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Abstract

We propose an approach to lossy source coding, utilizing ideas from Gibbs sampling, simulated annealing,

and Markov Chain Monte Carlo (MCMC). The idea is to sample a reconstruction sequence from a Boltzmann

distribution associated with an energy function that incorporates the distortion between the source and reconstruction,

the compressibility of the reconstruction, and the point sought on the rate-distortion curve. To sample from this

distribution, we use a ’heat bath algorithm’: Starting froman initial candidate reconstruction (say the original source

sequence), at every iteration, an indexi is chosen and thei-th sequence component is replaced by drawing from

the conditional probability distribution for that component given all the rest. At the end of this process, the encoder

conveys the reconstruction to the decoder using universal lossless compression.

The complexity of each iteration is independent of the sequence length and only linearly dependent on a certain

context parameter (which grows sub-logarithmically with the sequence length). We show that the proposed algorithms

achieve optimum rate-distortion performance in the limitsof large number of iterations, and sequence length, when

employed on any stationary ergodic source. These theoretical findings are confirmed by initial experimentation showing

near Shannon limit performance in various cases.

Employing our lossy compressors on noisy data, with appropriately chosen distortion measure and level, followed

by a simple de-randomization operation, results in a familyof denoisers that compares favorably (both theoretically

and in practice) with other MCMC-based schemes, and with theDiscrete Universal Denoiser (DUDE).

Index Terms

Rate-distortion coding, Universal lossy compression, Markov chain Monte carlo, Gibbs sampler, Simulated

annealing

I. INTRODUCTION

Consider the basic setup of lossy coding of a stationary ergodic sourceX = {Xi : i ≥ 1}. Each source output

block of lengthn, Xn, is mapped to an indexf(Xn) ∈ {1, 2, . . . , 2nR}. The index is sent to the decoder which

decodes it to a reconstruction block̂Xn = g(f(Xn)). The performance of a coding schemeC = (f, g, n, R) is

measured by its average expected distortion between sourceand reconstruction blocks, i.e.

D = Edn(Xn, X̂n) ,
1

n

n
∑

i=1

Ed(Xi, X̂i), (1)

whered : X ×X → R
+ is a single-letter distortion measure. HereX andX̂ denote the source and reconstruction

alphabets respectively, which we assume are finite. For anyD ≥ 0, the minimum achievable rate (cf. [2] for exact

http://arXiv.org/abs/0808.4156v1
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definition of achievability) is characterized as [1], [3], [4]

R(X, D) = lim
n→∞

min
p(X̂n|Xn):Edn(Xn,X̂n)≤D

1

n
I(Xn; X̂n). (2)

For the case of lossless compression, i.e.D = 0 (assuming a non-degenerate distortion measure), we know that

the minimum required rate is the entropy rate of the source, i.e.R(X, 0) = H(X) , lim
k→∞

H(X0|X
−1
−k). Moreover,

there are known implementableuniversalschemes, such as Lempel-Ziv coding [9] and arithmetic coding [11], that

are able to describe any stationary ergodic source at rates as close as desired to the entropy rate of the source

without any error. In contrast to the situation of lossless compression, forD > 0, neither the explicit solution of

(2) is known for a general source (even not for a first-order Markov source [36]), nor are there known practical

schemes that universally achieve the rate-distortion curve. In recent years, there has been progress towards designing

universal lossy compressor especially in trying to tune some of the existing universal lossless coders to work in the

lossy case as well [12], [13], [14]. In [12], a lossy version of Lempel-Ziv algorithm at fixed distortion is rendered,

and is shown to be optimal for memoryless sources. On the other hand, for the non-universal setting, specifically

the case of lossy compression of an i.i.d. source with a knowndistribution, there is an ongoing progress towards

designing codes that get very close to the optimal performance [22], [23], [24], [25].

In this paper, we present a new approach to implementable lossy source coding, which borrows two well-known

tools from statistical physics and computer science, namely Markov Chain Monte Carlo (MCMC) methods, and

simulated annealing [18],[19]. MCMC methods refer to a class of algorithms that are designed to generate samples of

a given distribution through generating a Markov chain having the desired distribution as its stationary distribution.

MCMC methods include a large number of algorithms; For our application, we use Gibbs sampler [17] also known

as theheat bathalgorithm, which is well-suited to the case where the desired distribution is hard to compute, but

the conditional distributions of each variable given the rest are easy to work out.

The second required tool is simulated annealing which is a well-known optimization method. Its goal is to find

the minimum of a functionfmin , min f(s) along with the minimizing statesmin over a set of possibly huge number

of statesS. In order to do simulated annealing, a sequence of probability distributionsp1, p2, . . . corresponding to

the temperaturesT1 > T2 > . . ., whereTi → 0 as i → ∞, and a sequence of positive integersN1, N2, . . ., are

considered. For the firstN1 steps, the algorithm runs one of the relevant MCMC methods inan attempt to sample

from distributionp1. Then, for the nextN2 steps, the algorithm, using the output of the previous part as the initial

point, aims to sample fromp2, and so on. The probability distributions are designed suchthat: 1) their output,

with high probability, is the minimizing statesmin, or one of the states close to it, 2) the probability of getting the

minimizing state increases as the temperature drops. The probability distribution that satisfies these characteristics,

and is almost always used, is the Boltzman distributionpβ(s) ∝ e−βf(s), whereβ ∝ 1
T . It can be proved that using

Boltzman distribution, if the temperature drops slowly enough, the probability of ultimately getting the minimizing

state as the output of the algorithm approaches one [17]. Simulated annealing has been suggested before in the

context of lossy compression, either as a way for approximating the rate distortion function (i.e., the optimization

problem involving minimization of the mutual information)or as a method for designing the codebook in vector
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quantization [20],[21], as an alternative to the conventional generalized Lloyd algorithm (GLA) [16]. In contrast,

in this paper we use the simulated annealing approach to obtain a particular reconstruction sequence, rather than a

whole codebook.

Let us briefly describe how the new algorithm codes a source sequencexn. First, to each reconstruction block

yn, it assigns anenergy, E(yn), which is a linear combination of its conditional empiricalentropy, to be defined

formally in the next section, and its distance from the source sequencexn. Then, it assumes a Boltzman probability

distribution over the reconstruction blocks asp(yn) ∝ e−βE(yn), for someβ > 0, and tries to generatêxn from this

distribution using Gibbs sampling [17]. As we will show, forβ large enough, with high probability the reconstruction

block of our algorithm would satisfyE(x̂n) ≈ min E(yn). The encoder will outputLZ(x̂n), which is the Lempel-Ziv

[9] description ofx̂n. The decoder, upon receivingLZ(x̂n), reconstructŝxn perfectly.

In this paper, instead of working at a fixed rate or at a fixed distortion, we are fixing the slope. A fixed slope

rate-distortion scheme, for a fixed slopes < 0, looks for the coding scheme that minimizesR − s ·D, where as

usualR andD denote the rate and the average expected distortion respectively. In comparison to a given coding

scheme of rateR and expected distortionD, for any0 < δ < R−R(X, D), there exists a code which works at rate

R(X, D) + δ and has the same average expected distortion, and consequently a lower cost. Therefore, it follows

that any point that is optimal in the fixed-slope setup corresponds to a point on the rate-distortion curve.

The organization of the paper is as follows. In Section II, weset up the notation, and in Section III describe the

count matrix and empirical conditional entropy of a sequence. Section IV describes an exhaustive search scheme

for fixed-slope lossy compression which universally achieves the rate-distortion curve for any stationary ergodic

source. Section V describes our new universal MCMC-based lossy coder, and Section VI presents another version

of the algorithm for finding sliding-block codes which againuniversally attain the rate-distortion bound. Section

VII gives some simulations results. Section VIII describesthe application of the algortihm introduced in Section V

to universal compression-based denoising. Finally, Section IX concludes the paper with a discussion of some future

directions.

II. N OTATION

Let X and Y denote the source and reconstructed signals alphabets respectively. For simplicity, we restrict

attention to the case whereX = Y = {α1, . . . , αN}, though our derivations and results carry over directly to

general finite alphabets. Bold low case symbols, e.g.x,y, z, denote individual sequences.

Let d : X × Y → R
+ be the loss function (fidelity criterion) which measures theloss incurred in decoding a

symbolαi to another symbolαj . Moreover, letdm = max
i,j

d(αi, αj), and note thatdm < ∞, since the alphabets

are finite. The normalized cumulative loss between a source sequencexn and reconstructed sequencex̂n is denoted

by dn(xn, x̂n) = 1
n

n
∑

i=1

d(xi, x̂i).
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III. C OUNTS AND EMPIRICAL CONDITIONAL ENTROPY

Let Hk(yn) denote the conditional empirical entropy of orderk induced byyn, i.e.

Hk(yn) = H(Yk+1|Y
k), (3)

whereY k+1 on the right hand side of (3) is distributed according to

P (Y k+1 = uk+1) =
1

n

∣

∣

{

1 ≤ i ≤ n : yi
i−k = uk+1

}∣

∣ , (4)

where in (4), and throughout we assume a cyclic convention wherebyyi , yn+i for i ≤ 0. We introduce the count

notationmk(yn, uk), which is a column vector counting the number of appearancesof the different symbols inyn

with the left contextuk. More explicitly, mk(yn, uk) is a column vector whosea-th component,a ∈ Y, is given

by

mk(yn, uk)[a] =
∣

∣

{

1 ≤ i ≤ n : yi
i−k = uka

}∣

∣ , (5)

whereuka denotes the(k +1)-tuple obtained by concatenatinguk with the symbola. We letmk(yn, ·) denote the

|Y| × |Y|k matrix whose columns are given bymk(yn, uk), for the |Y|k values ofuk lexicographically ordered.

Note that, with the count notation, the conditional empirical entropy in (3) can be expressed as

Hk(yn) =
1

n

∑

uk

H
(

mk(yn, uk)
)

1T mk(yn, uk), (6)

where1 denotes the all-ones column vector of length|Y|, and for a vectorv = (v1, . . . , vℓ)
T with non-negative

components, we letH(v) denote the entropy of the random variable whose probabilitymass function (pmf) is

proportional tov. Formally,

H(v) =







∑ℓ
i=1

vi

‖v‖1
log ‖v‖1

vi
if v 6= (0, . . . , 0)T

0 if v = (0, . . . , 0)T .
(7)

The important point is thatHk is sum of terms overuk involving only mk(yn, uk).

IV. A N EXHAUSTIVE SEARCH SCHEME FOR FIXED-SLOPE COMPRESSION

Consider the following scheme for lossy source coding at fixed slopes ≤ 0. For each source sequencexn let

the reconstruction block̂xn be

x̂n = argmin
yn

[Hk(yn)− s · d(xn, yn)] . (8)

The encoder, after computinĝxn, losslessly conveys it to the decoder usingLZ compression. Letk grow slowly

enough withn so that

lim sup
n→∞

max
yn

[

1

n
ℓLZ(yn)−Hk(yn)

]

≤ 0, (9)

where ℓLZ(yn) denotes the length of theLZ representation ofyn. Note that Ziv’s inequality guarantees that if

k = kn = o(log n) then (9) holds. We can prove the following theorem whose proof is given in Appendix A.
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Theorem 1:Let X be a stationary and ergodic source, letR(X, D) denote its rate distortion function, and let

X̂n denote the reconstruction using the above scheme onXn. Then

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

n→∞
−→ min

D≥0
[R(X, D)− s ·D] . (10)

V. UNIVERSAL LOSSY CODING VIA MCMC

In this section, we will show how simulated annealing Gibbs sampling enables us to get close to the performance

of the impractical exhaustive search coding algorithm described in the previous section. Throughout this section we

fix the slopes ≤ 0.

Associate with each reconstruction sequenceyn the energy

E(yn) , n [Hk(yn)− s · dn(xn, yn)]

=
∑

uk

H
(

mk(yn, uk)
)

1Tmk(yn, uk)− s ·

n
∑

i=1

d(xi, yi).

The Boltzmann distributioncan now be defined as the pmf onYn given by

pβ(yn) =
1

Zβ
exp{−βE(yn)}, (11)

whereZβ is the normalization constant (partition function). Note that, though this dependence is suppressed in the

notation for simplicity,E(yn), and therefore alsopβ and Zβ depend onxn and s, which are fixed until further

notice. Whenβ is large andY n ∼ pβ, then with high probability

Hk(Y n)− s · dn(xn, Y n) ≈ min
yn

[Hk(yn)− s · dn(xn, yn)] . (12)

Thus, using a sample from the Boltzmann distributionpβ, for largeβ, as the reconstruction sequence, would yield

performance close to that of an exhaustive search scheme that would use the achiever of the minimum in (12).

Unfortunately, it is hard to sample from the Boltzmann distribution directly. We can, however, get approximate

samples via MCMC, as we describe next.

As mentioned earlier, Gibbs sampler [17] is useful in cases where one is interested in sampling from a probability

distribution which is hard to compute, but the conditional distribution of each variable given the rest of variables is

accessible. In our case, the conditional probability underpβ of Yi given the other variablesY n\i , {Yn : n 6= i}

can be expressed as

pβ(Yi = a|Y n\i = yn\i) =
pβ(Yi = a, Y n\i = yn\i)

∑

b pβ(Yi = b, Y n\i = yn\i)
, (13)

=
exp{−βE(yi−1ayn

i+1)}
∑

b exp{−βE(yi−1byn
i+1)}

, (14)

=
exp{−βn

[

Hk(yi−1ayn
i+1)− s · dn(xn, yi−1ayn

i+1)
]

}
∑

b exp{−βn
[

Hk(yi−1byn
i+1)− s · dn(xn, yi−1byn

i+1)
]

}
, (15)

=
1

∑

b exp{−β
[

n∆Hk(yi−1byn
i+1, a)− s ·∆d(b, a, xi)

]

}
, (16)
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where∆Hk(yi−1byn
i+1, a) and∆d(yi−1byn

i+1, a, xi) are defined as

∆Hk(yi−1byn
i+1, a) , Hk(yi−1byn

i+1)−Hk(yi−1ayn
i+1), (17)

and

∆d(b, a, xi) , d(b, xi)− d(a, xi), (18)

respectively. Evidently,pβ(Yi = yi|Y
n\i = yn\i) depends onyn only through{Hk(yi−1byn

i+1)−Hk((yi−1ayn
i+1))}a,b∈Y

and{d(xi, a)}a∈Y . In turn,{Hk(yi−1byn
i+1)−Hk(yi−1ayn

i+1)}a,b∈Y depends onyn only through{mk(yi−1yyn
i+1, ·)}y∈Y .

Note that, givenmk(yn, ·), the number of operations required to obtainmk(yi−1yyn
i+1, ·), for anyy ∈ Y is linear

in k, since the number of contexts whose counts are affected by a change of one component inyn is no larger than

2k + 2. I.e., lettingSi(y
n, y) denote the set of contexts whose counts are affected when theith component ofyn

is flipped fromyi to y, we have|Si(y
n, y)| ≤ 2k + 2. Further, since

n[Hk(yi−1byn
i+1)−Hk(yi−1ayn

i+1)] =
∑

uk∈Si(yi−1byi+1,a)

[

1Tmk(yi−1byn
i+1, u

k)H
(

mk(yi−1byn
i+1, u

k)
)

−1Tmk(yi−1ayn
i+1, u

k)H
(

mk(yi−1ayn
i+1, u

k)
)]

,

(19)

it follows that, givenmk(yi−1byn
i+1, ·) andHk(yi−1byn

i+1), the number of operations required to computemk(yi−1ayn
i+1, ·)

andHk(yi−1ayn
i+1) is linear ink (and independent ofn).

Now consider the following algorithm (Algorithm 1 below) based on the Gibbs sampling method for sampling

from pβ, and letX̂n
s,r(X

n) denote its (random) outcome when takingk = kn andβ = {βt}t to be deterministic

sequences satisfyingkn = o(log n) andβt = 1

T
(n)
0

log(⌊ t
n⌋+ 1), for someT

(n)
0 > n∆, where

∆ = max
i

max
8

>

>

<

>

>

:

ui−1 ∈ Yi−1,

un
i+1 ∈ Yn−i,

a, b ∈ Y

|E(ui−1aun
i+1)− E(u

i−1bun
i+1)|, (20)

applied to the source sequenceXn as input.1 By the previous discussion, the computational complexity of the

algorithm at each iteration is independent ofn and linear ink.

Theorem 2:Let X be a stationary and ergodic source. Then

lim
n→∞

lim
r→∞

E

[

1

n
ℓLZ

(

X̂n
s,r(X

n)
)

− s · dn(Xn, X̂n)

]

= min
D≥0

[R(X, D)− s ·D] . (21)

Proof: The proof is presented in Appendix B.

VI. SLIDING -WINDOW RATE-DISTORTION CODING VIA MCMC

The classical approach to lossy source coding is block coding initiated by Shannon [1]. In this method, each

possible source block of lengthn is mapped into a reconstruction block of the same length. Oneof the disadvantages

1Here and throughout it is implicit that the randomness used in the algorithms is independent of the source, and the randomization variables

used at each drawing are independent of each other.
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Algorithm 1 Generating the reconstruction sequence

Input: xn, k, s, {βt}t, r

Output: a reconstruction sequencêxn

1: yn ← xn

2: for t = 1 to r do

3: Draw an integeri ∈ {1, . . . , n} uniformly at random

4: For eachy ∈ Y computepβt
(Yi = y|Y n\i = yn\i) given in (16)

5: Updateyn by replacing itsith componentyi by y drawn from the pmfpβt
(Yi = ·|Y n\i = yn\i)

6: Updatemk(yn, ·) andHk(yn)

7: end for

8: x̂n ← yn

of this method is that applying a block code to a stationary process converts it into a non-stationary reconstruc-

tion process. Another approach to the rate-distortion coding problem is sliding-block (SB) coding introduced by

R.M. Gray in 1975 [7]. In this method, a fixed SB map of a certainorder2kf + 1 slides over the source sequence

and generates the reconstruction sequence which has lower entropy rate compared to the original process. The

advantage of this method with respect to the block coding technique is that while the achievable rate-distortion

regions of the two methods provably coincide, the stationarity of the source is preserved by a SB code [7]. Although

SB codes seem to be a good alternative to block codes, there has been very little progress in constructing good

such codes since their introduction in 1975, and there is no known practical method for finding practical SB codes

up to date. In this section we show how our MCMC-based approach can be applied to finding good SB codes of

a certain order2kf + 1.

A SB code of window length2kf + 1, is a functionf : X 2kf +1 → Y which is applied to the source process

{Xn} to construct the reconstruction block as follows

X̂i = f(X i+kf

i−kf
). (22)

The total number of2kf + 1-tuples taking values inX is

Kf = |X |2kf +1.

Therefore, for specifying a SB code of window length2kf + 1, there areKf values to be determined, andf can

be represented as a vectorfKf = [fKf−1, . . . , f1, f0] wherefi ∈ Y is the output of functionf to the input vector

b equal to the expansion ofi in 2kf + 1 symbols modulo|X |, i.e. i =
2kf
∑

j=0

bj|X |
j .

For coding a source output sequencexn by a SB code of order2kf + 1, among|Y||X |2kf +1

possible choices,

similar to the exhaustive search algorithm described in Section IV, here we look for the one that minimizes the

energy function assigned to each possible SB code as

E(fKf ) , n [Hk(yn)− s · dn(xn, yn)] , (23)
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whereyn = yn[xn, fKf ] is defined byyi = f(xi+kf

i−kf
). Like before, we consider a cyclic rotation asxi = xi+n, for

any i ∈ N. Again, we resort to simulated annealing Gibbs sampling method in order to find the minimizer of (23).

Unlike in (11), instead of the space of possible reconstruction blocks, here we define Boltzmann distribution over the

space of possible SB codes. Each SB code is represented by a unique vectorfKf , andpβ(fKf ) ∝ exp (−βE(yn)),

whereyn = yn[xn, fKf ]. The conditional probabilities required at each step of theGibbs sampler can be written

as

pβ(fi = θ|fKf\i) =
pβ(f i−1θf

Kf

i+1)
∑

ϑ

pβ(f i−1ϑf
Kf

i+1)
, (24)

=
1

∑

ϑ

exp (−β(E(f i−1ϑf
Kf

i+1)− E(f
i−1θf

Kf

i+1)))
. (25)

Therefore, for computing the conditional probabilities weneed to find out by how much changing one entry offKf

affects the energy function. Compared to the previous section, finding this difference in this case is more convoluted

and should be handled with more deliberation. To achieve this goal, we first categorize different positions inxn

into |X |2kf +1 different types and construct thesn vector such that the label ofxi, αi, is defined to be

αi ,

kf
∑

j=−kf

xn+j |X |
kf +j . (26)

In other words, the label of each position is defined to be the symmetric context of length2kf + 1 embracing

it, i.e. x
i+kf

i−kf
. Using this definition, applying a SB codefKf to a sequencexn can alternatively be expressed as

constructing a sequenceyn where

yi = fαi
. (27)

From this representation, changingfi from θ to ϑ while leaving the other elements offKf unchanged only affects

the positions of theyn sequence that correspond to the labeli in the sn sequence, and we can write the difference

between energy functions appearing in (25) as

E(f i−1ϑf
Kf

i+1)− E(f
i−1θf

Kf

i+1) = n [Hk(mk(yn, ·))−Hk(mk(ŷn, ·))]− s
∑

j:αj=i

(d(xj , ϑ)− d(xj , θ)), (28)

whereyn andŷn represent the results of applyingf i−1ϑf
Kf

i+1 andf i−1θf
Kf

i+1 to xn respectively, and as noted before

the two vectors differ only at the positions{j : αj = i}. Flipping each position inyn sequence in turn affects at

most2(k+1) columns of the count matrixmk(yn, ·). Here at each pass of the Gibbs sampler a number of positions

in the yn sequence are flipped simultaneously. Alg. 2 describes how wecan keep track of all these changes and

update the count matrix. After that in analogy to Alg. 1, Alg.3 runs the Gibbs sampling method to find the best

SB code of order2kf + 1, and at each iteration it employs Alg. 2.

Let f
K

(n)
f

β,s,r denote the output of Alg. 3 to input vectorxn at slopes after r iterations, and annealing processβ.

K
(n)
f = 22k

(n)
f

+1 denotes the length of the vectorf representing the SB code. The following theorem whose proof

is given in the Appendix 3 states that Alg. 3 is asymptotically optimal for any stationary ergodic source. I.e. coding

a source sequence by applying the SB codef
K

(n)
f

β,s,r to the source sequence, and then describing the output to the
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Algorithm 2 Updating the count matrix ofyn = f(xn), whenfi changes fromϑ to θ

Input: xn, kf , k, mk(yn, ·), i, ϑ, θ

Output: mk(ŷn, ·)

1: an ← 0

2: ŷn ← yn

3: for j = 1 to n do

4: if αj = i then

5: ŷj ← θ

6: end if

7: end for

8: mk(ŷn, ·)← mk(yn, ·))

9: for j = kf + 1 to n− kf do

10: if j = fi then

11: aj+k
j ← 1

12: end if

13: end for

14: for j = k + 1 to n− k do

15: if aj = 1 then

16: mk(ŷn, yj−1
j−k)[yj ]← mk(ŷn, yj−1

j−k)[yj ]− 1

17: mk(ŷn, ŷj−1
j−k)[ŷj ]← mk(ŷn, ŷj−1

j−k)[ŷj ] + 1

18: end if

19: end for

decoder using Lempel-Ziv algorithm, asymptotically, as the number of iterations and window lengthkf grow to

infinity, achieves the rate-distortion curve.

Theorem 3:Given a sequence{k(n)
f } such thatk(n)

f → ∞, scheduleβ(n)
t = 1

T
(n)
0

log(⌊ t

K
(n)
f

⌋ + 1) for some

T
(n)
0 > Kf∆, where

∆ = max
i

max
8

>

>

<

>

>

:

fi−1 ∈ Yi−1,

fn
i+1 ∈ YKf −i,

ϑ, θ ∈ Y

|E(f i−1ϑf
Kf

i+1)− E(f
i−1bf

Kf

i+1)|, (29)

andk = o(log(n)). Then, for any stationary and ergodic sourceX, we have

lim
n→∞

lim
r→∞

E

[

1

n
ℓLZ

(

X̂n
)

− s · dn(Xn, X̂n)

]

= min
D≥0

[R(X, D)− s ·D] , (30)

whereX̂n is the result of applying SB codefKf

β,s,r to Xn.

Proof: The proof is presented in Appendix C.
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Algorithm 3 Universal SB lossy coder based on simulated annealing Gibbssampler
Input: xn, kf , k, s, β, r

Output: fKf

1: for t = 1 to r do

2: Draw an integeri ∈ {1, . . . , Kf} uniformly at random

3: For eacha ∈ Y computepβt
(fi = θ|fKf\i) using Algorithm 2, equations (25), and (28)

4: UpdatefKf by replacing itsi-th componentfi by θ drawn from the pmf computed in the previous step

5: end for

Note that in Alg. 3, for a fixedkf , the SB code is a vector of length|X |2kf +1. Hence, the size of the search space

is |Y|Kf which is independent ofn. Moreover, the transition probabilities of the SA as definedby (25) depend

on the differences of the form presented in (28), which, for astationary ergodic source and fixedkf , if n is large

enough, linearly scales withn. I.e. for a givenf i−1, f
Kf

i+1, ϑ andθ,

lim
n→∞

1

n
[E(f i−1ϑf

Kf

i+1)− E(f
i−1θf

Kf

i+1)] = q a.s., (31)

whereq ∈ [0, 1] some fixed value depending only on the source distribution. This is an immediate consequence of

the ergodicity of the source plus the fact that SB coding of a stationary ergodic process results in another process

which is jointly stationary with the initial process and is also ergodic. On the other hand, similar reasoning proves

that∆ defined in (29) scales linearly byn. Therefore, overall, combining these two observations, for large values of

n and fixedkf , the transition probabilities of the nonhomogeneous MC defined by the SA algorithm incorporated

in Alg. 3 are independent ofn. This does not mean that the convergence rate of the algorithm is independent of

n, because for achieving the rate-distortion function one needs to increasekf andn simultaneously to infinity.

VII. S IMULATION RESULTS

We dedicate this section to the presentation of some initialexperimental results obtained by applying the schemes

presented in the previous sections on simulated and real data. The Sub-section VII-A demonstrates the performance

of Alg. 1 on simulated 1D and real 2D data. Some results on the application Alg. 3 on simulated 1D data is shown

in Sub-section VII-B.

A. Block coding

In this sub-section, some of the simulation results obtained from applying Alg. 1 of Section V to real and

simulated data are presented. The algorithm is easy to apply, as is, to both 1D and 2D data . As a first example,

consider a Bernoulli(p) i.i.d source withp = 0.1. Fig. 1 compares the performance of Alg. 1 against the optimal

rate-distortion tradeoff given byR(D) = h(p) − h(D), whereh(α) = −α log(α) − (1 − α) log(1 − α), for a

source sequence of lengthn = 5e4. Here, in order to get different points,s has been linearly increased from

s = −5 to s = −3. To illustrate the encoding process, Fig. 2 depicts the evolutions of Hk(x̂n), dn(xn, x̂n), and
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E(x̂n) = Hk(x̂n)− s · dn(xn, x̂n) during the encoding process of a source block of lengthn = 5e4 at s = −2.5,

k = 10, andβ(t) = 1 + t.

As another example, Fig. 6 compares the performance of Alg. 1when applied to a binary symmetric Markov

source (BSMS) with transition probabilityq = 0.2 against the Shannon lower bound (SLB) which sates that for a

BSMS

R(D) ≥ RSLB(D) , h(p)− h(D). (32)

There is no known explicit characterization of the rate-distortion tradeoff for a BSMS except for a low distortion

region. It has been proven that forD < Dc, where

Dc =
1

2

(

1−
√

1− (p/q)2
)

, (33)

the SLB holds with equality, and forD > Dc, we have strict inequality, i.e.R(D) > RSLB [5]. In our case

Dc = 0.0159. For distortions beyondDc, a lower bound and an upper bound on the rate-distortion function,

derived based on the results presented in [36], are also shown for comparison. The parameters here are:n = 5e4,

k = 8 andβt = n|s/3|t1.5.

Finally, consider applying the algorithm to an × n binary image, wheren = 252. Fig. 7.1 shows the original

image, while Fig. 7.2 shows the coded version afterr = 50n2 iterations. The parameters are:s = −0.1, and

β(t) = 0.1 log(t). The empirical conditional entropy of the image has decreased fromHk = 0.1025 to Hk = 0.0600

in the reconstruction image, while an average distortion ofD = 0.0337 per pixel is introduced. Fig. 1 shows the

pixels that form the2-D ‘history’ (causal neighborhood) of each pixel in our experiments, i.e. the pixels whose

different configurations form the columns of the count vector mk(ym×n, ·).

Fig. 1.

In Fig. 1, the red square depicts the location of the current pixel, and the blue squares denote its6th order context.

Comparing the required space for storing the original imageas a PNG file with the amount required for the

coded image reveals that in fact the algorithm not only has reduced the conditional empirical entropy of the image

by 41.5%, but also has cut the size of the file by around39%.

B. Sliding-block coding

Consider applying Alg. 3 of Section VI to the output of a BSMS with q = 0.2. Fig. 8 shows the algorithm output

along with Shannon lower bound and lower/upper bounds onR(D) from [36]. Here the parameters are:n = 5e4,

k = 8, SB window length ofkf = 11 andβt = Kf |s| log(t + 1).
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In all of the presented simulation results, it is the empirical conditional entropy of the final reconstruction block

that we are comparing to the rate-distortion curve. It should be noted that, though this difference vanishes as

the block size grows, for finite values ofn there would be an extra (model) cost for losslessly describing the

reconstruction block to the decoder.

VIII. A PPLICATION: OPTIMAL DENOISING VIA MCMC-BASED LOSSY CODING

Consider the problem of denoising a stationary ergodic sourceX with unknown distribution corrupted by additive

white noiseV. Compression-based denoising algorithms have been proposed before by a number of researchers, cf.

[28], [29], [30] and references therein. The idea of using a universal lossy compressor for denoising was proposed

in [29], and then refined in [30] to result in a universal denoising algorithm. In this section, we show how our

new MCMC-based lossy encoder enables the denoising algorithm proposed in [30] to lead to an implementable

universal denoiser.

In [30], it is shown how a universally optimal lossy coder tuned to the right distortion measure and distortion

level combined with some simple “post-processing” resultsin a universally optimal denoiser. In what follows we

first briefly go over this compression-based denoiser described in [30], and then show how our lossy coder can be

embedded in for performing the lossy compression part.

Throughout this section we assume that the source, noise, and reconstruction alphabets areM-ary alphabet

A = {0, 1, . . . , M − 1}, and the noise is additive modulo-M andPV (a) > 0 for any a ∈ A, i.e. Zi = Xi + Vi.

As mentioned earlier, in the denoising scheme outlined in [30], first the denoiser lossily compresses’ the noisy

signal appropriately, and partly removes the additive noise. Consider a sequence ofgood lossy coders characterized

by encoder/decoder pairs(En, Dn) of block lengthn working at distortion levelH(V ) under the difference distortion

measure defined as

ρ(x, y) = log
1

PV (x− y)
. (34)

By good, it is meant that for any stationary ergodic sourceX, asn grows, the rate distortion performance of the

sequence of codes converges to a point on the rate-distortion curve. The next step is a simple “post-processing”

as follows. For a fixedm, define the following count vector over the noisy signalZn and its quantized version

Y n = Dn(En(Zn)),

Q̂2m+1[Zn, Y n](z2m+1, y) ,

1

n
|{1 ≤ i ≤ n : (Zi+k

i−k , Yi) = (z2m+1, y)}|. (35)

After constructing these count vectors, the denoiser output is generated through the “post-processing” or “deran-

domization” process as follows

X̂i = argmin
x̂∈A

∑

y∈A

Q̂2m+1[Zn, Y n](z2m+1, y)d(x̂, y), (36)

whered(·, ·) is the original loss function under which the performance ofthe denoiser is to be measured. The

described denoiser is shown to be universally optimal [30],and the basic theoretical justification of this is that the
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rate-distortion function of the noisy signalZ under the difference distortion measure satisfies the Shannon lower

bound with equality, and it is proved in [30] that for such sources2 for a fixed k, the k-th order empirical joint

distribution between the source and reconstructed blocks defined as

Q̂k[Xn, Y n](xk, yk) , (37)

1

n
|{1 ≤ i ≤ n : (X i+k−1

i , Y i+k−1
i ) = (xk, yk)}|,

resulting from a sequence ofgoodcodes converge toPXk,Y k in distribution, i.e. Q̂k[Xn, Y n]
d
⇒ PXk,Y k , where

PXk,Y k is the unique joint distribution that achieves thek-th order rate-distortion function of the source. In the

case of quantizing the noisy signal under the distortion measure defined in (34), at levelH(V ), PXk,Y k is thek-th

order joint distribution between the source and noisy signal. Hence, the count vector̂Q2m+1[Zn, Y n](z2m+1, y)

defined in (35) asymptotically converges toPXi|Zn which is what the optimal denoiser would base its decision on.

After estimatingPXi|Zn , the post-processing step is just making the optimal Bayesian decision at each position.

The main ingredient of the described denoiser is a universallossy compressor. Note that the MCMC-based

lossy compressor described in Section V is applicable to anydistortion measure. The main problem is choosing

the parameters corresponding to the distortion level of interest. To find the right slope, we run the quantization

MCMC-based part of the algorithm independently from two different initial pointss1 ands2. After convergence of

the two runs we compute the average distortion between the noisy signal and its quantized versions. Then assuming

a linear approximation, we find the value ofs that would have resulted in the desired distortion, and thenrun the

algorithm again from this starting point, and again computed the average distortion, and then find a better estimate

of s from the observations so far. After a few repetitions of thisprocess, we have a reasonable estimate of the

desireds. Note that for findings it is not necessary to work with the whole noisy signal, and one can consider

only a long enough section of data first, and finds from it, and then run the MCMC-based denoising algorithm

on the whole noisy signal with the estimated parameters. The outlined method for findings is similar to what is

done in [26] for finding appropriate Lagrange multiplier.

A. Experiments

In this section we compare the performance of the proposed denoising algorithm against discrete universal

denoiser,DUDE [31], introduced in [27].DUDE is a practical universal algorithm that asymptotically achieves the

performance attainable by the bestn-block denoiser for any stationary ergodic source. The setting of operation of

DUDE is more general than what is described in the previous section, and in fact inDUDE the additive white noise

can be replaced by any known discrete memoryless channel.

As a first example consider a BSMS with transition probability p. Fig. 9 compares the performance ofDUDE

with the described algorithm. The slopes is chosen such that the expected distortion between the noisy image and

2In fact it is shown in [30] that this is true for a large class ofsources including i.i.d sources and those satisfying the Shannon lower bound

with equality.
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Fig. 2.

its quantized version using Alg. 1 is close to the channel probability of error which isδ = 0.1 in our case. Here

we pickeds = −0.9 for all values ofp and did not tune it specifically each time. Though, it can be observed that,

even without optimizing the MCMC parameters, the two algorithms performances are very close, and for small

values ofp the new algorithm outperformsDUDE.

As another example consider denoising a binary image. The channel a is DMC with error probability of0.04.

Fig. 10.2 shows the noisy image. Fig. 10.3 shows the reconstructed image generated byDUDE and 10.4 depicts the

reconstructed image using the described algorithm. In thisexperiment theDUDE context structure is set as Fig. 2.

The 2-D MCMC coder employs the same context as the one used in the example of Section VII-A shown in

Fig. 1, and the derandomization block is chosen as Fig. 3.

Fig. 3.

Discussion:The new proposed approach which is based on MCMC coding plus de-randomization is an alternative

not only to theDUDE, but also to MCMC-based denoising schemes that have been based on and inspired by the

Geman brothers’ work [17]. While algorithmically, this approach has much of the flavor of previous MCMC-based

denoising approaches, ours has the merit of leading to a universal scheme, whereas the previous MCMC-based

schemes guarantee, at best, convergence to something whichis good according to the posterior distribution of the

original given the noisy data, but as would be induced by the rather arbitrary prior model placed on the data. It is

clear that here no assumption about the distribution/modelof the original data is made.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, a new implementable universal lossy source coding algorithm based on simulated annealing Gibbs

sampling is proposed, and it is shown that it is capable of getting arbitrarily closely to the rate-distortion curve of
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any stationary ergodic source. For coding a source sequencexn, the algorithm starts from some initial reconstruction

block, and updates one of its coordinates at each iteration.The algorithm can be viewed as a process of systematically

introducing ‘noise’ into the original source block, but in abiased direction that results in a decrease of its description

complexity. We further developed the application of this new method to universal denoising.

In practice, the proposed algorithms 1 and 3, in their present form, are only applicable to the cases where the size

of the reconstruction alphabet,|Y|, is small. The reason is twofold: first, for larger alphabet sizes the contexts will

be too sparse to give a true estimate of the empirical entropyof the reconstruction block, even for small values ofk.

Second, the size of the count matrixmk grows exponentially with|Y| which makes storing it for large values of|Y|

impractical. Despite this fact, there are practical applications where this constraint is satisfied. An example is lossy

compression of binary images, like the one presented in Section VII. Another application for lossy compression of

binary data is shown in [37] where one needs to compress a stream of 0 and1 bits with some distortion.

The convergence rate of the new algorithms and the effect of different parameters on it is a topic for further study.

As an example, one might wonder how the convergence rate of the algorithm is affected by choosing an initial

point other than the source output block itself. Although our theoretical results on universal asymptotic optimality

remain intact for any initial starting point, in practice the choice of the starting point might significantly impact the

number of iterations required.

Finally, note that in the non-universal setup, where the optimal achievable rate-distortion tradeoff is known in

advance, this extra information can be used as a stopping criterion for the algorithm. For example, we can set it to

stop after reaching optimum performance to within some fixeddistance.

APPENDIX A: PROOF OF THEOREM1

First we show that for anyn ∈ N,

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≥ min
D≥0

[R(X, D)− s ·D] . (A-1)

For any fixedn, the expected average loss of our scheme would beD
(n)
0 , Ed(Xn, X̂n). For this expected average

distortion, the rate of our code can not be less thanR(X, D
(n)
0 ) which is the minimum required rate for achieving

distortionD
(n)
0 . Therefore,

E

[

1

n
ℓLZ(X̂n)

]

− sD
(n)
0 ≥ R(X, D

(n)
0 )− s ·D

(n)
0

≥ min
D≥0

[R(X, D)− s ·D] . (A-2)

Now letting n go to infinity we get

lim inf
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≥ min
D≥0

[R(X, D)− s ·D] . (A-3)
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On the other hand, in order to obtain the upper bound, we first split the cost function into two terms as follows

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

, (A-4)

= E

[

1

n
ℓLZ(X̂n)−Hkn

(X̂n) + Hkn
(X̂n)− s · d(Xn, X̂n)

]

(A-5)

= E

[

1

n
ℓLZ(X̂n)−Hkn

(X̂n)

]

+ E

[

Hkn
(X̂n)− s · d(Xn, X̂n)

]

. (A-6)

From [10], forkn = o(log n) and any givenǫ > 0, there existsNǫ ∈ N such that for any individual infinite-length

sequencêx = (x̂1, x̂2, . . .) and anyn ≥ Nǫ

[

1

n
ℓLZ(x̂n)−Hkn

(x̂n)

]

≤ ǫ. (A-7)

Therefore, forn ≥ Nǫ

E

[

1

n
ℓLZ(X̂n)−Hkn

(X̂n)

]

≤ ǫ. (A-8)

Consider an arbitrary point(R(X, D), D) on the rate-distortion curve of sourceX. Then we know that for any

δ > 0 there exists a process̃X such that(X, X̃) are jointly stationary and ergodic, and moreover

1) H(X̃) ≤ R(X, D),

2) Ed(X0, X̃0) ≤ D + δ,

whereH(X̃) = H(X̃0|X̃
−1
−∞) is the entropy rate of process̃X [32]. Now since for each source blockXn, the

reconstruction blockX̂n is chosen to minimizeHk(X̂n)− s · d(Xn, X̂n), we have

Hkn
(X̂n)− s · d(Xn, X̂n) ≤ Hkn

(X̃n)− s · d(Xn, X̃n). (A-9)

For a fixedk, from the definition of thek-th order entropy, we have

Hk(X̃n) =
1

n

∑

uk∈X̂n

H
(

mk(X̃n, uk)
)

1Tmk(X̃n, uk), (A-10)

where

1

n
mk(X̃n, uk)[y] =

1

n

n
∑

i=1

1X̃i
i−k

=uky (A-11)

n→∞
−→ Pr

(

X̃0
−k = uky

)

, w.p.1. (A-12)

Therefore, combining (A-10) and (A-12), asn goes to infinity,Hk(X̃n) converges toH(X̃0|X̃
−1
−k) with probability

one. It follows from the monotonicity ofHk(x̂n) in k, (A-9), and the convergence we just established that for any

x̂n and anyk,

Hkn
(X̂n)− s · d(Xn, X̂n) ≤ H(X̃0|X̃

−1
−k) + ǫ− s · d(Xn, X̃n), eventually a.s. (A-13)

On the other hand

d(X̃n, Xn) =
1

n

n
∑

i=1

d(Xi, X̃i)
n→∞
−→ Ed(X̃0, X0) ≤ D + δ. (A-14)
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Combining (A-7) and (A-13) gives

lim sup
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≤ H(X̃0|X̃
−1
−k) + 2ǫ− s(D + δ). (A-15)

The arbitrariness ofk, ǫ andδ implies

lim sup
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≤ R(X, D)− s ·D, (A-16)

for any D ≥ 0. SinceD is also arbitrary, it follows that

lim sup
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≤ min
D≥0

[R(X, D)− s ·D], (A-17)

Finally, combining (A-3), and (A-17) we get the desired result:

lim
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

= min
D≥0

[R(X, D)− s ·D]. (A-18)

APPENDIX B: PROOF OF THEOREM2

Our proof follows the results presented in [35]. Throughoutthis section,E = XN denotes the state space of our

Markov chain (MC),P defines a stochastic transition matrix fromE to itself, andπ defines a distribution onE

satisfyingπP = π. Moreover,

P =

















p1

p2

...

pN

















, (B-1)

whereN := |X |n is the size of the state space. From this definition, eachpi is a row vector of lengthN in R
+N

such that
∑

j

pij = 1.

Definition 1 (Ergodic coefficient):The Dobrushin’s ergodic coefficient ofP , δ(P), is defined to be

δ(P) = max
1≤i,j≤N

‖pi − pj‖TV. (B-2)

From the definition,

0 ≤ δ(P) ≤ 1. (B-3)
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Moreover, since

‖pi − pj‖TV =
1

2

N
∑

k=1

|pik − pjk|

=
1

2

N
∑

k=1

[

(pik − pjk)1pik≥pjk
+ (pjk − pik)1pjk>pik

]

=
1

2
(1−

N
∑

k=1

pik1pik≤pjk
)−

1

2

N
∑

k=1

pjk1pik≥pjk

+
1

2
(1−

N
∑

k=1

pjk1pjk≤pik
)−

1

2

N
∑

k=1

pik1pik≤pjk

= 1−

N
∑

k=1

[

pik1pik≤pjk
+ pjk1pik≥pjk

]

= 1−

N
∑

k=1

min(pik, pjk), (B-4)

the ergodic coefficient can alternatively be defined as

δ(P) = 1− min
1≤i,j≤N

N
∑

k=1

min(pik, pjk). (B-5)

The following theorem states the connection between the ergodic coefficient of a stochastic matrix and its conver-

gence rate to the stationary distribution.

Theorem 4 (Convergence rate in terms of Dobrushin’s coefficient): Let P Let µ andν be two probability distri-

butions onE. Then

‖µPt − νPt‖TV ≤ ‖µ− ν‖TVδ(P)t (B-6)

Corollary 1: By substitutingν = π in (B-6), we get

‖µPt − π‖TV ≤ ‖µ− π‖TVδ(P)t. (B-7)

Thus far, we talked about homogenous MCs with stationary transition matrix. However, in simulated annealing

we deal with a nonhomogeneous MC. The transition probabilities of a nonhomogeneous MC depend on time and

vary as time proceeds. LetP(t) denote the transition Matrix of the MC at timet, and for0 ≤ n1 < n2 ∈ N, define

P(n1,n2) :=

n2−1
∏

t=n1

P(t). (B-8)

By this definition, if at timen1 the distribution of the MC on the state spaceE is µn1 , at time n2, the distri-

bution evolves toµn2 = µn1P
(n1,n2). The following two definitions characterize the steady state behavior of a

nonhomogeneous MC.

Definition 2 (Weak Ergodicity):A nonhomogeneous MC is called weakly ergodic if for any distributionsµ and

ν over E, and anyn1 ∈ N,

lim sup
n2→∞

‖µP(n1,n2) − νP(n1,n2)‖TV = 0. (B-9)
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Definition 3 (Strong Ergodicity):A nonhomogeneous Markov chain is called strongly ergodic ifthere exists a

distribution over the state spaceE such that for any distributionsµ andn1 ∈ N,

lim sup
n2→∞

‖µP(n1,n2) − π‖TV = 0. (B-10)

Any strongly ergodic MC is also weakly ergodic, because by triangle inequality

‖µP(n1,n2) − νP(n1,n2)‖TV ≤ ‖µP(n1,n2) − π‖TV + ‖νP(n1,n2) − π‖TV. (B-11)

The following theorem states a necessary and sufficient condition for weak ergodicity of a nonhomogeneous MC.

Theorem 5 (Block criterion for weak ergodicity):A MC is weakly ergodic iff there exists a sequence of integers

0 ≤ n1 < n2 < . . ., such that
∞
∑

i=1

(1− δ(P(ni,ni+1))) =∞. (B-12)

Theorem 6 (Sufficient condition for strong ergodicity):Let the MC be weakly ergodic. Assume that there exists

a sequence of probability distributions,{π(i)}∞i=1, on E such that

π(i)P(i) = π(i). (B-13)

Then the MC is strongly ergodic, if
∞
∑

i=1

‖π(i) − π(i+1)‖TV <∞. (B-14)

After stating all the required definitions and theorems, finally we get back to our main goal which was to prove

that by the mentioned choice of the{βt} sequence, Algorithm 1 converges to the optimal solution asymptotically

as block length goes to infinity. HereP(j), the transition matrix of the MC at thej-th iteration, depends onβj .

Using theorem 5, first we prove that the MC is weakly ergodic.

Lemma 1:The ergodic coefficient ofP(jn,(j+1)n), for any j ≥ 0 is upper-bounded as follows

δ(P(jn,(j+1)n)) ≤ 1− nβ̄j∆, (B-15)

where

∆ = max δi, (B-16)

and

δi = max{|E(ui−1aun
i+1)− E(u

i−1bun
i+1)|; ui−1 ∈ Yi−1, un

i+1 ∈ Y
n−i, a, b ∈ Y}.

Proof: Let xn and yn be two arbitrary sequences inXn. Since the Hamming distance between these two

sequence is at mostn, starting from any sequencexn, after at mostn steps of the Gibbs sampler, it is possible to

get to any other sequenceyn. On the other hand at each step the transition probabilitiesof jumping from one state

to a neighboring state, i.e.

P(t)(xi−1bxn
i+1|x

i−1axn
i+1) =

exp(−βtE(x
i−1axn

i+1))
∑

b∈X

exp(−βtE(xi−1bxn
i+1))

, (B-17)
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can be upper bounded as follows. Dividing both the numeratorand denominator of (B-17) byexp(−βtδi), we get

P(t)(xi−1bxn
i+1|x

i−1axn
i+1) =

exp(−βt(E(x
i−1axn

i+1)− δi))
∑

b∈X

exp(−βt(E(xi−1bxn
i+1)− δi))

, (B-18)

≥
1

|X |
e−βt∆. (B-19)

Therefore,

min
xn,yn∈Xn

P(jn,(j+1)n)(xn, yn) ≥

jn+n−1
∏

t=jn

1

|X |
e−βt∆ =

1

|X |n
e−nβ̄j∆, (B-20)

whereβ̄j = 1
n

jn+n−1
∑

t=jn

βt.

Using the alternative definition of the ergodic coefficient given in (B-5),

δ(P(jn, (j + 1)n)) = 1− min
xn,yn∈Xn

∑

zn∈Xn

min(P(jn,(j+1)n)(xn, zn), P(jn,(j+1)n)(yn, zn))

≤ 1− |X |n
1

|X |n
e−nβ̄j∆ (B-21)

= 1− e−nβ̄j∆. (B-22)

Corollary 2: Let βt =
log(⌊ t

n
⌋+1)

T
(n)
0

, whereT
(n)
0 = cn∆, for somec > 1, and∆ is defined in (B-16), in Algorithm

1. Then the generated MC is weakly ergodic.

Proof: For proving weak ergodicity, we use the block criterion stated in Theorem 5. Letnj = jn, and note

that β̄j = log(j+1)
T0

in this case. Observe that

∞
∑

j=0

(1− δ(P(nj ,nj+1))) =

∞
∑

j=1

(1− δ(P(jn,(j+1)n)))

≥

∞
∑

j=0

e−nβ̄jδ (B-23)

=

∞
∑

j=0

e−n∆ log(j+1)
T0 (B-24)

=

∞
∑

j=1

1

j1/c
=∞. (B-25)

This yields the weak ergodicity of the MC defined by the simulated annealing Gibbs sampler.

Now we are ready to prove the result stated in Theorem 2. UsingTheorem 6, we prove that the MC is in fact

strongly ergodic and the eventual steady state distribution of the MC as the number of iterations converge to infinity

is a uniform distribution over the sequences that minimize the energy function.

At each timet, the distribution defined as

π(t)(yn) =
1

Zβt

e−βtE(yn) (B-26)
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satisfiesπ(t)P(t) = π(t). Therefore, if we prove that
∞
∑

t=1

‖π(t) − π(t+1)‖TV <∞, (B-27)

by Theorem 6, the MC is also strongly ergodic. But it is easy toshow thatπ(t) converges to a uniforms distribution

over the set of sequences that minimize the energy function,i.e.

lim
t→∞

π(t)(xn) =







0; xn /∈ H,

1
|H| ; xn ∈ H,

(B-28)

whereH , {yn : E(yn) = min
zn∈Xn

E(zn)}.

Hence, if we letX̂n
t denote the output of Alg. 1 aftert iterations, then

lim
t→∞

E(X̂n
t ) = min

yn∈Xn
E(yn), (B-29)

which combined with Theorem 1 yields the desired result.

In order to prove (B-27), we prove thatπ(t)(xn) is increasing onH , and eventually decreasing onHc, hence

there existst0 such that for anyt1 > t0,

t1
∑

t=t0

‖π(t1) − π(t+1)‖TV =

t1
∑

t=t0

1

2

∑

yn∈Xn

|π(t)(yn)− π(t+1)(yn)|, (B-30)

=
1

2

∑

yn∈H

t1
∑

t=t0

(π(t+1)(yn)− π(t)(yn)) +
1

2

∑

yn∈Xn\H

t1
∑

t=t0

(π(t)(yn)− π(t+1)(yn)),

(B-31)

=
1

2

∑

yn∈H

(π(t1+1)(yn)− π(t0)(yn)) +
1

2

∑

yn∈Xn\H

(π(t0)(yn)− π(t1+1)(yn)) (B-32)

<
1

2
(1)(|X |n). (B-33)

Since the right hand side of (B-33) of does not depend ont1,
∞
∑

t=0

‖π(t) − π(t+1)‖TV <∞. (B-34)

Finally, in order to prove thatπ(t)(yn) is increasing foryn ∈ H , note that

π(t)(yn) =
e−βtE(yn)

∑

zn∈Xn

e−βtE(zn)

=
1

∑

zn∈Xn

e−βt(E(zn)−E(yn))
. (B-35)

Since foryn ∈ H and anyzn ∈ Xn, E(zn)− E(yn) ≥ 0, if t1 < t2,

∑

zn∈Xn

e−βt1(E(zn)−E(yn)) >
∑

zn∈Xn

e−βt2(E(zn)−E(yn)),
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and henceπ(t1)(yn) < π(t2)(yn). On the other hand, ifyn /∈ H , then

π(t)(yn) =
e−βtE(yn)

∑

zn∈Xn

e−βtE(zn)

=
1

∑

zn:E(zn)≥E(yn)

e−βt(E(zn)−E(yn)) +
∑

zn:E(zn)<E(yn)

eβt(E(yn)−E(zn))
. (B-36)

For largeβ the denominator of (B-36) is dominated by the second term which is increasing inβt and therefore

π(t)(yn) will be decreasing int. This concludes the proof.

APPENDIX : PROOF OF THEOREM3

First we need to prove that a result similar to Theorem 1 holdsfor SB codes. I.e. we need to prove that for

given sequences{k(n)
f }n and{kn}n such that lim

n→∞
k

(n)
f =∞ andkn = o(log n), finding a sequence of SB codes

according to

f̂K
(n)
f = argmin

f
K

(n)
f

E(fK
(n)
f ), (C-1)

whereE(fK
(n)
f ) is defined in (23) andK(n)

f = 22k
(n)
f

+1, results in a sequence of asymptotically optimal codes for

any stationary and ergodic sourceX at slopes. In other words,

lim
n→∞

E[
1

n
ℓLZ(X̂n)− s · dn(X̂n, Y n)] = min

D≥0
[R(X, D)− s ·D], a.s. (C-2)

whereX̂n = X̂n[Xn, f̂K
(n)
f ]. After proving this, the rest of the proof follows from the proof of Theorem 2 by just

redefiningδi as

δi = max

{

|E(f i−1af
K

(n)
f

i+1 )− E(f i−1af
K

(n)
f

i+1 )|; f i−1 ∈ Yi−1, f
K

(n)
f

i+1 ∈ Y
K

(n)
f

−i, a, b ∈ Y

}

.

For establishing the equality stated in (C-2), like the proof of Theorem 1, we prove consistent lower and upper

bounds which in the limit yield the desired result. The lowerbound,

lim inf
n→∞

E

[

1

n
ℓLZ(X̂n)− s · d(Xn, X̂n)

]

≥ min
D≥0

[R(X, D)− s ·D] , (C-3)

follows from an argument similar to the one given in the Appendix A. For proving the upper bound, we split the

cost into two terms, as done in the equation (A-6). The convergence to zero of the first term again follows from a

similar argument. The only difference is in upper bounding the second term.

Since, asymptotically, for any stationary ergodic processX, SB codes have the same rate-distortion performance

as block codes, for a point(R(X, D), D) on the rate-distortion curve of the source, and anyǫ > 0, there exits a

SB codef2κǫ
f+1 of some orderκǫ

f such that coding the processX by this SB code results in a processX̃ which

satisfies

1) H(X̃) ≤ R(X, D),

2) Ed(X0, X̃0) ≤ D + ǫ.
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Fig. 4. Comparing the algorithm performance with the optimal rate-distortion tradeoff for a Bernoulli(p) i.i.d source, p = 0.1 and β(t) =

n
q

⌈ t
n
⌉.

On the other hand, for a fixedn, E(fKf ) is monotonically decreasing inKf . Therefore, for any processX and

any δ > 0, there existsnδ such that forn > nδ andk
(n)
f ≥ κǫ

f

lim sup
n→∞

[

Hkn
(X̂n)− s · dn(Xn, X̂n)

]

≤ R(X, D)− s · (D + ǫ) + δ, w.p. 1. (C-4)

Combining (C-3) and (C-4), plus the arbitrariness ofǫ, δ andD yield the desired result.

REFERENCES

[1] C. Shannon, “Coding theorems for a discrete source with afidelity criterion,” IRE Nat. Conv. Rec, part 4, pp. 142-163, 1959.

[2] T. M. Cover, and J. A. Thomas,Elements of Information Theory, New York: Wiley, 1991.

[3] R.G. Gallager, “Information Theory and Reliable Communication,” New York, NY: John Wiley & Sons, 1968.

[4] T. Berger,Rate-distortion theory: A mathematical basis for data compression, Englewood Cliffs, NJ: Prentice-Hall, 1971.

[5] R. M. Gray, “Rate distortion functions for finite-state finite-alphabet Markov sources,”IEEE Trans. on Inform. Theory, vol. 17,no. 2,

pp. 127- 134, 1971.

[6] R. M. Gray, “Information rates of autoregressive processes,” IEEE Trans. on Inform. Theory, vol. 16, pp. 412–421, July 1970.

[7] R. M. Gray, “Sliding-block source coding,”IEEE Trans. on Inform. Theory, vol. 21, pp. 357-368, July 1975.

[8] T. Berger, “Explicit bounds toR(D) for a binary symmetric Markov source,”IEEE Trans. on Inform. Theory, 1977.

[9] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”IEEE Trans. on Inform. Theory, 24(5):530-536,

Sep. 9178.

[10] E. Plotnik, M.J. Weinberger, J. Ziv, “Upper bounds on the probability of sequences emitted byfinite-state sources and on the redundancy

of the Lempel-Ziv algorithm,”IEEE Trans. Inform. Theory, vol. 38, pp. 66-72, 1992.



24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0.35

0.4

0.45

0.5

H
k
(y

n
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.01

0.02

0.03

0.04

d
n
(x

n
,y

n
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0.43

0.44

0.45

0.46

0.47

H
k
(y

n
)
−

s
·
d

n
(x

n
,y

n
)

t

Fig. 5. Sample paths demonstrating evolutions of the empirical conditional entropy, average distortion, and energy function when Algorithm

1 is applied to the output of a Bernoulli(p) i.i.d source, with p = 0.1 and n = 5e4. The algorithm parameters arek = 10, s = −4, and

β(t) = 1.33n
q

⌈ t
n
⌉.

[11] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression”,Commun. Assoc. Comp. Mach., vol. 30, no. 6,

pp. 520-540, 1987.

[12] I. Kontoyiannis, “An implementable lossy version of the Lempel Ziv algorithm-Part I: optimality for memoryless sources,”IEEE Trans. on

Inform. Theory, vol. 45, pp. 2293-2305, Nov. 1999.

[13] E. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data compression,” ,IEEE Trans. on Inform. Theory, vol. 43, no. 5,

pp. 1465-1476, Sep. 1997.

[14] E. H. Yang and J. Kieffer, “Simple universal lossy data compression schemes derived from the Lempel-Ziv algorithm,” IEEE Trans. on

Inform. Theory, vol. 42, no. 1, pp. 239-245, 1996.

[15] I. Kontoyiannis, “Pointwise redundancy in lossy data compression and universal lossy data compression,”IEEE Trans. on Inform. Theory,

vol. 46, pp. 136-152, Jan. 2000.

[16] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,”IEEE Trans. Commun., vol. COM-28, pp. 8495, Jan. 1980.

[17] S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,”.IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.

[18] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing”,Science, vol. 220, no. 4598, pp. 671-680, 1983.

[19] V. Cerny, “A thermodynamic approach to the travelling salesman problem: an efficient simulation algorithm,”Journal of Optimization

Theory and Applications, vol. 45, pp. 41-51, 1985.

[20] K. Rose, “Deterministic annealing for clustering, compression, classification, regression, and related optimization problems,”Proceedings

of the IEEE, vol. 86, no. 11, pp. 2210-2239, Nov. 1998.

[21] J. Vaisey and A. Gersho, “Simulated annealing and codebook design,”Proc. ICASSP, pp. 1176-1179, 1988.



25

0 0.005 0.01 0.02 0.025 0.03 0.035 0.040.0159
0.5

0.55

0.6

0.65

0.7

0.75

D

R

 

 
R(D)− h(q)− h(D) Shannon lower bound
Algorithm 1 output: n = 5e4, k = 8, s = −5 : 0.1 : −4
Lower bound on R(D)
Upper bound on R(D)

Dc

Fig. 6. Comparing the algorithm rate-distortion performance with the Shannon lower bound for a BSMS withq = 0.2, βt = n|s/3|t1.5

[22] E. Maneva and M. J. Wainwright, “Lossy source encoding via message passing, and decimation over generalized codewords of LDGM

codes,”IEEE Int. Symp. on Inform. Theory, Adelaide, Austrailia, Sep. 2005.
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Fig. 8. Comparing the algorithm rate-distortion performance with the Shannon lower bound for a BSMS withq = 0.2. Algorithm parameters:

n = 5e4, k = 8, kf = 5 (Kf = 211), βt = Kf |s| log(t + 1), and slope valuess = −5.25, −5, −4.75 and−4.5.
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Fig. 9. Comparing the denoiser based on MCMC coding plus derandomization withDUDE and optimal non-universal Bayesian denoiser

which is implemented via forward-backward dynamic programming. The source is a BSMS(p), and the channel is assumed to be a DMC with

transition probabilityδ = 0.1. The DUDE parameters are:kletf = kright = 4, and the MCMC coder usess = −0.9, βt = 0.5 log t, r = 10n,

n = 1e4, k = 7. The derandomization window length is2 × 4 + 1 = 9.
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10.1: Original image.

10.2: Noisy image corrupted by a BSC(0.04).
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10.3: DUDE reconstruction image withdn(xn, x̂n) = 0.0081: kletf = kright =

4.

10.4: MCMC coder + derandomization reconstruction image with dn(xn, x̂n) =

0.0128: s = −2, βt = 5 log t, r = 10n2,
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