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Figure 1: The Wyner-Ziv setup
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Wyner Ziv Rate Distortion Function

Rwz(D) = min[I(X; W) — I(Y; W)] = min I(X; W|Y)

min over f: W x Y — X, [W| < |X|+ 1, and P(w|z) such that
Ep(X, f(W.Y)) < D.



Wyner Ziv Coding with Limited Lookahead in the S.I.

e (X;,Y;) i.id. drawings of (X,Y)
e Encoding: T(X") € {1...,2"#}

e Reconstruction: )A(,L-(T, yitd ), i.e., depends on the S.I. but with
limited lookahead d



Motivation |: Sequential Zero-Delay and Delay-Constrained
Source Coding

Source code specified by:

1. Encoder: sequence {FE;}, where F; produces a code symbol U; € U; based on
observation of the source with some lookahead I, U; = E;(X*)

2. Decoder: sequence {D;}, where D; produces ith reconstruction symbol based
on lookahead m in the code symbols and d in the side information symbols, i.e.,

X; = Dy(U*t™, yitd)

Instantaneous rate is log |U;|. Overall rate in encoding first n source symbols is
R= 2?21 log |U;].

T on

Any source code with this structure is a member of family of schemes we allow



Motivation Il: The Denoising/Filtering/Smoothing View

Given index from the encoder, decoder is a denoiser

d =0 corresponds to filtering (sequential denoising), while d >0 to fixed-lag
smoothing

Example: tracking moving target whose trajectory can be described to the tracker
via a rate-constrained link.



Motivation lll: Broadening duality between source and
channel coding

e d=0
Wyner-Ziv < Gel'fand-Pinsker WZCSI < Shannon Channel

o d>0

will apply our approach to characterize channel capacity when state information
is available to sender with limited lookahead



Motivation IV: Connecting to Neuhoff & Gilbert Causality

e Case d =0 close in spirit to causality a la Neuhoff and Gilbert. Constraint is
imposed on the reconstruction, rather than on the delay introduced by the code.

e Complements [W. and Merhav, '05]



Wyner Ziv Coding with Causal S.I.

We begin by considering
e (X;,Y;) i.id. drawings of (X,Y)
e Encoding: T(X") € {1...,2"#}

e Reconstruction: )A(i(T, Y*), i.e., depends on the S.I. but only causally



R-D Function for Wyner-Ziv Coding with Causal S.I.

Theorem 1. The rate distortion function for the Wyner Ziv problem with causal
side information is given by

R(D)=min I(X; W)

where the minimum is over all functions f: W xY — X, [W| < |X|+1, and
P(wl|x) such that

Ep(X,f(W,Y)) <D

[Compare with Ry z(D)]



Proof of Theorem 1: Achievability

Encoder: Need no more than ~ nl(X; W) bits to describe W™ to decoder

Decoder: Knowing W™, reconstruct according to Xi = f(W,,Y;)

In words: “if not allowed to look at future, past is useless”
[Reminiscent of situation in zero-delay as well as in causal source coding]



Proof of Theorem 1: Converse

nR
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On Duality

Rwz(D)=min[(X;W)—-I(Y;W)] < R(D)=minl(X;W)
Cap = max [[(U;Y)—=I(U;S)] < Cshannon = max I(U;Y)

p(uls),p(x|u,s) p(u),p(z|u,s)

e R(D) not improved with feedforward, as observed for the other cases in
[Merhav Weissman '05]



The Common Information Random Variable
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e Bipartite graph has edge between x; and y, if and only if P(X =z;,Y =y;) >0

o (z;,z;) € Gx if and only if there is y with (z;,y) and (z;,y) in bipartite graph

e Gx In example has two maximally connected components, so Z is binary,
assuming one value on {x1, x2,x3} and another on {x4, x5, rg, 7}

e Generally, Z takes different value on each component of Gx

e / is referred to as the ‘common information random variable’



Equivalent Characterization of Rate Distortion Function

Proposition 1. The rate distortion function of Theorem 1 is equivalently given

by
R(D)=minI(X;W|Z2) ,

where minimum is over exactly same set as before.

Note:

o [(X;W)=HW)—HW|X)>HW|Z)—HW|X,Z)=1(X;W|Z) with
equality if and only if W is independent of Z

e Note that for the Wyner-Ziv function R(D) = min I(W; X|Y) so conditioning
on Z has no effect



Example: Doubly Symmetric Binary Source

X unbiased input to BSC(6§). Y is output (or vice versa)

Distortion is Hamming

B 1 — h(d) 0<d<d,

d)d+ h'(d)s d, < d<§,

where d. is solution to (1 — h(d.))/(d.—9) = —h'(d.), and h(:) is binary
entropy

In words: optimum performance attained by time sharing between rate distortion
coding with no Sl, and zero-rate decoding that uses only the Sl

In particular: side information is useless for small distortion
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Figure 2: Rate distortion curves for doubly symmetric binary source

with § = 1/4. Figure shows Rx(D), R(D), Rwz(D), Rxy(D).
D. in this case <can be explicitly computed and is given by
D. = (5—4(19 — 3v/33)"%/3 — (19 — 3v/33)/3) /6 ~ 0.0803566.



Example: X,Y Jointly Gaussian

X,Y jointly Gaussian
Squared error distortion
Upper bound R(D) by taking W = aX + Z where Z ~ N(0,0%) L X,Y

This gives following upper bound on rate distortion function:
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Example: X,Y Jointly Gaussian (cont.)

Rup(D) is not necessarily convex:

Lemma 1. 1. The case 0%; > 0% : Ryup(d) is convex

2. The case 03, < 0% : Rup(d) has an inflection point at D = 0%;/2: It is convex
2 2
2 2 o5 O
for D < 0%;/2 and concave for 0%;/2 < D < Jg{XjL;VJQV.

e In case o4 < 0% can improve by taking lower convex envelope R, (D)

e Whether or not R(D) = R, (D) remains to be determined



Example: X,Y Jointly Gaussian (cont.)

0.1 0.2 0.3 @%03/(c%+0%)=1/2

Figure 3: Typical form of the curves Rx (D), Ru(D), and Rxy(D) when
0% > 0%. In this case, Lemma 1 implies that R,;(D) is convex. Figure shows
actual curves for the case ox = oy = 1.



Example: X,Y Jointly Gaussian (cont.)
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Figure 4: Curves for 0%, < 0%. Lemma implies that R,,(D) is not convex and
can therefore be improved by its lower convex envelope R, (D). Curves shown:
Rx (D), Ru(D), R, (D), Rx|y(D). Figure shows curves for ox =1, oy = 1/6.
D.=5.352215 x 1072, D = 0%;/2 is the inflection point, as asserted in Lemma.



Slepian-Wolf Coding with Causal S.I.

Encoder maps X" into T' € {1,...,2"#}
Reconstruction is of form )A(Z-(T, YY)
R is achievable if exists sequence of schemes with P(X™ # X") — 0

Let R, scgr denote infimum over achievable rates



Slepian-Wolf Coding with Causal S.l. (cont.)

CIearIy H(X‘Y) < RLSCSI < H(X)
Where in [H(X|Y), H(X)] is Rpscsr situated 7

Consider first three trivial cases:

X =Y ass.: Rrsecsy = H(X|Y)(=0).

X and Y independent: Ryscsr = H(X|Y)(= H(X)).
U and Y independent, and X = (U,Y): Rrscsr = H(X|Y)(= H(U)).

In these cases, Ryscst = H(X|Y)

We will see that this is the exception rather than the rule



Slepian-Wolf Coding with Causal S.l. (cont.)

Theorem 2.
Rrscsy =minI(X; W) =min I(X; W|Z)

where Z is the common information r.v. and (in both minima) the minimization
is over all P(w|x), |W| < |X|+ 1, such that H(X|W,Y ) = 0.

Note: writing Rrscsi(Px.y), Theorem 2 implies

Riscsi(Px,y) = Z p(z)Ruscst(Px,y|z=z)

That is, when Gx has more than one maximally connected component, finding
Ryscsi(Px,y) reduces to computing Ryscsr for each component.



Slepian-Wolf Coding with Causal S.l. (cont.)

Lemma 2. Let W, X,Y be discrete random variables with the Markov relation
W — X — Y.  For each x define Ny (z) = {w : p(w|x) > 0}.  Then
H(X|W.,Y)=0 ifand only if Nyw(x) N Nw(z') =0 whenever (z,z') € Gx

Note: When combined with Theorem 2 this implies that R;scsr depends only
on the distribution of X and on Gx (on P(y|z) only through its effect on Gx)

Figure 5: lllustration of condition in Lemma 2



Slepian-Wolf Coding with Causal S.l. (cont.)

Corollary 1. Ryscsi = H(X) whenever Gx is complete.

Proof: When Gx is complete, condition for H(X|W,Y) =0 is, by lemma,
Nw(z)NNw(z') =0 Vx#a2

implying

H(X|W)=0
completing proof by an appeal to Theorem 2. [



A note on (dis)continuity

e Corollary 1 gives
Rrscsi(Px,y) = H(X)
in the interior of the simplex of distributions on X x ).  This implies a
discontinuity at the boundary of the simplex

e While discontinuities of this type are well-known to arise in problems such
as zero-error channel coding [Shannon 1956| and the zero-error Slepian-Wolf
problem [Witsenhausen 1976], it is interesting to see it arising in our setting,
which assumes the standard ‘near-lossless’ formulation.
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R scsr for the Uniform Quaternary Source
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Figure 7: Rpscsr for the uniform quaternary source. The x-axis corresponds to
the category that Gx belongs to, as enumerated in Figure 6.



Rate Distortion with Positive S.l. Lookahead

e (X;,Y;) i.id. drawings of (X,Y)
e Encoding: T(X") € {1...,2"#}

e Reconstruction: X;(T, Y+ ), for d > 0



Rate Distortion with S.l. Lookahead (cont.)

For integer kK > 1 define

1
Ry a(D) = z min I(X"; W)

where the minimum is over all functions f; : W X yitd _, )3 1 << k—d,
W| < |X|F + 1, and P(w|z¥) such that

k—d

1 i
m Z E,O(Xia fz’(Wa Y +d)) <D
i=1



Rate Distortion Function for S.l. Lookahead (cont.)

Theorem 3. The rate distortion function for d lookahead, R;(D), is bounded,
forany k>1, 0<d<oo and D > D,,;n, as

Ri.a(D) < Ra(D) < Rya(D) + %H(X)

and, consequently,
Rd(D) — khm Rkjd(D)

Remarks:

e Upper bound can be refined
e Computability: Given € > 0, can obtain R4(D) to within ¢

e In contrast with usual characterizations in source and in channel coding that do
not give a computable approximation



Proof of Converse
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Process Characterization of R;(D)

For jointly stationary processes X = {X;} and W = {W;} let I(X; W) denote the
mutual information rate defined by

_ 1
I(X; W) = lim —I(X™W")

n—oo N,

Theorem 4.
Ry(D) = inf{I(X; W) : Ep(Xo, XP"(W, Y4 )) < D}

where the inf is over jointly stationary W,X,Y with W — X —Y, and
XPHW,Y? ) is the optimum estimate of X based on W, Y4 __



Gaussian W is Ineffectual for Gaussian XY

Motivated by Theorem 4, consider upper bound to R4(D)
RG(D) = inf{I(X; W) : E(Xo, — XJP"(W,Y?_))2 < D},

where the inf is over jointly stationary and Gaussian W, X,Y with the Markov
relation W — X - Y.

If RG(D) is not convex, can be further improved to its convex envelope RS (D)
Unfortunately, RS (D) turns out to be trivial in the following sense:

Theorem 5. For everyd > 0

where R, (D) is the lower convex envelope of R,,(D), the upper bound on R(D)
of the causal case.



Lossless Source Coding with Side Information Lookahead

Encoder maps X" into T' € {1,...,2"#}
Reconstruction is of form )A(Z-(T, yitd )
R is achievable if exists sequence of schemes with P( X" = X”) — 0

Let R4 denote infimum over achievable rates
LSCSI



Lossless Source Coding with S.l. Lookahead (cont.)

We have seen that, under say positivity condition, R%SCSI = H(X), in contrast
with H(X|Y) which is achievable with no delay constraint.

It is perhaps then natural to expect limy oo RS gng; = H(X|Y)
This, as it turns out, is not the case

In fact, we will see that, not only is limy ..o RY ¢og; > H(X|Y) but
Rlgps; = H(X) forall 0 <d< oo

That is, the side information is useless



Lossless Source Coding with S.l. Lookahead (cont.)

1
k,d .
Rpscsr = EmmI(Xk; W)

where the minimum is over all P(w|2*), |[W| < |X|* + 1, such that
H(X W, YT =0 forall1<i<k—d.

Theorem 6. For every k, d

d

k,d d k.d
Riscsr < Riscsr < Rigogr + ERLSCSI-

So, in particular,
d Y k.d
RT scsr = kh_{go Riscsr-



Lossless Source Coding with S.l. Lookahead (cont.)

Proposition 2. RdLSCSI depends on the distribution of the pair X,Y only
through the distribution of X and the bipartite graph whose edges are the pairs
(x,y) for which P(x,y) > 0.

Corollary 2. Let X,Y satisfy the positivity condition P(x,y) > 0. Then, for



Block-Length-Dependent Lookahead

Let Rﬁfgm denote infimum of achievable rates when d = d,,
Evidently, under positivity condition, R\ . = H(X) whenever d,, =
On the other hand, by Slepian-Wolf, R%@%SI = H(X|Y) whend, =n

As it turns out:
1. R%”gs[ = H(X|Y) provided increase of d,, with n is more than logarithmic

2. any R > H(X|Y) is achievable if d,, = C(R)logn for appropriate C'(R)

More concretely:



Block-Length-Dependent Lookahead (cont.)

Define
E(R) — min [D(QX,yHPX’y) + maX{O, R — HQ(X|Y)}]

XY

This is a “random coding error exponent” for the Slepian-Wolf problem.

Theorem 7.
For every R > H(X|Y), Rgggsj < R provided d,, = ﬁ - logn.

In particular, R%’g o7 = H(X|Y) if increase of d,, is more than logarithmic.



Consolidation between the Lossless and Lossy Settings

Consider rate distortion functions when p is Hamming.

We have seen that
R4y(0)=H(X) V0<d< x

whereas
Rwz(0) = H(X|Y)
On the other hand, by considering Wyner-Ziv codes for d-blocks, can show

lim Rd(D) — sz(D) vD >0

d— oo

This implies a sensitivity to the order of the limits:

H(X|Y)=Ilim lim R4(D) < lim lim Ry4(D) = H(X)
D]|0d—oo d—oo D0



Consolidation between the Lossless and Lossy Settings (cont.)

H(XY)\

Figure 8: H(X|Y) =limp o limg oo Ra(D) < limg_oolimp o Ra(D) = H(X).



Channel Coding with Limited-Delay S.l. at the Transmitter

o S;iid.~ P(s)
e For message index W € {1,...,2"%} i-th channel input is X;(W, S*T%)
e Memoryless channel P(y|x, s) generates Y;

e Decoder gives W (Y")

Let C'; denote the capacity
Note this bridges between Shannon and Gel'fand-Pinkser channels:

o X;(W,S") is Shannon's channel: Cy = max, () p(zju.s) L(U;Y)

o X;(W,S™ ) isthe Gel'fand-Pinsker: Coo = maxy,(y|s) p(z|u,s) L (U;Y)—1(U;5)]



Channel Coding with Limited-Delay Transmitter S.l. (cont.)

Theorem 8. Let |
Car = %maXI(U;Yk),

where the max is over all P(uls?), |[U| < min{|X|*,|V|*} + |S|* — 1, and f;,
1 <<k, such that X, = fZ(U, Si—i_d). Then

ko, dlog|y)
k — dC k—d

< Cyqg<Cay

In particular,
Cy = lim Cd,k:
k— o0

Note:

e Characterization in spirit of one for the source coding problem
e Lower bound can be refined
e Computability



Open Directions

Does Gaussian W attain min for X, Y Gaussian in case d = 0 ? More precisely,
is rate distortion function given by convexified version of R,;(D) ?

Recall that limy .o Ry(D) = Rwz(D) for D > D,,;,,. What is convergence
rate 7 Techniques for computation of the redundancy of rate distortion codes
would extend to give upper bound R4(D) — Rwz(D) = O (3logd). Lower
bound may prove more challenging.

In lossless case, have seen that logarithmic growth of d,, suffices to achieve any
point R € (H(X|Y),H(X)). Is this also necessary ? Can we characterize a(R)
such that R%%M = R when d,, = a(R) - logn 7

Does feedback /feedforward improve on the fundamental limits for d > 0 ?



