distortion function given by convexified version of $R_{u b}(D)$?
- Recall that $\lim _{d \rightarrow \infty} R_{d}(D)=R_{W Z}(D)$ for $D>D_{\text {min }}$. What is convergence rate ? Techniques for computation of the redundancy of rate distortion codes would extend to give upper bound $R_{d}(D)-R_{W Z}(D)=O\left(\frac{1}{d} \log d\right)$. Lower bound may prove more challenging.
- In lossless case, have seen that logarithmic growth of d_{n} suffices to achieve any point $R \in(H(X \mid Y), H(X))$. Is this also necessary ? Can we characterize $\alpha(R)$ such that $R_{L S C S I}^{\left\{d_{n}\right\}}=R$ when $d_{n}=\alpha(R) \cdot \log n$?
- Does feedback/feedforward improve on the fundamental limits for $d>0$?

