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Abstract

We study the best exponential decay in the blocklength of the prob-
ability of error that can be achieved in the transmission of a single bit
over the Gaussian channel with an active noisy Gaussian feedback
link. We impose an expected block power constraint on the forward
link and study both almost-sure and expected block power constraints
on the feedback link. In both cases the best achievable error expo-
nents are finite and grow approximately proportionally to the larger
between the signal-to-noise ratios on the forward and feedback links.
The error exponents under almost-sure block power constraints are
typically strictly smaller than under expected constraints. Some of
the results extend to communication at arbitrary rates below capacity
and to general discrete memoryless channels.

1 Introduction

This paper studies error exponents for the Gaussian channel with noisy feed-
back. Unlike our previous work, which focused on passive feedback [1], [2],
[3], here we focus on active feedback. Thus, the time-k symbol Uk fed to
the feedback channel need not be the time-k received symbol Yk: it can be
a function of Yk and of the previous received symbols Y1, . . . , Yk−1. As in
our previous work, we consider only transmission schemes of a deterministic
blocklength n. (Random transmission times for discrete memoryless channels
with active feedback are discussed in [4].) And, although some of our results
extend to more general models, we focus on the Gaussian model where both
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Figure 1: The Gaussian channel with a coded noisy feedback link.

the forward channel and the feedback channel are additive white Gaussian
noise channels. To simplify the analysis we focus on the case where the mes-
sage to be transmitted is binary, i.e., takes on the values 0 and 1 equiprobably
(but see (13) which is applicable to all rates of communication between zero
and capacity). Our communication scheme is depicted in Figure 1.

Critical to our analysis is the precise nature of the power constraints that
are imposed on the forward and feedback channels. On the forward channel
we impose an expected block power constraint, where the time-average of the
squared channel inputs is a random variable (whose realization may depend
on the message and on the realization of the forward and feedback channels)
whose expectation (over messages and the noise sequences on the forward and
feedback channels) is upper-bounded by some fixed (deterministic) positive
constant P; see (8) ahead. For the feedback link we consider two types of
power constraints: an expected block power constraint ((9) ahead) and an
almost-sure block power constraint ((10)). In the latter, the time-average of
the squared inputs to the feedback channel must not exceed PFB irrespective
of the message and of the channel realizations. Clearly, an almost-sure power
constraint is more restrictive than an expected power constraint.

We do not consider an almost-sure block power constraint on the forward
channel because under this constraint even a noise-free feedback link does
not improve the two-codewords error exponent [5], [6].

Our main result is that—although a noise-free feedback link allows the
probability of error to decay faster than exponentially in n [7] [8] [9]—if the
feedback link is noisy the probability of error cannot decay faster than expo-
nentially. This is true even if we only impose an expected block power con-
straint on the feedback link. Moreover, we provide upper and lower bounds
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on the best achievable exponent both for expected and almost-sure block
power constraints. At high signal-to-noise ratios (SNRs) on the feedback
link, the error exponents in both cases grow as an affine function of the SNR.
A more formal statement of the results will be give in Section 2 once we have
formalized the problem’s statement.

2 The Problem Statement and Main Results

We consider the transmission of a single bit H , where H takes on the values
0 and 1 equiprobably. Let the sets X , Y , U , and Z all be the reals. A
blocklength-n code for transmitting H over our channel consists of a forward-
channel encoding rule, a feedback-channel encoding rule, and a decoder as
described next. A forward-channel encoding rule is specified by n functions1

f1, . . . , fn, where

fk : {0, 1} × Zk−1 → X , k = 1, . . . n. (1)

It is understood that the time-k channel input Xk is computed according to
the rule

Xk = fk

(
H, Zk−1

)
, k = 1, . . . , n, (2)

where we use Aℓ to denote A1, . . . , Aℓ and where, for convenience, we set

Z0 = 0. (3)

The feedback-channel encoding rule is a collection of n functions g1, . . . , gn,
where

gk : Yk → U , k = 1, . . . , n. (4)

It is understood that the symbol Uk that is fed to the feedback channel at
time k is given by

Uk = gk

(
Y k
)
, k = 1, . . . , n. (5)

(The special case where gk(Y
k) is Yk corresponds to passive—also knows as

“uncoded” or “symbol-by-symbol”–feedback.)
A decoder φ is a decision rule for guessing H based on Y n. Thus,

φ : Yn → {0, 1}. (6)

1All functions from R to R in this paper are assumed to be Borel Measurable.
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We denote the decision regions by D0 and D1 so

Dν =
{
y ∈ Yn : φ(y) = ν

}
, ν = 0, 1, (7)

where we use a to denote the n-tuple (a1, . . . , an).
The communication system that we consider operates as follows. The

message, along with the forward and backward channel noise components,
H, N1, . . . , Nn, V1, . . . , Vn, are independent random variables, where Nk ∼
N (0, σ2) and Vk ∼ N (0, σ2

FB) for every k ∈ {1, . . . , n}. We assume through-
out that σ and σFB are strictly positive. At time k, the input Xk to the
forward channel is generated according to (2). This input is corrupted by
the forward channel noise, yielding the forward-channel output Yk = Xk+Nk.
The feedback-channel encoder now computes the symbol Uk from Y k accord-
ing to (5). The symbol Uk, which forms the time-k input to the feedback
channel is corrupted by the feedback-channel noise to yield Zk = Uk + Vk at
the output of that channel. The conditional density w(yk|xk) of Yk given Xk

is thus

w(yk|xk) =
1√

2πσ2
e−

(yk−xk)2

2σ2 , xk, yk ∈ R,

and the conditional density wFB(zk|uk) of Zk given Uk is

wFB(zk|uk) =
1

√

2πσ2
FB

e
− (zk−uk)2

2σ2
FB , zk, uk ∈ R.

We only consider forward-channel encoding rules that satisfy the expected
block power constraint

E

[ n∑

k=1

f 2
k

(
H, Zk−1

)
]

≤ nP, (8)

where P > 0 is some given constant designating the allowed average power
(per transmission) on the forward-channel.

For the feedback-channel encoding rules we consider two types of power
constraints. An almost-sure block power constraint

n∑

k=1

g2
k

(
Y k
)
≤ nPFB, Y ∈ Yn, (9)

4



and an expected block power constraint

E

[ n∑

k=1

g2
k

(
Y k
)
]

≤ nPFB. (10)

In both cases we assume that PFB is strictly positive. (The case where PFB =
0 corresponds to the no-feedback case.) We can now present our main results.
Almost-Sure Block Power Constraints: Let pa.s.

e

(
P/σ2, PFB/σ2

FB, n
)

de-
note the least probability of error that can be achieved by a blocklength-n
coding scheme subject to the almost-sure constraint (9). We show in Sec-
tion 4 that

lim
n→∞

−1

n
log pa.s.

e

(
P/σ2, PFB/σ2

FB, n
)
≤ P

2σ2
+

2
√

(PFB + σ2
FB)PFB

σ2
FB

, (11)

and we present in Section 5 a sequence of codes that proves that

lim
n→∞

−1

n
log pa.s.

e

(
P/σ2, PFB/σ2

FB, n
)
≥ P

2σ2
+

2PFB

σ2
FB

. (12)

It is shown in Section 4 that (11) generalizes to the case where there are
more than two codewords. If we denote by R the rate of communication, i.e.,
the ratio of the logarithm of the number of messages to the block length, and
if we denote by Ea.s.

FB (R) the best achievable error exponent then

Ea.s.
FB (R) ≤ ENoFB(R) +

2
√

(PFB + σ2
FB)PFB

σ2
FB

, (13)

where ENoFB(R) is the reliability function of the forward channel in the ab-
sence of feedback.
Expected Block Power Constraints: Let pexp

e

(
P/σ2, PFB/σ2

FB, n
)

denote
the least probability of error that can be achieved by a blocklength-n coding
scheme subject to the expected block power constraint (10). We show in
Section 6 that2

lim
n→∞

−1

n
log pexp

e

(
P/σ2, PFB/σ2

FB, n
)
≤

(√
P + σ2 +

√
P

)2

σ2
+

(√

PFB + σ2
FB +

√
PFB

)2

σ2
FB

, (14)

2Section 6 also presents a tighter bound than (14).
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and we present in Section 7 a sequence of codes that achieves

lim
n→∞

−1

n
log pexp

e

(
P/σ2, PFB/σ2

FB, n
)
≥ 2P

σ2
+

2PFB

σ2
FB

. (15)

3 Some Preliminaries

Fix some code, and consider its use for transmitting the bit H over our
channel. Let X denote the forward-channel inputs that result from such use
through (2). Similarly define the forward-channel output sequence Y, the
feedback-channel inputs by U, and the feedback-channel outputs by Z. Let
P denote the joint law of X,Y,U,Z induced by the coding scheme, and let
p(y, z) denote the joint density of Y,Z. Let the conditional versions of the
joint law and density given H = 0 be denoted by P0 and p0(y, z). Similarly
we use P1 and p1(y, z) when the conditioning is on H = 1. Thus

pν(y, z) =

n∏

k=1

pν

(
yk, zk|yk−1, zk−1

)

=
n∏

k=1

(

pν

(
yk|yk−1, zk−1

)
pν

(
zk|yk, zk−1

))

=
n∏

k=1

w
(

yk|fk

(
ν, zk−1

))
n∏

k=1

wFB

(

zk|gk

(
yk
))

, ν = 0, 1, (16)

where the last equality follows from our assumption that both the forward
and feedback channels are memoryless and that the noise components of these
channels are independent. Since H takes on the values 0 and 1 equiprobably
we have

p(y, z) =
1

2
p0(y, z) +

1

2
p1(y, z), (17)

and the probability of error P(error) can be expressed as

P(error) =
1

2
P0(error) +

1

2
P1(error) (18)

=
1

2
P0

(
Y ∈ D1

)
+

1

2
P1

(
Y ∈ D0

)
. (19)

6



channel
encoder

forward
channel

decoder
H X Y Ĥ
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Figure 2: The new channel in which Z is generated at random.

4 Inachievability under A.S. Power Constraints

The derivation of (11) is based on a new reference channel that we define
next.

4.1 A Reference Channel

We consider a new channel in which the forward-channel encoder, feedback-
channel encoder, and channel decoder are as above, but in which the sequence
z that is fed to the forward-channel encoder is generated independently of H
according to some law Q; see Figure 2. Later we shall assume that this law
is the marginal law P(Z) that is induced by the original channel and code.
We denote the density of this law by q(z). Thus, the new channel operates
like the original channel except that the sequence z that is fed to the channel
encoder is not the output of the feedback channel but rather a randomly
generated sequence drawn independently of H according to q(z). We denote
by Q the joint distribution of H , X, Y, and Z that results when the original
forward-channel encoder (2) is applied as in Figure 2. Thus, if we factorize
the marginal law of Q on Zn as

Q(z) =
n∏

k=1

QZk|Zk−1

(
zk

∣
∣zk−1

)
(20)

then

Q
(
Zk = zk

∣
∣Zk−1 = zk−1, Y k = yk, H = ν

)
= QZk|Zk−1

(
zk

∣
∣zk−1

)
. (21)

(Under Q the sequence Z is generated “without looking at Y.” Nevertheless,
Z and Y are not necessarily independent under Q because Y is influenced via
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the forward-channel by X, which in turn is influenced by Z via the forward-
channel encoder.)

The conditional laws of Q conditional on H = 0 and H = 1 are denoted
by Q0, Q1. Similarly, the unconditional and conditional joint densities of
Y,Z are denoted by q(y, z), q0(y, z), and q1(y, z).

Note that according to Q the random sequence Z is generated indepen-
dently of the hypothesis H , so

q0(z) = q1(z) = q(z). (22)

Also,

qν(y, z) =
n∏

k=1

qν

(
(yk, zk)

∣
∣yk−1, zk−1

)

=

n∏

k=1

qν

(
zk

∣
∣yk, zk−1

)
n∏

k=1

qν

(
yk

∣
∣yk−1, zk−1

)

=

n∏

k=1

q
(
zk

∣
∣zk−1

)
n∏

k=1

w
(
yk

∣
∣fk(ν, z

k−1)
)

= q(z)

n∏

k=1

w
(
yk

∣
∣fk(ν, z

k−1)
)
, ν = 0, 1, (23)

where the first equality follows from the chain rule; the second from another
application of the chain rule; the third from (21); and the fourth from the
chain rule.

The importance of the reference law is that the set-up of Figure 2 is no
better than the no-feedback set-up. And since antipodal signaling is optimal
in the absence of feedback,

Q(error|z) ≥ Q
(√∑n

k=1 f 2
k (0, zk−1) +

∑n
k=1 f 2

k (1, zk−1)

2σ2

)

, z ∈ Zn. (24)

4.2 Relating Q and P

We next try to relate the original law P and the reference law Q. By (16)
and (23) it follows that

pν(y, z) = r(y, z) qν(y, z), ν = 0, 1, (25)
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where

r(y, z) ,

∏n
k=1 wFB

(
zk

∣
∣gk(y

k)
)

q(z)
. (26)

In order to lower-bound P(error) in terms of Q(error), we need a lower
bound on r(y, z). We derive one for the choice of Q(z) as P(z). Henceforth
we thus assume

q(z) = p(z), z ∈ Zn. (27)

It follows from (26) and (27) that in order to lower-bound r(y, z) we need to
upper-bound p(z). To that end, we first use (16) to express pν(y, z) as

pν(y, z) =

n∏

k=1

wFB(zk|uk)

n∏

k=1

pν

(
yk

∣
∣zk−1, yk−1

)
, (28a)

where
uk = gk(y

k−1), k = 1, . . . , n. (28b)

For a fixed z ∈ Zn, the second product on the RHS of (28a) is a probability
density function that integrates to one over the set of all sequences y ∈ Yn

that, via (28b), induce u sequences satisfying

1

n

n∑

k=1

u2
k ≤ PFB. (29)

Since the average is upper-bounded by the maximum, we obtain

pν(z) =

∫

pν(y, z) dy (30)

≤ max
u

n∏

k=1

wFB(zk|uk), (31)

where the maximum is over all the sequences u ∈ Un that satisfy (29).
Using the explicit form of the Gaussian distribution and the Cauchy-

Schwarz Inequality we obtain

pν(z) ≤ max
‖u‖2≤nPFB

(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

(
‖z‖2 − 2 〈z,u〉E + ‖u‖2)

)

≤ max
‖u‖2≤nPFB

(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

(
‖z‖2 − 2 ‖z‖ ‖u‖ + ‖u‖2)

)
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= max
‖u‖2≤nPFB

(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

(
‖z‖ − ‖u‖

)2
)

=
(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

((
‖z‖ −

√

nPFB

)+
)2
)

, ν = 0, 1, (32)

where ξ+ denotes the larger of zero and ξ, i.e., max{0, ξ}. Since (32) holds
for both ν = 0 and ν = 1, we can average over ν to obtain

p(z) ≤
(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

((
‖z‖ −

√

nPFB

)+
)2
)

. (33)

We continue to lower-bound r(y, z), which is defined in (26) by lower-
bounding the numerator using (9). Again, using the explicit form of the
Gaussian distribution and the Cauchy-Schwarz Inequality we obtain

n∏

k=1

wFB

(

zk|gk

(
yk
))

≥
(
2πσ2

FB

)−n/2
exp

(

− 1

2σ2
FB

(
‖z‖ +

√

nPFB

)2
)

(34)

Combining (26), (27), (33), and (34) we obtain

r(y, z) ≥ exp
(

−2 ‖z‖
√

nPFB

σ2
FB

)

, ‖z‖2 ≥ nPFB, (35)

and

r(y, z) ≥ exp
(

− 1

2σ2
FB

(
‖z‖ +

√

nPFB

)2
)

(36)

≥ exp
(

−2PFB

σ2
FB

n
)

, ‖z‖2 ≤ nPFB. (37)

These two inequalities can be combined to yield

r(y, z) ≥ exp
(

−2 max{‖z‖ /
√

n,
√

PFB}
√

PFB

σ2
FB

n
)

, z ∈ Zn. (38)

Consequently, by (25)

pν(y, z) ≥ qν(y, z) exp
(

−2 max{‖z‖ /
√

n,
√

PFB}
√

PFB

σ2
FB

n
)

, z ∈ Zn. (39)

Note that the RHS of (38) is monotonically decreasing in ‖z‖.
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4.3 Lower-Bounding the Probability of Error

Fix some ǫ > 0 and δ > 0 smaller than 1/2. Define

β , PFB + σ2
FB + δ. (40)

Note that
β ≥ PFB. (41)

By the almost-sure block power constraint on the feedback channel (9),
it follows that there exists some positive integer n0 (which depends on the
choice of ǫ) such that for any code of blocklength n exceeding n0

P(B) ≥ 1 − ǫ, (42)

where
B , {z ∈ Zn : ‖z‖2 ≤ βn}. (43)

By Markov’s inequality and by the expected block power constraint on the
forward channel (8), it follows that for any code the subset A of Zn consisting
of those sequences that cause the transmitted symbols on the forward link
to have an average power that does not exceed P/(1 − 2ǫ), i.e., the set

A ,

{

z ∈ Zn :
1

2n

n∑

k=1

f 2
k (0, zk−1) +

1

2n

n∑

k=1

f 2
k (1, zk−1) ≤ P

1 − 2ǫ

}

(44)

satisfies
P(A) ≥ 2ǫ. (45)

It follows from (45) and (42) that

P(A∩ B) ≥ ǫ. (46)

Recalling (41) and the monotonicity of the RHS of (38), we conclude that
for z ∈ B we can lower-bound r(y, z) by

r(y, z) ≥ e−αn, z ∈ B, (47a)

where

α ,
2
√

βPFB

σ2
FB

. (47b)
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We can now lower-bound the conditional probabilities of error as follows:

P1(Y ∈ D0) =

∫

Zn

P1(Y ∈ D0|Z = z) p1(z) dz

≥
∫

A∩B
P1(Y ∈ D0|Z = z) p1(z) dz

=

∫

A∩B

∫

D0

p1(y, z) dy dz

=

∫

A∩B

∫

Yn

I{y ∈ D0} p1(y, z) dy dz

=

∫

A∩B

∫

Yn

I{y ∈ D0} r(y, z) q1(y, z) dy dz

≥ e−αn

∫

A∩B

∫

Yn

I{y ∈ D0} q1(y, z) dy dz

= e−αn

∫

A∩B

∫

Yn

I{y ∈ D0} q1(y|z)q1(z) dy dz

= e−αn

∫

A∩B
p(z)

∫

Yn

I{y ∈ D0} q1(y|z) dy dz. (48)

Similarly,

P0(Y ∈ D1) ≥ e−αn

∫

A∩B
p(z)

∫

Yn

I{y ∈ D1} q0(y|z) dy dz. (49)

Averaging (48) and (49) over the uniform prior of H we obtain

P(error)

=
1

2
P1(Y ∈ D0) +

1

2
P0(Y ∈ D1)

≥ e−αn

∫

A∩B
p(z)

(
1

2

∫

Yn

I{y ∈ D0}q1(y|z) dy +
1

2

∫

Yn

I{y ∈ D1}q0(y|z)

)

dy

= e−αn

∫

A∩B
p(z) Q(error|z) dz

≥ e−αn Q
(
√

nP

(1 − 2ǫ)σ2

)∫

A∩B
p(z) dz

≥ ǫ e−αn Q
(
√

nP

(1 − 2ǫ)σ2

)

, (50)
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where the first line follows from our assumption that the prior is uniform;
the second from (48) and (49); the third because under Q the hypothesis
H is independent of Z; the fourth from (24) and because for z ∈ A the
transmitted energy is bounded by nP/(1 − 2ǫ) (44); and the fifth line from
(46).

It follows from (50) and from the definition of α (47b) that

lim
n→∞

−1

n
log pa.s.

e

(
P/σ2, PFB/σ2

FB, n
)
≤ 2

√
βPFB

σ2
FB

+
1

2

P

(1 − 2ǫ)σ2
.

Since ǫ and δ can be taken as small as we wish, and since by (40)

lim
δ↓0

β(δ) = PFB + σ2
FB,

we conclude that

lim
n→∞

−1

n
log pa.s.

e

(
P/σ2, PFB/σ2

FB, n
)
≤ 2

√

(PFB + σ2
FB)PFB

σ2
FB

+
1

2

P

σ2
,

thus establishing (11).
Note: The lower bound on the error probability in the case of almost-sure
block power constraints easily extends to the case of many codewords. In
this case one typically denotes the message by M instead of H . The analysis
goes through with hardly any change to show that at any rate R, the error
exponent EFB,a.s.(R) with an almost-sure block power constraint is upper-
bounded by

EFB,a.s.(R) ≤ ENoFB(R) +
2
√

(PFB + σ2
FB)PFB

σ2
FB

, (51)

where ENoFB(R) is the reliability function of the forward channel in the ab-
sence of feedback.

5 Achievability under A.S. Power Constraints

We next describe a sequence of codes that proves (12).
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5.1 The Scheme

Fix some 0 < δ < 1. At time-1 we send the message using antipodal signaling:

X1 =

{

+
√

n − 1
√

P if H = 0,

−
√

n − 1
√

P if H = 1.
(52)

At the subsequent (n − 2) times k = 2, 3, . . . , n − 1 the transmitter is silent

Xk = 0, k = 2, 3, . . . , n − 1. (53)

Based on the sign of Y1, the receiver forms a tentative decision on H and
feeds it back via the feedback link using antipodal signaling:

U1 = U2 = · · · = Un−1 =

{

+
√

PFB if Y1 > 0,

−√
PFB if Y1 < 0.

(54)

The encoder chooses the time-n transmitted symbol Xn based on H and
Z1, . . . Zn−1 as follows. If

1

n − 1

n−1∑

k=1

Zk > +
√

PFB(1 − δ) and H = 0, (55)

then the transmitter assumes that the tentative decision that the receiver
made based on Y1 is correct and it sends nothing at time n, i.e., it sets
Xn = 0. Likewise, if

1

n − 1

n−1∑

k=1

Zk < −
√

PFB(1 − δ) and H = 1, (56)

then the transmitter sets Xn = 0. In all other cases we say that a re-
transmission event Re-Tx occurred and the transmitter retransmits the mes-
sage using antipodal signaling with a huge instantaneous power, i.e., by send-
ing Xn = ±

√

P/γ, where γ is the probability of retransmission (which we
shall soon see is exponentially small). Thus

Xn =







+
√

P/γ if (n − 1)−1
∑n−1

k=1 Zk <
√

PFB(1 − δ) and H = 0,

−
√

P/γ if (n − 1)−1
∑n−1

k=1 Zk > −√
PFB(1 − δ) and H = 1,

0 otherwise.

(57)

14



To make its final decision, the receiver considers Yn and compares it to a
threshold Υ. (We shall later choose Υ to equal the blocklength n.) If Yn >
Υ, then the receiver assumes that a retransmission took place and decides
“H = 0.” Similarly, if Yn < −Υ, it assumes that a retransmission occurred
and decides “H = 1.” Otherwise, if |Yn| ≤ Υ, it decides that a retransmission
did not take place and that its tentative decision was correct: it declares
“H = 0” if Y1 > 0 and declares “H = 1” if Y1 < 0. If Ĥ denotes the final
decision, then

Ĥ =







0 if Yn > Υ or if
(

|Yn| < Υ and Y1 > 0
)

,

1 if Yn < −Υ or if
(

|Yn| < Υ and Y1 < 0
)

.
(58)

5.2 Analysis

It is straightforward to see that the expected average transmitted power on
the forward link is P and that with probability one the average transmitted
power on the feedback link does not exceed PFB. We focus on the probability
of error. We shall assume throughout that H = 0; the analysis of the case
where H = 1 is very similar. When H = 0, a retransmission occurs if the
event

G ,

{
1

n − 1

n−1∑

k=1

Zk ≤
√

P(1 − δ)

}

(59)

occurs. Substituting the event {Y1 > 0} for A and G for B in the inequality

Pr(A∪ B) ≤ Pr(B|A) + Pr(Ac), Pr(A) > 0 (60)

yields that the conditional probability of a retransmission P0(Re-Tx) is upper-
bounded by

P0(Re-Tx) ≤ Pr

[
1

n − 1

n−1∑

k=1

Zk ≤
√

P(1 − δ)

∣
∣
∣
∣
Y1 > 0

]

+ P0

(
Y1 ≤ 0

)
(61)

= Q
(√

n − 1
√

PFBδ

σFB

)

+ Q
(√

n − 1
√

P

σ

)

. (62)
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By a similar argument, one can show that this also upper-bounds the prob-
ability of retransmission conditional on H = 1. Thus,

γ = P(Re-Tx) ≤ Q
(√

n − 1
√

P

σ

)

+ Q
(√

n − 1
√

PFBδ

σFB

)

. (63)

Notice that for a fixed δ > 0, it follows from (63) that γ tends to zero
exponentially in n. Consequently the amplitude

√

P/γ in the retransmission
phase is much larger than the noise variance, and, in fact, the ratio

√

P/γ

σ
(64)

grows exponentially in n. If we now set Υ = n, then the probabilities

Pr
[∣
∣Yn

∣
∣ > Υ

∣
∣Xn = 0

]
(65a)

Pr
[
Yn < Υ

∣
∣Xn =

√

P/γ
]

(65b)

and
Pr
[
Yn > −Υ

∣
∣Xn = −

√

P/γ
]

(65c)

will all decay faster than exponentially to zero. We conclude that the prob-
ability that a retransmission takes place and a decoding error occurs decays
faster than exponentially in n. Thus,

lim inf −1

n
log Pr[Re-Tx and error] = +∞. (66)

The dominant error that will determine the exponential decay of the proba-
bility of error of our scheme is thus the probability that a retransmission does
not take place and an error occurs. As before, this event does not depend on
the hypothesis by symmetry. If H = 0, then the event that no retransmis-
sion takes place and yet an error occurs is equivalent to the tentative decision
being wrong

{
Yn < 0

}
(67a)

and the transmitter not realizing this

{
1

n − 1

n−1∑

k=1

Zk >
√

PFB(1 − δ)

}

. (67b)
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The latter two events are independent and thus

P0(no Re-Tx and error) = P0

(

(n − 1)−1
n∑

k=2

Zk >
√

PFB(1 − δ)
)

P0(Y1 < 0)

= Q
(√

n − 1PFB(2 − δ)

σFB

)

Q
(√

n − 1P

σ

)

. (68)

An analogous expression can be derived conditional on H = 1 to conclude
that

P(no Re-Tx and error) = Q
(√

n − 1
√

PFB(2 − δ)

σFB

)

Q
(√

n − 1
√

P

σ

)

. (69)

Combining (69) with (66) demonstrates that our scheme achieves an error
exponent of

1

2

P

σ2
+

1

2

PFB(2 − δ)2

σ2
FB

. (70)

By considering the limit of δ ↓ 0 we obtain that any exponent smaller than

P

2σ2
+

2PFB

σ2
FB

(71)

is achievable. In fact, by letting δ tends to zero very slowly with n, we can
achieve the exponent (71) and thus establish (12).

6 Inachievability under Expected Power Con-

straints

In this section we prove (14). We begin with some definitions.

6.1 Some Definitions

Given α1, α2 > 0 and some blocklength-n coding scheme, we define the set

Ty =
{

y ∈ Yn : ‖y‖2 < nα2
1,

n∑

k=1

g2
k

(
yk
)

< nα2
2

}

. (72)
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Notice that the set Ty depends on α1, α2, the blocklength n, and the feedback-
channel encoding rule under consideration, but our notation does not make
this explicit.

Given β1, β2 > 0 and some blocklength-n coding scheme we define

T (0)
z =

{

z ∈ Zn : ‖z‖2 < nβ2
1 ,

n∑

k=1

f 2
k

(
0, zk−1

)
< nβ2

2

}

. (73)

This set depends on β1, β2, the blocklength n, and the forward-channel en-
coder under consideration.

6.2 Preliminary Lemmas

We present here some lemmas that will be useful in proving (14).

Lemma 1. The following inequality holds:

p1(y) ≤ (2πσ2)−n/2, y ∈ Yn. (74)

Proof. By (16)

p1(y, z) =
n∏

k=1

w
(

yk|fk

(
1, zk−1

))
n∏

k=1

p1

(
zk|yk, zk−1

)
(75)

≤ (2πσ2)−n/2
n∏

k=1

p1

(
zk|yk, zk−1

)
, y ∈ Yn. (76)

For a fixed y ∈ Yn the product

n∏

k=1

p1

(
zk|yk, zk−1

)
(77)

is a density on Zn. Integrating (76) over z we thus obtain

p1(y) =

∫

Zn

p1(y, z) dz

≤ (2πσ2)−n/2

∫

Zn

n∏

k=1

p1

(
zk|yk, zk−1

)
dz

= (2πσ2)−n/2, y ∈ Yn.
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Lemma 2. The following inequality holds:

p0(z) ≤ (2πσ2
FB)−n/2, z ∈ Zn. (78)

Proof. By (16)

p0(y, z) =

n∏

k=1

p0

(

yk|fk

(
0, zk−1

))
n∏

k=1

wFB

(

zk|gk

(
yk
))

(79)

≤ (2πσ2
FB)−n/2

n∏

k=1

p0

(

yk|fk

(
0, zk−1

))

, z ∈ Zn. (80)

For a fixed z ∈ Zn, the product

n∏

k=1

p0

(

yk|fk

(
0, zk−1

))

is a density on Yn. Integrating over y we thus obtain

p0(z) =

∫

Yn

p0(y, z) dy

≤ (2πσ2
FB)−n/2

∫

Yn

n∏

k=1

p0

(

yk|fk

(
0, zk−1

))

dy

= (2πσ2
FB)−n/2, z ∈ Zn.

Lemma 3. The following inequality holds:

p0(y, z) ≥ (4π2σ2σ2
FB)−n/2 exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

,

y ∈ Ty, z ∈ T (0)
z . (81)

Proof. By (16) we note that

p0(y, z) =

n∏

k=1

w
(

yk|fk

(
0, zk−1

))
n∏

k=1

wFB

(

zk|gk

(
yk
))

, (82)
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and we proceed to lower-bound each of the products separately for y ∈ Ty

and z ∈ T (0)
z . For such y and z we have

n∏

k=1

w
(

yk|fk

(
0, zk−1

))

= (2πσ2)−n/2 exp

(

− 1

2σ2

n∑

k=1

(

yk − fk

(
0, zk−1

))2
)

≥ (2πσ2)−n/2 exp



− 1

2σ2

(

‖y‖ +

√
√
√
√

n∑

k=1

f 2
k

(
0, zk−1

)

)2




≥ (2πσ2)−n/2 exp

(

− 1

2σ2

(√
nα1 +

√
nβ2

)2
)

= (2πσ2)−n/2 exp

(

−n
(α1 + β2)

2

2σ2

)

. (83)

We next turn to the second product. For y and z as above

n∏

k=1

wFB

(

zk|gk

(
yk
))

= (2πσ2
FB)−n/2 exp

(

− 1

2σ2
FB

n∑

k=1

(

zk − gk

(
yk
))2
)

≥ (2πσ2
FB)−n/2 exp



− 1

2σ2
FB

(

‖z‖ +

√
√
√
√

n∑

k=1

g2
k

(
yk
)

)2




≥ (2πσ2
FB)−n/2 exp

(

− 1

2σ2
FB

(√
nβ1 +

√
nα2

)2
)

= (2πσ2
FB)−n/2 exp

(

−n
(β1 + α2)

2

2σ2
FB

)

. (84)

Inequalities (84) and (83) combine with (82) to prove the lemma.

Lemma 4. The following inequality holds:

p0(y) ≥ (2πσ2)−n/2 exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

P0

(
Z ∈ T (0)

z

)
,

y ∈ Ty. (85)

20



Proof. For every y ∈ Ty we have

p0(y) =

∫

Zn

p0(y, z) dz

≥
∫

T (0)
z

p0(y, z) dz

≥ (4π2σ2σ2
FB)−n/2 exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))∫

T (0)
z

dz,

where the last inequality follows from Lemma 3, i.e., from (81). It remains

to lower-bound the volume of T (0)
z as follows:

∫

T (0)
z

dz ≥ P0

(
Z ∈ T (0)

z

)

sup
z∈T (0)

z
p0(z)

≥ P0

(
Z ∈ T (0)

z

)

(2πσ2
FB)−n/2

,

where the last inequality follows from Lemma 2, i.e., from (78).

Lemma 5. The following inequality holds:

p0(y)

p1(y)
≥ exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

P0

(
Z ∈ T (0)

z

)
, y ∈ Ty. (86)

Proof. Follows from Lemma 4 and Lemma 1, i.e., from (85) and (74).

Lemma 6. The following inequality holds:

P0

(
Y ∈ Ty ∩ D1

)
≥

exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

P0

(
Z ∈ T (0)

z

)
P1

(
Y ∈ Ty ∩ D1

)
. (87)

Proof. This follows from Lemma 6, i.e., from (87) as follows:

P0

(
Y ∈ Ty ∩ D1

)

=

∫

Ty∩D1

p0(y)

p1(y)
p1(y) dy

≥ exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

P0

(
Z ∈ T (0)

z

)
∫

Ty∩D1

p1(y) dy

= exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

P0

(
Z ∈ T (0)

z

)
P1

(
Y ∈ Ty ∩ D1

)
.
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6.3 A Proof of (14)

We now use Lemma 6 to prove (14). Suppose we are given a sequence of
codes, with a code corresponding to each blocklength n. To establish (14)
we need to show that from every subsequence {nk} of blocklengths tending
to infinity we can extract a subsequence {n′

k} such that

lim
k→∞

− 1

n′
k

log P(error, n′
k) ≤

(√
P + σ2 +

√
P

)2

σ2
+

(√

PFB + σ2
FB +

√
PFB

)2

σ2
FB

,

(88)
where P(error, n′

k) denotes the probability of error of the code corresponding
to the blocklength n′

k. We refer to this as “our claim” and proceed to prove
it. We thus start with some subsequence {nk} and proceed to prove the
existence of a subsequence {n′

k} tending to infinity for which (88) holds.
Before proving our claim we make several reductions. We first assume

that the subsequence {nk} is such that

lim
nk→∞

Pν

(
Y ∈ Dν

)
= 1, ν = 0, 1. (89)

There is no loss in generality in making this assumption because otherwise
we can pick {n′

k} to be a subsequence for which for some ν ∈ {0, 1} the limit
as n′

k → ∞ of Pν(Y ∈ Dν) is not 1, in which case the LHS of (88) zero and
hence trivially smaller than its RHS.

Before stating the second reduction we introduce some notation. For a
given sequence of codes indexed by the blocklength-n, we define for every
blocklength n

P
(ν)
n =

1

n
E

[ n∑

k=1

f 2
k

(
ν, Zk−1

)
∣
∣
∣
∣
H = ν

]

, ν = 0, 1, (90)

where f1, . . . , fn are the mappings that define the forward-channel encoder
of the code indexed by n. (The dependence of the encoding mappings on
the blocklength n is omitted for brevity.) Note that by the block power
constraint (8)

P
(0)
n + P

(1)
n ≤ 2P, n = 1, 2, . . . (91)

The second reduction we make is in assuming that the subsequence {nk} is
such that the limits defining P

(0) and P
(1) as

P
(ν) = lim

k→∞
P

(ν)
nk

, ν = 0, 1 (92)
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exist and satisfy
P

(0) + P
(1) ≤ 2P. (93)

There is no loss in generality in making this assumption because the more
general case where the above does not necessarily hold follows from the less-
general case by applying the less-general result to the subsequence of {nk}
which we denote by {ñ′

k} and which we define as follows. We pick a sub-

sequence {ñk} of {nk} for which the limit of P
(0)
ñk

exists; we call the limit

P
(0); we define the subsequence {ñ′

k} of {ñk}—and hence also of {nk}—as

a subsequence of {ñk} for which the limit of P
(1)
ñ′

k
also exists; and we finally

define P
(1) as this limit. We then observe that (93) then follows from (91).

Finally, we define for every blocklength n

P
(ν)
FB,n ,

1

n
E

[ n∑

k=1

g2
k

(
Y k
)
∣
∣
∣
∣
H = ν

]

, ν = 0, 1, (94)

where g1, . . . , gn are the mappings that define the feedback-channel encoder.
We now assume that the limits defining P

(0)
FB and P

(1)
FB as

P
(ν)
FB = lim

k→∞
P

(ν)
FB,nk

, ν = 0, 1 (95)

exist and satisfy
P

(0)
FB + P

(1)
FB ≤ PFB. (96)

This entails no loss of generality by arguments analogous to those we used
for the second reduction.

We are now ready to prove our claim subject to the above assumptions.
Let ǫ > 0 (smaller than 1/2) be fixed. Choose

α2
1 = a2

1

(
P

(1) + σ2
)
(1 + ǫ) (97)

α2
2 = a2

2P
(1)
FB(1 + ǫ) (98)

β2
1 = b2

1

(
P

(0)
FB + σ2

FB

)
(1 + ǫ) (99)

β2
2 = b2

2P
(0)(1 + ǫ), (100)

where the positive numbers a1, a2, b1, and b2 satisfy

1

a2
1

+
1

a2
2

≤ 1 (101)
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and
1

b2
1

+
1

b2
2

≤ 1. (102)

Let the sets Ty and T (0)
z be as defined in (72) and (73). Using the bound

Pr
(
A∩ B

)
= Pr

(
A
)

+ Pr
(
B
)
− Pr

(
A ∪ B

)
≥ Pr

(
A
)

+ Pr
(
B
)
− 1

and Markov’s inequality we obtain

P1

(
Y ∈ Ty

)
= P1

(

‖Y‖2 < nα2
1,

n∑

k=1

g2
k(Y

k) < nα2
2

)

≥ P1

(

‖Y‖2 < nα2
1

)

+ P1

( n∑

k=1

g2
k(Y

k) < nα2
2

)

− 1

≥ 1 − E
[
‖Y‖2

∣
∣H = 1

]

nα2
1

+ 1 −
E

[
∑n

k=1 g2
k(Y

k)
∣
∣
∣H = 1

]

nα2
2

− 1

= 1 −
(

P
(1)
n + σ2

α2
1

+
P

(1)
FB,n

α2
2

)

, n = 1, 2, . . .

It follows from (90), (95), and (101) that for all sufficiently large nk

P1

(
Y ∈ Ty

)
>

ǫ

2
. (103)

From this and (89) we can infer that for all sufficiently large nk

P1

(
Y ∈ Ty ∩ D1

)
>

ǫ

3
. (104)

By similar arguments we can show that for all sufficiently large nk

P1

(
Y ∈ T (0)

z

)
>

ǫ

2
. (105)

From Lemma 6 we then have

P0(error) = P0

(
Y ∈ D1

)
(106)

≥ P0

(
Y ∈ Ty ∩ D1

)
(107)

≥ 1

6
ǫ2 exp

(

−n
((α1 + β2)

2

2σ2
+

(β1 + α2)
2

2σ2
FB

))

. (108)
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Since ǫ can be chosen as small as we wish, we conclude that no error exponent
higher than

E1 , inf
a1,a2,b1,b2

{
(

a1

√

P
(1) + σ2 + b2

√

P
(0)
)2

2σ2
+

(

b1

√

P
(0)
FB + σ2

FB + a2

√

P
(1)
FB

)2

2σ2
FB

}

is achievable, where the infimum is over all positive a1, a2, b1, b2 satisfying
(101) and (102).

We could, of course, have also reversed the roles of H = 0 and H = 1 to
obtain that no error exponent higher than

E0 , inf
a1,a2,b1,b2

{
(

a1

√

P
(0) + σ2 + b2

√

P
(1)
)2

2σ2
+

(

b1

√

P
(1)
FB + σ2

FB + a2

√

P
(0)
FB

)2

2σ2
FB

}

is achievable. Thus, our best bound is

sup
P

(0),P(1),P
(0)
FB,P

(1)
FB

min{E1, E0}, (109)

where the supremum is over all positive P
(0), P(1), P

(0)
FB, P

(1)
FB satisfying (93) and

(96).
A suboptimal choice for a1, a2, b1, b2 is

a1 = a2 = b1 = b2 =
√

2 (110)

which leads to

E1 ≤ Esub
1 ,

(√

P
(1) + σ2 +

√

P
(0)
)2

σ2
+

(√

P
(0)
FB + σ2

FB +

√

P
(1)
FB

)2

σ2
FB

, (111)

E0 ≤ Esub
0 ,

(√

P
(0) + σ2 +

√

P
(1)
)2

σ2
+

(√

P
(1)
FB + σ2

FB +

√

P
(0)
FB

)2

σ2
FB

. (112)

Opening the square and using (93) and (96) we obtain

Esub
1

2
= 1 +

P

σ2
+

PFB

σ2
FB

+

√

(P(1) + σ2)P(0)

σ2
+

√

(P
(0)
FB + σ2

FB)P
(1)
FB

σ2
FB

. (113)
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and

Esub
0

2
= 1 +

P

σ2
+

PFB

σ2
FB

+

√

(P(0) + σ2)P(1)

σ2
+

√

(P
(1)
FB + σ2

FB)P
(0)
FB

σ2
FB

, (114)

and the error exponent is upper-bounded by

Esub , min
{
Esub

1 , Esub
0

}
. (115)

Now it is easy to see that the bound is maximized with P
(0) = P

(1) = P and
P

(0)
FB = P

(1)
FB = PFB. Indeed, the error exponent is upper-bounded by

1

2
Esub ≤ 1

2
(Esub

1 /2 + Esub
0 /2) (116)

= 1 +
P

σ2
+

PFB

σ2
FB

+
1

2

√

(P(1) + σ2)P(0)

σ2
+

1

2

√

(P(0) + σ2)P(1)

σ2
(117)

+
1

2

√

(P
(0)
FB + σ2

FB)P
(1)
FB

σ2
FB

+
1

2

√

(P
(1)
FB + σ2

FB)P
(0)
FB

σ2
FB

(118)

≤ 1 +
P

σ2
+

PFB

σ2
FB

+

√
1
2
(P(1) + σ2)P(0) + 1

2
(P(0) + σ2)P(1)

σ2
(119)

+

√

1
2
(P

(0)
FB + σ2

FB)P
(1)
FB + 1

2
(P

(1)
FB + σ2

FB)P
(0)
FB

σ2
FB

(120)

= 1 +
P

σ2
+

PFB

σ2
FB

+

√

σ2P + P
(0)

P
(1)

σ2
+

√

σ2PFB + P
(0)
FBP

(1)
FB

σ2
FB

(121)

≤ 1 +
P

σ2
+

PFB

σ2
FB

+

√

σ2P + P
2

σ2
+

√

σ2PFB + P
2
FB

σ2
FB

(122)

=

(√
P + σ2 +

√
P

)2

2σ2
+

(√

PFB + σ2
FB +

√
PFB

)2

2σ2
FB

(123)

with equality if P
(0) = P

(1) = P and P
(0)
FB = P

(1)
FB = PFB. Here the inequality

(120) follows from Jensen’s inequality.
We conclude from (123) that the suboptimal choice (110) demonstrates
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that the error exponent is upper-bounded by

(√
P + σ2 +

√
P

)2

σ2
+

(√

PFB + σ2
FB +

√
PFB

)2

σ2
FB

. (124)

Note that while the choice (110) is in general suboptimal, optimizing over
a1, a2, b1, and b2 cannot yield any bound lower than half the bound of (124),
because (101) and (102) imply that

a1, a2, b1, b2 ≥ 1.

7 Achievability under Expected Power Con-

straints

We begin with the description of a “building block” comprising a transmission
scheme upon which we shall build when coding under an expected power
constraint on the feedback link.

7.1 A building block

The Scheme: The building block transmits a single bit, which we denote
by H . Its parameters are the blocklength n, the transmitted average power
on the forward link P > 0, the noise variances σ2, σ2

FB > 0 on the forward
and backward links, and the average transmitted power on the feedback link
∆ > 0. Note that ∆ will not influence the error exponent of the building
block. Consequently, when we later use the building block we shall typically
choose ∆ very small to save power. An additional parameter is some arbitrary
(small) 0 < δ < 1.

The key elements of the building block are transmission, ACK/NACK,
and retransmission. The transmission is based on antipodal signaling to send
the bit over n − 1 channel uses:

Xk =

{

+
√

P if H = 0,

−
√

P if H = 1,
k = 1, . . . , n − 1. (125)

The first n − 2 symbols sent by the receiver are zero

Uk = 0, k = 1, . . . , n − 2. (126)
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Based on the received symbols Y1, . . . , Yn−1, the receiver computes

S =

n−1∑

k=1

Yk. (127)

If ∣
∣
∣

1

n − 1
S
∣
∣
∣ ≤ (1 − δ)

√
P,

then the decoder declares that a NACK event has occurred. Otherwise, it
declares that an ACK event has occurred. It then uses Un−1 to tell the
transmitter which of these two events occurred:

Un−1 =

{

0 if ACK
√

∆/P0(NACK) if NACK.
(128)

Notice that a NACK is a rare event of exponentially small probability:

P0(NACK) = P0

(
S

n − 1
< (1 − δ)

√
P

)

− P0

(
S

n − 1
< −(1 − δ)

√
P

)

= Q
(

δ
√

P

σ/
√

n − 1

)

−Q
(

(2 − 2δ)
√

P

σ/
√

n − 1

)

≈ e−(n−1) δ2P

2σ2 , (129)

and, by symmetry,
P1(NACK) = P0(NACK). (130)

Based on Zn−1 the transmitter guesses whether a NACK or ACK oc-
curred. It does so by comparing Zn−1 to some threshold Υ. If Zn−1 ex-
ceeds Υ, then the transmitter guesses that a NACK was sent. We refer
to this event as a “NACK”. Otherwise, if Zn−1 is smaller than Υ, then
the transmitter guesses that an ACK was sent and we refer to this as an
“ACK” event. The threshold Υ is chosen so that both P0(“NACK”|ACK)
and P0(“ACK”|NACK) decay in n to zero faster than any exponential, i.e.,

− lim
n→∞

1

n
ln P0(“NACK”|ACK) = +∞, (131a)

− lim
n→∞

1

n
ln P0(“ACK”|NACK) = +∞. (131b)
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In view of (128) and (129), this can be accomplished, for example, by choos-
ing Υ = n.

The time-n transmitted symbol Xn is now determined as follows. If
“ACK”, then the transmitter sends the zero symbol; otherwise it re-transmits
H using antipodal signaling with very large power. Thus,

Xn =







0 if “ACK”,

+
√

P/P0(“NACK”) if “NACK” and H = 0,

−
√

P/P0(“NACK”) if “NACK” and H = 1.

(132)

Note that “NACK” has an exponentially small probability. (This follows
because NACK is a rare event (129) and because of (131).) Consequently, in
(132) the symbol Xn that is sent if “NACK” occurs have a huge magnitude
so

− lim
n→∞

1

n
ln P0

(
Yn < 0|“NACK”

)
= +∞, (133a)

− lim
n→∞

1

n
ln P1

(
Yn > 0|“NACK”

)
= +∞. (133b)

We next consider how the receiver forms its guess Ĥ for H . If ACK, then
the receiver guesses based on the sign of S. If NACK, then it guesses based
on the sign of Yn. Thus,

Ĥ =

{

0 if
(
ACK and S > 0

)
or
(
NACK and Yn > 0

)
,

1 if
(
ACK and S < 0

)
or
(
NACK and Yn < 0

)
.

(134)

Analysis: We next analyze the probability of error. Since the scheme is
completely symmetric, it suffices to compute the conditional probability of
error conditional on H = 0, namely, P0(error). We express this probability
as

P0(error) =

≤1
︷ ︸︸ ︷

P0(NACK)

≤1
︷ ︸︸ ︷

P0(“NACK”|NACK)

exceedingly small by (133a)
︷ ︸︸ ︷

P0(error|NACK, “NACK”)

+

≤1
︷ ︸︸ ︷

P0(NACK)

exceedingly small by (131b)
︷ ︸︸ ︷

P0(“ACK”|NACK)

≤1
︷ ︸︸ ︷

P0(error|NACK, “ACK”)

+

≤1
︷ ︸︸ ︷

P0(ACK)

exceedingly small by (131a)
︷ ︸︸ ︷

P0(“NACK”|ACK)

≤1
︷ ︸︸ ︷

P0(error|ACK, “NACK”)

+

≤1
︷ ︸︸ ︷

P0(ACK)

≤1
︷ ︸︸ ︷

P0(“ACK”|ACK) P0(error|ACK, “ACK”)
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≈ P0(error|ACK, “ACK”)

= P0(error|ACK). (135)

We next study P0(error|ACK):

P0(error|ACK) = P0

(

S < 0
∣
∣
∣(n − 1)−1|S| > (1 − δ)

√
P

)

(136)

=
P0

(

(n − 1)−1S < −(1 − δ)
√

P

)

P0

(

(n − 1)−1|S| > (1 − δ)
√

P

) (137)

=

Q
(

(2−δ)
√

P

σ/
√

n−1

)

P0

(

(n − 1)−1|S| > (1 − δ)
√

P

) (138)

≈ exp

(

−n
(2 − δ)2

P

2σ2

)

. (139)

Since δ > 0 can be chosen as small as we want, we conclude from (135) and
(139) that the building block we described can achieve any error exponent
smaller than

2P

σ2
. (140)

In fact, if we allow for δ to tends to zero very slowly with n, we can even
achieve this exponent irrespective of how small ∆ > 0 is.

7.2 The Proposed Scheme and its Performance

The scheme: The proposed scheme has three phases: a transmission phase,
an echo phase, and a re-transmission phase. To simplify the exposition we
shall assume that the blocklength n is odd and define

ν =
1

2
(n − 1). (141)

(To code for an even blocklength n we can use the proposed scheme for n−1
and then append a zero symbol to the transmission.) Fix some 0 < ∆ <
min{P, PFB} (later to be chosen arbitrarily small).

In the transmission phase we use the building block of Section 7.1 to
transmit H in ν channel uses using power 2P − ∆ on the forward link and
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power ∆ on the feedback link. We denote the receiver’s guess of H after this
phase by H ′. By (140) and (141) we have

P0

(
H ′ 6= H

)
= P1

(
H ′ 6= H

)
≈ exp

(

−n
2P − ∆

σ2

)

. (142)

In the echo phase we use the building block of Section 7.1 to send H ′ from
the receiver to the transmitter. We thus think of the original feedback channel
from the receiver to the transmitter as the forward channel in the building
block, and we think of the original forward channel from the transmitter
to the receiver as the feedback channel in the building block. The receiver
uses power 2PFB − ∆ and the transmitter uses power ∆. We denote the
transmitter’s guess for H ′ at the end of this phase by H ′′. Substituting in
(140) 2PFB − ∆ for P and σ2

FB for σ2 we obtain that

P0

(
H ′′ 6= H ′) = P1

(
H ′′ 6= H ′) ≈ exp

(

−n
2PFB − ∆

σ2
FB

)

. (143)

Note that by (142) and (143)

P0

(
H ′′ = 0, H ′ = 1

)
= P1

(
H ′′ = 1, H ′ = 0

)

≈ exp

(

−n
(2P − ∆

σ2
+

2PFB − ∆

σ2
FB

))

. (144)

In the final re-transmission phase which comprises of one channel use, the
transmitter compares H and H ′′. If they are equal, it sends the zero sym-
bol. Otherwise it re-transmits H using antipodal signaling with amplitude
√

P/P0(H ′′ 6= H):

Xn =







0 if H ′′ = H ,

+
√

P/P0(H ′′ 6= H) if (H, H ′′) = (0, 1),

−
√

P/P0(H ′′ 6= H) if (H, H ′′) = (1, 0).

(145)

At the end of the re-transmission phase, the receiver makes its final guess
Ĥ of H . It does so by comparing Yn to a threshold Υ:

Ĥ =







0 if Yn > Υ,

H ′ if |Yn| ≤ Υ,

1 if Yn < −Υ.

(146)
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Notice that by (144) the amplitude
√

P/P0(H ′′ 6= H) is exponentially large,
so there is no difficulty finding a threshold Υ (e.g., Υ = n) such that

− lim
n→∞

1

n
ln Pr

[

|Yn| > Υ
∣
∣
∣Xn = 0

]

= +∞, (147a)

− lim
n→∞

1

n
ln Pr

[

Yn ≤ Υ
∣
∣
∣Xn =

√

P/P0(H ′′ 6= H)
]

= +∞, (147b)

− lim
n→∞

1

n
ln Pr

[

Yn ≥ −Υ
∣
∣
∣Xn = −

√

P/P0(H ′′ 6= H)
]

= +∞. (147c)

Analysis: We shall analyze the probability of error conditional on H = 0.
It is identical to the one given H = 1.

P0(error) =

negligible by (147a)
︷ ︸︸ ︷

P0

(
error

∣
∣ H ′′ = 0, H ′ = 0

)

≤1
︷ ︸︸ ︷

P0

(
H ′′ = 0, H ′ = 0

)

+

≤1
︷ ︸︸ ︷

P0

(
error|H ′′ = 0, H ′ = 1

)
P0

(
H ′′ = 0, H ′ = 1

)

+

negligible by (147b)
︷ ︸︸ ︷

P0

(
error|H ′′ = 1, H ′ = 0

)

≤1
︷ ︸︸ ︷

P0

(
H ′′ = 1, H ′ = 0

)

+

negligible by (147b)
︷ ︸︸ ︷

P0

(
error|H ′′ = 1, H ′ = 1

)

≤1
︷ ︸︸ ︷

P0

(
H ′′ = 1, H ′ = 1

)

≈ P0

(
H ′′ = 0, H ′ = 1

)

≈ exp

(

−n
(2P − ∆

σ2
+

2PFB − ∆

σ2
FB

))

, (148)

where the last approximation follows from (144). By symmetry, P1(error) =
P0(error), so (148) implies that the error exponent

2P − ∆

σ2
+

2PFB − ∆

σ2
FB

(149)

is achievable. Since, ∆ can be chosen arbitrarily small, it follows that any
exponent smaller than

2P

σ2
+

2PFB

σ2
FB

(150)

is achievable. In fact, if we let ∆ tend to zero very slowly with n, we can
achieve the error exponent (150).
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8 Summary and Possible Extensions

We presented results on the best achievable error exponents in transmitting
a bit over the Gaussian channel with an active noisy Gaussian feedback link.
(In the case of an almost sure block power constraint on the feedback link
we also obtained an upper bound on the error exponent for arbitrary rates of
communication; see (51).) We have shown that even if both the forward link
and the feedback link are subjected to expected block power constraints,
the best error exponents are finite. Roughly speaking—irrespective of the
nature of the feedback power constraint—the best error exponent is roughly
proportional to the larger of the signal-to-noise ratio on the forward link P/σ2

and the signal-to-noise ratio on the feedback channel PFB/σ2
FB. In this very

rough sense, active feedback is not much different from passive symbol-by-
symbol feedback [2].

However, a more careful analysis based on our previous result [1, 2] shows
that the best error exponent for two messages with passive (symbol-by-
symbol) feedback is upper-bounded by

1

2

(
P

σ2
+

P

P + σ2
· PFB

σ2
FB

)

, (151)

which can be further upper-bounded by

1

2

(
P

σ2
+

PFB

σ2
FB

)

. (152)

On the other hand, an achievable error exponent (150) for an active feedback
with the same feedback signal-to-noise ratio is

2

(
P

σ2
+

PFB

σ2
FB

)

.

Hence, the freedom to code over the feedback link can at least quadruple the
error exponent of binary communication. It would be interesting to see how
much active feedback gains over passive feedback for a positive rate R.

While our focus has been on Gaussian channels with Gaussian feedback
channels, some of our techniques are more general. For example, consider
a setting where the forward and feedback channels are binary symmetric
channels (BSCs) with crossover probabilities ǫ, ǫFB ≤ 1/2. In this case we
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can apply the technique of Section 4 (with the sets A and B being {0, 1}n) to
obtain that the reliability function with noisy active feedback cannot exceed

ln
1 − ǫFB

ǫFB

+ ENoFB(R; ǫ), (153)

where ENoFB(R; ǫ) is the reliability function of the BSC of crossover proba-
bility ǫ.

In some cases, particularly when the feedback channel is very noisy, this
bound can be tighter than the trivial bound that bounds the reliability func-
tion by that with perfect feedback and bounds the latter by the best two-
codeword error exponent

1

2
ln

1

4ǫ(1 − ǫ)
. (154)

(The fact that feedback does not improve the best two-codeword error ex-
ponent on a discrete memoryless channel appears in the Ph.D. thesis of
Berlekamp [10] who attributes this result to Gallager and Shannon.)

The bound in (153) complements the recent work of Burnashev and Ya-
mamoto [11] on the reliability function of the binary symmetric channel with
a passive binary symmetric feedback link. (Upper bounds on the latter reli-
ability function can be derived using techniques similar to those we used in
[2].)
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