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Universal Minimax Discrete Denoising Under
Channel Uncertainty

George M. Gemelos, Student Member, IEEE, Styrmir Sigurjónsson, and Tsachy Weissman, Member, IEEE

Abstract—The goal of a denoising algorithm is to recover a signal
from its noise-corrupted observations. Perfect recovery is seldom
possible and performance is measured under a given single-letter
fidelity criterion. For discrete signals corrupted by a known dis-
crete memoryless channel (DMC), the Discrete Universal DEnoiser
(DUDE) was recently shown to perform this task asymptotically
optimally, without knowledge of the statistical properties of the
source. In the present work, we address the scenario where, in ad-
dition to the lack of knowledge of the source statistics, there is also
uncertainty in the channel characteristics. We propose a family of
discrete denoisers and establish their asymptotic optimality under
a minimax performance criterion which we argue is appropriate
for this setting. As we show elsewhere, the proposed schemes can
also be implemented computationally efficiently.

Index Terms—Denoising, denoising algorithms, discrete uni-
versal denoising, Discrete Universal DEnoiser (DUDE), estimation,
minimax schemes.

I. INTRODUCTION

DISCRETE sources corrupted by discrete memoryless
channels (DMCs) are encountered naturally in many

fields, including information theory, computer science, and
biology. The reader is referred to [15] for examples, as well as
references to some of the related literature. It was shown in [15]
that optimum denoising of a finite-alphabet source corrupted by
a known invertible1 DMC can be achieved asymptotically, in the
size of the data, without knowledge of the source statistics. It
was further shown that the scheme achieving this performance,
the Discrete Universal DEnoiser (DUDE), enjoys properties
that are desirable from a computational view point.

The assumption of a known channel in the setting of [15] is in-
tegral to the construction of the DUDE algorithm. This assump-
tion is indeed a realistic one in many practical scenarios where
the noisy medium through which the data is acquired is well
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1Throughout this paper, “invertible DMC” is one whose associated channel
matrix is of full row rank.

characterized statistically. Furthermore, the computational sim-
plicity of the DUDE allows it to be used in certain cases when
the statistical properties of the DMC may not be fully known.
For example, when there is a human observer to give feedback
on the quality of the reconstruction. In such a case, the human
observer can scan through the various possible DMCs, imple-
menting the DUDE for each DMC, and select the one which
gives the best reconstruction. Such a method can be used to
extend the scheme of [15] to the case of channel uncertainty
when it is reasonable to expect the availability of feedback on
the quality of the reconstruction. Unfortunately, such feedback
is not realistic in many scenarios. For example, in applications
involving DNA data [16], a human observer would probably find
the task of determining which two reconstructions of a corrupted
nucleotide sequence is closer to the original quite difficult. Other
examples include applications involving the processing of large
databases of noisy images [9] and those involving medical im-
ages [17]. In the latter, human feedback is often too subjective.
In such cases, an automated algorithm for discrete image de-
noising which can accommodate uncertainty in the statistical
characteristics of the noisy medium is desired. With this motiva-
tion in mind, in this paper we address the problem of denoising
when, in addition to the lack of knowledge of the source statis-
tics, there is also uncertainty in the channel characteristics.

It turns out that the introduction of uncertainty in the channel
characteristics into the setting of [15] results in a fundamentally
different problem, calling for new performance criteria and
denoising schemes which are principally different than those of
[15]. The main reason for this divergence is that in the presence
of channel uncertainty, the distribution of the noise-corrupted
signal does not uniquely determine the distribution of the under-
lying clean signal, a property which is key to the DUDE of [15]
and its accompanying performance guarantees. To illustrate
this difference, consider the simple example of the Bernoulli
source corrupted by a binary symmetric channel (BSC). In
this example, the noise-corrupted signal is also Bernoulli with
some parameter . For simplicity, we will only consider
two possibilities: either the clean signal is the “all-zero” signal
corrupted by a BSC with crossover probability or the clean
signal is Bernoulli passed through a noise-free channel.2 It
is easy to see that knowing only that the noise-corrupted signal
is Bernoulli , there is no way to distinguish between the
two possibilities above. It is therefore impossible to uniquely
identify the distribution of the underlying source. Degenerate as
this example may be, it highlights the following points, which

2Throughout this paper, Bernoulli(�) refers to a Bernoulli process with pa-
rameter �.
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are key to our present setting and its basic difference from that
of [15].

1) Even with complete knowledge of the noise-corrupted
signal statistics, Bernoulli in our example, there is no
way of inferring the distribution of the underlying source.

2) There exists no denoising scheme that is simultaneously
optimal for all, two in our example, sources which can give
rise to the noise-corrupted signal statistics.

3) A scheme that minimizes the worst case loss has to be
randomized.3 In the example above, the scheme that mini-
mizes the worst case bit-error rate is readily seen to be the
one which randomizes, equiprobably, between using the
observed noisy symbol as the estimate of the clean symbol
and estimating with the symbol regardless of the obser-
vation. Such a scheme would achieve a bit-error rate of
under both possible sources discussed above.

As is evident through this example, the key issue is that while
in the setting of [15] there is a one-to-one correspondence be-
tween the channel output distribution and its input distribution,
a channel output distribution can correspond to many input dis-
tributions in the presence of channel uncertainty. This point has
also been a central theme in [4], [12], where fundamental per-
formance limits are characterized for rate constrained denoising
under uncertainty in both the source and channel characteris-
tics.4

Under these circumstances, given any noise-corrupted
signal, a seemingly natural criterion under which the perfor-
mance of a denoising scheme should be judged is its worst
case performance under all source–channel pairs that can give
rise to the observed noise-corrupted signal statistics. In line
with this conclusion, as a way to evaluate the merits of a
denoising scheme, we look at a scheme’s worst case perfor-
mance assessed by a third party that has complete knowledge
of both the noise-corrupted signal distribution and the whole
noise-corrupted signal realization. Under this criterion, we
define the notion of “sliding-window denoisability” to be the
best performance attainable by a sliding-window scheme of
any order. This can be considered our setting’s analogue to the
“sliding-window denoisability” of [15] (which in turn was in-
spired by the finite-state compressibility of [18], the finite-state
predictability of [7], and the finite-state noisy predictability
of [14]). By definition, this is a fundamental lower bound on
the performance of any sliding-window scheme. Our main
contribution is the presentation of a family of sliding-window
denoisers that asymptotically attains this lower bound.

The problem of denoising discrete sources corrupted by an
unknown DMC has been previously considered in the context
of state estimation in the literature on hidden Markov models
(cf. [6] and the many references therein). In that setting, one as-
sumes the source to be a Markov process. The expectation–min-
imization (EM) algorithm of [2] is then used to obtain the max-
imum-likelihood estimates of the process and channel parame-
ters. One then denoises optimally assuming the estimated values

3Either in “space” (i.e., true randomization) or in time (i.e., time sharing for
deterministic estimates).

4In that line of work, Shannon-theoretic aspects of the problem are consid-
ered and attention is restricted to memoryless sources. Our current framework
considers noise-free sources that are arbitrarily distributed.

of the source and channel parameters. This approach is widely
employed in practice and has been quite successful in a variety
of applications. Other than the hidden Markov model method,
the only other general approach we are aware of for discrete
denoising under channel uncertainty is the DUDE with “feed-
back” discussed above. For the special case of binary signals
corrupted by a BSC, an additional scheme was suggested in [15,
Sec. VIII-C] which makes use of a particular estimate of the
channel crossover probability.

These existing schemes lack solid theoretical performance
guarantees. Insofar as the hidden Markov model based schemes
go, performance guarantees are available only for the case
where the underlying source is a Markov process. Furthermore,
these performance guarantees stipulate “identifiability” condi-
tions (cf. [1], [11], and references therein), which do not hold
in our setting of channel uncertainty. The more recent approach
of employing the DUDE tailored to an estimate of the channel
characteristics is shown in [8] to be suboptimal with respect to
the worst case performance criterion we propose. This suggests
that the schemes we introduce in this work are of an essentially
different nature than the DUDE [15].

After we state the problem in Section II, we turn to describe
our denoiser in Section III. In Section IV, we concretely in-
troduce the performance measure and performance benchmarks
that were qualitatively described above for the case where there
are a finite number of possible channels. In Section V, we state
our main results, which assess the performance of the denoisers
of Section III and guarantee their universal asymptotic opti-
mality under the performance criteria of Section IV. To focus
on the essentials of the problem, we assume in Section V that
the channel uncertainty set is finite. In Section VI, we extend the
performance measure of Section IV and the guarantees of Sec-
tion V to the case of an infinite number of possible channels.
The proofs of the results are left to Appendix I.

II. PROBLEM STATEMENT

Before formally stating the problem, we introduce some no-
tation: An upper case letter will denote random quantities while
the corresponding lower case letter will denote individual real-
izations. Bold notation will be used to represent doubly infinite
sequences. For example, will denote the stochastic process

and a par-
ticular realization. Furthermore, for indices , the vector

will be denoted by . We will omit the subscript
when .

Using the above notation, the problem statement is as fol-
lows: Let be a collection of invertible DMCs. A source
is passed through an unknown DMC in and we denote the
output process as . The process is thus a noise-corrupted ver-
sion of the process. We assume that the components of both

and take on values in a finite alphabet denoted by . Given
and , we wish to reconstruct under a given single-letter

loss function, . For can be in-
terpreted as the loss incurred when reconstructing the symbol
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Fig. 1. A noiseless source X , corrupted by a channel known to lie in an un-
certainty set �, and we observe the output Z .

with the symbol . Here we make the assumption that the com-
ponents of the reconstruction also lie in the finite alphabet .
Given , we denote

III. DESCRIPTION OF THE ALGORITHM

Inherent in the setup of our problem is the uncertainty re-
garding which channel corrupted the clean source, as depicted
in Fig. 1. We are given that the channel lies in an uncertainty
set , and the uncertainty set is assumed to be fixed and known
to the denoiser. The description of the denoiser is broken into
two parts. In Section III-A, we present an overview of the de-
velopment of the denoiser, while a detailed construction of the
denoiser is presented in Section III-B.

A. Outline of Algorithm

For simplicity, we start by limiting to be a finite collection
of invertible DMCs. The case of being infinite requires a
more technical analysis which will be discussed in Section VI.
Throughout the paper, we confine our discussion to sliding-
window denoisers. A sliding-window denoiser of order works
as follows: When denoising a particular symbol, it considers
the symbols preceding it and the symbols succeeding it.
These symbols before and after the current symbol form a
two-sided context of the current symbol. In particular, if we de-
note the current symbol by , the two-sided context is
and . In addition to the usual deterministic denoisers, we
allow randomized denoisers. A randomized denoiser is a de-
noiser whose output is a distribution from which a reconstruc-
tion must be drawn as a final step. Therefore, we can think of
a sliding-window denoiser, both deterministic and random, as
a mapping from . Here, for a given alphabet

is used to denote the -dimensional probability sim-
plex.5 If is a sliding-window denoiser, we denote its sim-
plex-valued output by or . We can use a

th-order sliding-window denoiser to denoise , by drawing
the th reconstruction according to the distribution .

Let be some channel in the probability distribu-

tion on , and a sliding-window denoiser.6 We now assume
there exists a function that, when given , and ,
evaluates the performance of the denoiser on that particular

5Similarly, we will use S (A) to denote the simplex on k-tuples on the al-
phabet A. Also, S (A) will denote the set of all distributions on doubly infi-
nite sequences that take value in A. If no alphabet is given, the alphabet A is
assumed.

6Throughout, given a random variableX ,P will be used to represent the as-
sociated probability law. Similar notation will also be used for vectors of random
variables, such asP to denote the probability law associated with the vector

X . This will hold even for doubly infinite vectors like ZZZ .

and . Here performance is measured by the expected

loss, under , incurred when estimating based on .
This is denoted by . In the next subsection, we
explicitly derive this function.

The main idea behind our construction is to look at the worst
case performance of a particular denoiser over all the channels
in the uncertainty set . Since gives the performance of
for a given channel , we can take the maximum over all the
channels in . Define

By definition, is the worst case performance of denoiser
over all the channels in . Let denote the set of all th-order
sliding-window denoisers. We now define the min-max denoiser

(1)

In Appendix I, we will show that is a compact subset of
, and therefore the minimum in (1) exists. By con-

struction, minimizes the worst expected loss over all
channels in . Unfortunately, employment of this scheme
requires knowledge of the noise-corrupted source distribution

, which is not given in this setting. Our approach is to
employ using an estimate of . In particular, letting

denote the th-order empirical distribution
induced by , we look at the -block denoiser defined by

.
Up to now in the development of our denoiser, the uncertainty

set remained unchanged. However, it is reasonable to assume
that knowledge gained from our observations of the output pro-
cesses can be used to modify the uncertainty set. In order to
make this intuition more rigorous, we make use of the following
definition. Given an observed output distribution , a channel

is said to be -feasible if there exists a valid th-order distri-
bution such that .7 As an example, we
can look at a Bernoulli source corrupted by a BSC with un-
known crossover probability , and assume . In this
case, the output process will also be a Bernoulli source with pa-
rameter . Then it is clear that for any

, no BSC with crossover probability greater than is -fea-
sible. Similarly, all BSCs with crossover probability less than
are -feasible for all . We shall say that a channel is feasible
with respect to the noise-corrupted source distribution if
is -feasible with respect to for all .

Using this concept of feasibility, given , define

s.t. (2)

where is the set of all invertible channels whose input
and output take values in the alphabet . Recall that de-
notes the probability simplex on -tuples in . Therefore,

is simply the set of all -feasible channels with

7Throughout, given a distribution on k-tuples P ;��P will denote the
k-tuple distribution of the output of a DMC whose transition matrix is � and
input has the kth-order distribution P .
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respect to the output distribution . With a slight abuse of
notation, we will also use to represent . Fur-
thermore, we will use to denote the set of feasible chan-
nels, i.e., those channels which are in for all .

With our Bernoulli example in mind, we see that it need not be
the case that given , all the channels in are -fea-
sible. Hence, we can rule out all channels in our uncertainty set

which are found not to be -feasible with respect to
the observed output distribution. In other words, we can trim the
uncertainty set down from to . This added in-
formation motivates the construction of our denoiser: We now
define the -block denoiser using the function from (1)
by letting its estimate of be

(3)

Note that this denoiser depends on parameters , , and the a
priori uncertainty set . We denote this -block denoiser by

. For the special case where we know , let
denote the denoiser defined by

(4)

B. Construction of Denoiser

We now give a more detailed account of the construction of
and , and elaborate on technical details that arise

in their derivation. Assume we are given a channel , a
th-order output distribution , and a sliding-window

denoiser . For a fixed two-sided context and
, induces a conditional distribution on , denoted by

or, in short, .

We now wish to derive a function
which gives the expected loss, with respect to , incurred
when we estimate with the denoiser given that

and . Note that when is a channel
output distribution and there exists an input distribution
such that , it is easy to show that

(cf., e.g., [15, Sec. III]). Therefore, the expected loss calculated
by the function can be viewed as a twofold expectation, with
respect to , and the denoiser. We can therefore write
out as

(5)

(6)

where we have the following.
• Given a channel and denotes the

probability the channel output is given the input is .
With a slight abuse of notation, without an argument will
denote the channel transition matrix. Similarly, without
an argument will be used to denote the matrix
whose th entry is given by .

• denotes the transpose of the inverse of .
• denotes the th component of the column

vector .

• is the th element of the -di-
mensional simplex member , and

is the column vector whose th com-
ponent is . Recall that a denoiser is a
mapping .

• denotes the “all-ones” -dimensional column vector.
• denotes the Hadamard product, that is the component-

wise multiplication.
• Denotes the -dimensional column vector whose th

component is .
Equipped with the function , we can now construct .

Recall for a given channel , a th-order output distri-
bution , and a denoiser calculates the expected loss
with respect to . Hence can be thought of as conditioned
on a particular context and . It follows that

(7)

where is the probability under

the law that and . Substituting (6) in
(7) and simplifying gives

(8)

Following the development in Section III-A, we now use
in the construction of

We make the following two observations. The function
is continuous in , i.e., continuous in the space

of all th-order sliding-window denoisers. This is an
easily verified consequence of the definition of . The second
observation requires the construction of a metric, , between
sets of channels. Recall that denotes the set of invertible
channels whose input and output take values in the alphabet .
For nonempty we define



3480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 8, AUGUST 2006

where denotes the norm. With respect to the metric
is uniformly continuous in . More specifi-

cally, for all

(9)

for some , independent of and , such that
as . For example,

(10)

is readily verified to satisfy (9), where is used to denote
.

Continuing the development, as per our previous definition

selecting an arbitrary achiever when it is not unique. Note that
the minimum is achieved since, as observed, is continuous in

and the space of all th-order sliding-window denoisers
is compact. Equations (3) and (4) then complete the construction
of the denoisers.

C. Binary Alphabet

Before moving on, it may be illustrative to explore the form
of for the binary case. In particular, we will look at the
case of denoising a binary signal corrupted by an unknown BSC
with respect to the Hamming loss. We suppose it is known that
the BSC lies in some finite set . We will assume that all the
channels in have a crossover probability less than .

The first step in constructing our binary denoiser is finding
the binary version of . Let us fix a particular context
and . As we recall from (6), is a function of a distri-
bution , a channel , and a denoiser . In the bi-
nary case, is completely specified by the conditional
probability that . We will denote this probability as

. The channel is a BSC and therefore defined by its
crossover probability, denoted by . Also recall that a
denoiser is a mapping from . Hence, for

our two-sided context, can be completely defined by the prob-
ability assigned to given , denoted by ,
and the probability assigned to given , denoted by

. Finally, recall that measures the expected loss,
here with respect to the Hamming loss, incurred when we esti-
mate with given that and .
With this in mind, we write out for the binary case as shown
in (11) at the bottom of the page, where for notational compact-
ness we dropped , and de-
pendence on and and use to denote . Using (11),
we can then follow the construction in Section III-B to derive
the binary version of the denoiser . The practical imple-
mentation of this denoiser is discussed in detail in [8].

IV. PERFORMANCE CRITERION

In the setting of [15], the known channel setting, performance
is measured by expected loss and optimal performance is char-
acterized via the Bayes envelope. In that setting, with the ex-
pected loss performance measure, a denoiser which achieves the
Bayes envelope is optimal. However, as the following example
illustrates, this performance measure and guarantee are not rel-
evant for the unknown channel setting.

Example 1: Let be a binary source, , corrupted by a BSC
with unknown crossover probability . Further-
more, is known to be a Bernoulli process with parameter .
Therefore, we know that is also a Bernoulli process with pa-
rameter . We want to reconstruct from with
respect to the Hamming loss function. Let us examine the two
possible cases.

1) The channel crossover probability is . Since the
Bernoulli process has parameter , we determine
that . Since , it is readily seen that in
order to minimize loss, we should reconstruct with the
observation . This scheme achieves the Bayes Envelope
for a BSC with .

2) The channel crossover probability is . Since the
Bernoulli process has parameter , we determine
that . Since , it is readily seen that in
order to minimize expected loss, we should reconstruct

(11)
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with regardless of the observed . The optimality of
this reconstruction scheme stems from the fact that when

, an observed in the channel output is more likely
to be caused by the BSC than the source. Similarly to our
previous case, this scheme achieves the Bayes Envelope
for a BSC with .

We also observe that the optimal scheme for one case is subop-
timal for the other.

From Example 1, we see that although one can achieve the
Bayes envelope for each channel in the uncertainty set, there
may not be one denoiser that can achieve the Bayes envelope
for each channel simultaneously. In particular, there does not
exist a denoiser which is simultaneously optimal for the two pos-
sible channels in Example 1. It is therefore problematic to com-
pare various denoisers in the unknown channel setting using ex-
pected loss as a performance measure. How would one rank the
two denoising schemes suggested in Example 1? Each scheme is
optimal for one of the two possible channels, but suboptimal for
the other. This difficulty also leads to an ambiguity in defining
an optimal denoiser.

Clearly, a new performance measure is needed for our setting
of the unknown channel. Without any prior on the uncertainty
set, a natural performance measure which is applicable in this
setting is a min-max, or worst case measure. In other words,
we look at the worst case expected loss of a denoiser across all
possible channels in the uncertainty set . Such a performance
measure would take into account the entire uncertainty set. With
this is mind, we can define our performance measure. Before
doing so we need to introduce some notation. For ,
given a th-order sliding-window denoiser we denote

(12)

the normalized loss8 when employing the sliding-window de-
noiser . Here, we make the assumption that . Further-
more, given a channel and a source distribution
will denote the joint distribution on when and

is the output of the channel with input . Given an un-
certainty set , we now define our performance measure as fol-
lows:

(13)

where denotes the conditional expectation, with
respect to the joint distribution , given . In words, for a
given denoiser , an uncertainty set , and the noise-corrupted
source is the worst case expected loss of the
denoiser over all feasible channels in the uncertainty set ,
given . The performance measure in (13) is conditioned on
the noise-corrupted sequence since it seems natural that the
performance of a denoiser be determined on the basis of the
actual source realization, rather than merely on its distribution.

8Up to the “edge-effects” associated with indices t outside the range k+1 �
t � n � k that will be asymptotically inconsequential in our analysis (which
will assume k � n).

Although the performance measure is defined using this condi-
tioning, in Sections V and VI, performance guarantees are given
for both the conditional performance measure and a noncondi-
tional version.

Equipped with our new performance measure, we can now
compare the two denoising schemes suggested in Example 1.
Let and denote the denoising scheme of Case 1 and Case
2, respectively, i.e., is the “say what you see” scheme and
is the “say all zeros” scheme. Furthermore, given the Bernoulli
process , let be the frequency of ones in . We see
that, for any

and that

The strong law of large numbers states that as
converges to w.p. . Therefore, for large

with high probability. Can we find a denoiser that does better
than the two suggested in Example 1?

One possible way to improve denoiser performance in Ex-
ample 1 is to time-share between the two suggested denoisers
schemes, “say what you see” and “say all zeros.” For ,
let be a denoiser which at each reconstruction implements
“say what you see” with probability and “say all zeros” with
probability . To simplify our calculations, we will assume
that is large enough such that is close to
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with high probability. We can now calculate the performance of
this denoiser as follows:

with high probability. We can then find the best such denoiser
by finding the which minimizes the worst case loss. It is easily
seen that, with high probability

and that the minimum is achieved by .
We see then that, for typical9 is a better denoiser

than and , but what is the best denoiser? To answer this
question, we develop the concept of an optimal denoiser under
the worst case loss performance measure defined in (13). First,
recall that denotes the set of all th-order sliding-window
denoisers. Now define

(14)

(15)

In words, is the performance of the best
th-order sliding-window denoiser operating on blocks of size
.10 We then take to define , the perfor-

mance of the best th-order sliding-window denoiser. Finally,
we let and define the “sliding-window minimum loss”

(16)

where the limit is actually an infimum since for every
is point-wise nonincreasing with . The latter

is a consequence of the fact that any th-order sliding-window
denoiser can be expressed and a th-order sliding-window
denoiser. In words, is the performance of the best
sliding-window denoiser of any order. Hence, is
a bound on the performance of any sliding-window denoiser.
We denote a denoiser as optimal if it achieves this performance
bound -a.s., the need for an almost-sure statement comes
from the fact that both the performance bound and measure
depend on the source realization. Surprisingly, it can be shown
that the denoiser defined above is optimal for Ex-
ample 1, i.e., with high probability comes close to attaining the
minimum in (14) for all . This is due to the memorylessness
of the source in Example 1.

9In particular, all zzz with lim N (z ) = 1=4.
10Although � is defined as a minimum over an uncountable set, it is easily

seen to be point-wise equal to min L (P ;�; ZZZ), where we
use S to denote the subset of S consisting of distributions with rational com-
ponents. The latter is a minimum over a countable set of random variables and
hence measurable.

One can consider defined in (14) as a kind of
analogue in our setup to the “sliding-window minimum loss”
of [15, Sec. V] which, in turn, is analogous to the finite-state
compressibility of [18], the finite-state predictability of [7], and
the conditional finite-state predictability of [14].

V. PERFORMANCE GUARANTEES

In this section, we present a result on the performance of the
algorithm presented in Section III with respect to the perfor-
mance measure discussed in the previous section.

Throughout this section, the uncertainty set is assumed to
be finite. Additionally, to isolate the main issue of minimizing
the worst case performance from the issue of estimating the set
of channels in the uncertainty set, we limit our first theorem to
the case where all channels in the uncertainty set are known to
be feasible, namely, they satisfy .

Theorem 1: Let

where on the right-hand side is the -block denoiser defined in
(4) and let be any sequence satisfying . For
any output distribution such that

-a.s (17)

We defer the proof of Theorem 1 to the Appendix.

Remarks: Note that beyond the stipulation ,
no other assumption is made on , not even stationarity. Note
also that, as a direct consequence of (14), we have for each
and all possible realizations of

Thus, the nontrivial part of (17) is that

-a.s.

An immediate consequence of Theorem 1 is the following.

Corollary 1: Let the setting of Theorem 1 hold and .
For any such that

-a.s. (18)

Proof: We have -a.s.

(19)

where the equality follows from Theorem 1. The inequality
comes from the fact that for any fixed , since increases
without bound
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Therefore the left-hand side is also upper-bounded by

Corollary 1 states that asymptotically, in and the window
size, the sliding-window denoiser of Section III achieves the
performance bound -a.s. The denoising scheme
is therefore asymptotically optimal with respect to the worst
case performance measure described in Section IV.

We also establish the following consequence of Theorem 1.

Corollary 2: Let be stationary and ergodic, be finite,
and be defined as in Theorem 1 with . If

, then

For proof of Corollary 2, see the Appendix.
Note that the difference between the kind of statement in The-

orem 1 and that in Corollary 2 is that in the latter we omit the
conditioning on the noise-corrupted sequence . The latter can
be viewed as the analogue of our setting to the expectation re-
sults of [15], while the statement of Theorem 1 is more in the
spirit of the semi-stochastic setting of [15].

VI. PERFORMANCE GUARANTEES FOR THE GENERAL CASE

In Section V, we assumed that was finite and that all
channels in are feasible. These two assumptions allowed us
to avoid a few technicalities. In this section, we will remove
these assumptions and extend the performance guarantees of
Section V to the case where is an infinite set, and we no
longer require that . To preserve the concept of
invertibility, we require that be finite.

Before continuing, it is important to identify the issues that
arise when we remove these two key assumptions. In (13),
our performance measure is defined to be the supremum
of over the set of feasible channels
in . Although is a measurable
function for each , if is an uncountable set, we are
no longer assured that the supremum in (13) is measurable.
Initially, to avoid this complication we made the assumption of

being finite.
To deal with this measurability issue in the development of

, one may consider those channels in which have rational
transition matrices. Let be the subset of channels in
whose transition matrices have rational components. Then given
an uncountable uncertainty set , we can look at

. Since is a countable set, we are assured
that is well defined. Using this modifi-
cation, we can extend the definition of and . Similarly, we
can use this approach in the construction of our denoiser .
We therefore assume that .

The other assumption made in Section V is that all channels in
are feasible. We can remove this condition if is sufficiently

well behaved in the following sense.

Assumption 1: Given a set , let denote its closure. For
every stationary process

and

is continuous in for all .

Assumption 2: For each there exists a function satisfying
as and

(20)

Assumption 1 imposes a structural constraint on while As-
sumption 2 gives us a form of continuity. To illustrate these two
assumptions, let us explore the binary case. Let consist of all
BSCs with rational crossover probability less than some

. It is easy to see that any such satisfies Assumption 1.
Furthermore, Assumption 2 is satisfied with .

More generally, if consists of all channels in within a
certain radius of the noise free channel, then

(21)

satisfies Assumption 2.
Before we state the next performance guarantee, we need to

introduce the notion of -mixing. Roughly, the th -mixing
coefficient of a stationary source is defined as the max-
imum value of the distance between the value and the
Radon–Nikodym derivative between and the product
distribution (cf. [3] for a rigorous definition).
In our finite-alphabet setting, the th -mixing coefficient
associated with a given stationary source is more simply
given by

Qualitatively, the -mixing coefficients are a measure of the ef-
fective memory of a process. For a given sequence of nonnega-
tive reals , we let denote all stationary sources whose
th -mixing coefficient is bounded above by for all .

Theorem 2: Let be a sequence of nonnegative reals with
and let satisfy Assumptions 1 and 2. There

exist unbounded sequences and such that if
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then for any and any sequence with
and

-a.s. (22)

The proof of Theorem 2 makes use of a more general result,
Lemma 7. Lemma 7 and the proof of Theorem 2 can be found
in the Appendix.

Remarks:
• The explicit dependence of and on is given

in the proof.
• If for some then any will

do.
• Any Markov source of any order with no restricted tran-

sitions, as well as any finite-state hidden Markov process
whose underlying state sequence has no restricted transi-
tions is exponentially mixing, i.e., belongs to with

for some (cf. [6]).

Analogously as was done in Corollary 2, we can extend the
results of Theorem 2 as follows.

Proposition 1: Let be a sequence of nonnegative reals
with and assume finite . There exists unbounded se-
quences and such that if

then for any

(23)

We defer the proof of Proposition 1 to the Appendix.
As in Corollary 2, Proposition 1 gives a performance guar-

antee under the strict expectation criterion, i.e., when the max-
imization is over expectations rather than conditional expecta-
tions. It implies that under benign assumptions on the process,
optimality with respect to the latter suffices for optimality with
respect to the former.

VII. CONCLUSION

In the discrete denoising problem, it is not always realistic
to assume full knowledge of the channel characteristics. In this
paper, we have presented a denoising scheme designed to op-
erate in the presence of such channel uncertainty. We have pro-
posed a worst case performance measure, argued its relevance
for this setting, and established the universal asymptotic opti-
mality of the suggested schemes under this criterion.

The schemes presented in this work can be practically im-
plemented by identifying the problem of finding the minimizer
in (1) with optimization problems that can be solved efficiently.
The implementation aspects, along with experimental results on
real and simulated data that seem to be indicative of the poten-
tial of these schemes to do well in practice, are presented in [8].

APPENDIX

A. Technical Lemmas

In this appendix, several technical lemmas are presented that
are needed for the proofs of the main results. Before continuing,
recall that is used to denote .

The first lemma states that for any source and channel
is a very efficient estimate of

. In fact, it is uniformly efficient in all sources,
channels, and sliding-window functions .

Lemma 1: For all ,
and

where can be taken as any function sat-
isfying

(24)

Remark: We shall assume below that the chosen to satisfy
(24) is nondecreasing in and nonincreasing in .

Proof: We shall establish the lemma by conditioning on
the source sequence. Indeed, it will be enough to show that for
all , , and all

(25)

Note that when conditioning on in (25), is a sequence of
independent components, with . Now
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(26)

where we have the following.
• denotes the conditional distribution

vector of

induced by .
• stands for the -dimensional column

vector whose th component is zero unless

in which case it is .
On the other hand,

(27)

where denotes the -dimensional
column vector whose th component is zero unless both

and in which case it is . From
(26), (27), and the triangle inequality it follows that

(28)

Now, for all , contexts , and we
have

(29)

We get (29) by decomposing the summation inside the prob-
ability on the left-hand side of (29) into sums of
approximately independent random variables
bounded in magnitude by , applying Hoeffding’s in-
equality [10, Th.eorem 1] to each of the sums, and combining
via a union bound to obtain (29) (cf. similar derivations in [5]
and [13]). Combining (28) and (29), with standard applications
of the union bound, gives

which, upon simplification of the expression in the exponent, is
exactly (25).

Lemma 2: For all , and satisfying

(30)

for all , , and , where
can be taken as any function sat-

isfying

(31)

Remark: Note that the random variables appearing in the
probability on the left-hand side of (30) are -measurable, and
hence it suffices to consider the probability measure , which
is the noisy marginal of . We shall assume in the fol-
lowing that the chosen to satisfy (31) is nonincreasing in
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. Finally, note that the combination of Lemmas 1 and 2
implies that, for an arbitrary source and channel

with high -probability.

Proof: Fix . By Lemma 1

implying, by Chebyshev’s inequality

(32)

Now, the fact that

implies that

on the event

in turn implying

when combined with (32). Choosing such that
, this implies

from which an explicit form for the exponent function in the
right-hand side of (30) can be obtained.

The next lemma states that, with high probability,
estimates

uniformly well, simultaneously for all and any finite
number of pairs that give rise to .

Lemma 3: For all , finite

(33)

for all and .
Proof: Lemma 2, the union bound, and the fact that

is nonincreasing imply that for any

(34)

For , let denote the subset of consisting of
distributions that assign probabilities that are integer multiples
of to each . Letting , it
is then straightforward from the definition of and of that

(35)

Combining (34), (35), and the fact that

yields, for

which is exactly (33) since
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Lemma 4: For all , finite

for all and , where can be any function satisfying

Proof: The assertion follows from Lemma 3 upon
assigning , and noting the decreasing mono-
tonicity of , with chosen to be any function
satisfying

(36)

Note that in Lemmas 2, 3, and 4, is a completely arbitrary
distribution, which need not even be stationary.

We now define11 .
The denoiser in Section III-B is defined as a function of

, as opposed to which would
be ideal. Clearly, this is not possible since is not known.
However, we expect that will be close to . This
is indeed the case, as quantified in Lemmas 5 and 6 below.

Before we state our final three lemmas, we need to set up
some notation. Denote by the set of stationary distri-
bution in . Further, for , let denote
the set of all for which

holds for all . Note that by the Borel–Cantelli lemma, for
satisfying for all and is

a subset of the stationary and ergodic sources. For any
and uncertainty set , let

(37)

11We may suppress �̂ dependence on � and Q̂ [Z ].

For a given define now

(38)

where is defined in (9) and is the function associated with
Assumption 2. Let further

(39)

Lemma 5: For all and with

where and were defined in (20) and (37), respectively.
Proof: We have

where the first inequality follows by the definition of , as de-
fined in (37), and the triangle inequality, and the second in-
equality follows from the definition of , as defined in (20), and
the definition of .

Lemma 6: For any and satisfying Assumption 1,
the sequence defined in (37) satisfies
as . Furthermore, the convergence is uniform in .

Proof: The first thing to establish is that the relation

(40)

holds for all stationary . The direction is true since obvi-
ously

for every . For the reverse direction note that if

and

then is consistent with , i.e., its th-order

marginal. Thus, if is in the intersection of the sets on the
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right-hand side of (40) then is a consistent family

of distributions so, by Kolmogorov’s extension theorem, there
exists a unique stationary source with the said distributions
as its finite-dimensional marginals. Furthermore,
since for each . Thus, we have

establishing (40). Now, the fact that is a de-
creasing sequence and that for
all implies existence of the limit

. Assume

(41)

Let

and define

Here we use the notation for the closure of set . Be
definition of for all and since

then for all . We also
observe that is closed for all . This last step
follows from the fact that our norm agrees with
the given topology. By Assumption 1 and (40), we have

. Since is a nested
sequence of closed and bounded sets, the bounding comes from
the fact that the set of all channels is itself a bounded set, there
exists . This would mean
that

which is false since and is a continuous
function. Hence, (41) is wrong and

Therefore, for each . Since the set
of distributions is compact and from Assumption 1 we know

is continuous in , Dini’s theorem implies the convergence is
uniform in .

We can now state a generalized version of Theorem 2.

Lemma 7: For any , let

(42)

where on the right-hand side is the -block denoiser defined
in (3) and are unbounded increasing sequences sat-
isfying and for every

. If and sequence with
and , then

-a.s. (43)

Remarks:
• The extreme detail of Lemma 7 makes it hard to extract

any intuition from it. The main purpose of the lemma is to
develop the subsequent Theorem 2 and Proposition 1.

• Note that the stipulation in the statement of the theorem
that is not restrictive since the real
channel is known to lie in .

• To avoid introducing additional notation, henceforth
denotes the denoiser defined in (42), rather than that of
Theorem 1.

• It should be emphasized that the sequence is not
related to the construction of the denoiser. Rather, is
simply the subset of on which performance is evaluated
for the -block denoiser (cf. (43)). Note that since the size
of is allowed to grow quite rapidly, one can choose a
sequence for which quickly.

Proof: We start by outlining the proof idea. Two ingredi-
ents that were absent in the setting of Theorem 1 and that now
need to be accommodated are the fact that is not necessarily
finite, and that need not be a subset of . The first in-
gredient is accommodated by evaluating performance, for each

, on a finite subset of , . For the second ingredient noted,
a good thing to do would have been to employ the denoiser

taking . Instead, the denoiser we con-
struct in the present theorem is . Lemmas 5 and 6 ensure
that for large enough is “close” to which,
in turn, implies that the performance of the scheme that uses

is essentially as good as one which would be based on
. The bounds in the lemmas, when combined with the

additional stipulation of Lemma 7, that provide
growth rates for and which guarantee that under the metric,

rapidly enough to ensure that
the performance of converges to the performance of

. It should be noted that the only point where the sta-
tionarity and mixing conditions, on the noise-corrupted source
are used is for the estimation of . For a completely
arbitrary , not necessarily stationary, if were
given then the scheme of Theorem 1, where is
used for , could be used, and the performance guarantees of
Theorem 1 would apply. In the remainder of this subsection we
give the rigorous proof of Lemma 7.

Lemma 6 and the fact that imply (recall (20)
and (37) for definitions of and )

(44)
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Combined with (9) this implies

(45)

Let now denote an -cover of . Note that for all
sample paths, by (9) and the fact that implies

(46)

The combination of (46) with (45) now implies

(47)

where was defined in (38). Now, from the definition of
, it follows that

(48)

On the other hand, for every

(49)

implying, when combined with Lemma 4, that

(50)

When (50) is combined with (47) as well as a union bound and
a triangle inequality, we get

(51)

Since by the definition of

(52)

it follows that

(53)

where

the equality is due to (52) and (48), and the inequality is due to
(51). On the other hand

(54)
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implying, when combined with (47) and (53) as well as a union
bound and the triangle inequality

(55)

Choosing now and
noting that can be chosen such that leads
to the bound on the right-hand side of (55)

(56)

which is readily verified to be summable for all under the
stipulated assumption on the growth rate of and .12 Since

we obtain, by the Borel–Cantelli lemma

-a.s. (57)

Thus, we obtain -a.s.

where the inequality is due to the facts that

and that both and are in-
creasing, and the equality follows from (57).

12The growth rate of k stipulated in the theorem guarantees that

exp[�n�(k ; �=6;� ; sup k� k)] � exp(�n )

for an " > 0 and all sufficiently large n. The factor multiplying this exponent
(j� j + exp(

p
n)) is upper-bounded by O(exp(

p
n)). Combined with the

stipulated summability of V (k ; l ; �) this guarantees the summability of the
expression in (56).

B. Proof of Theorem 1

We start with an outline of the proof idea. The assumption
that is finite, combined with Lemma 3 and the
definition of (recall (1)), imply that, for fixed and large

, is uniformly a good estimate of

Thus, the performance of the sliding-window denoiser that
minimizes is “close” to

The bounds in the lemmas of the preceding subsection allow us
not only to make this line of argumentation precise, but also to
find a rate at which can be increased with , while maintaining
the virtue of the conclusion. In the remainder of this subsection,
we give the rigorous proof.

For any pair such that and , it
follows from the definition of that

(58)

and, therefore,

(59)

On the other hand, the fact that implies that for
every

(60)

implying, when combined with Lemma 4, that

(61)

Since, by the definition of
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it follows that

(62)

where the equality follows from (59) and the inequality from
(61). Furthermore, another application of (61) yields

(63)

which when combined with (62), as well as the triangle in-
equality and a union bound, implies

(64)

Now, the bound on the growth of stipulated in the statement
of the theorem is readily verified to guarantee that for every

13

13The stipulated growth condition is readily seen to imply for any " > 0

exp[�nA(k; �;� ; k� k)] < exp(�c n )

exp[�nB(k; �;� ; k� k)] < exp(�c n )

and, consequently,

exp[�n�(k; �;� ;maxk� k)] < exp(�c n )

(recall (24), (31) and (36) for definitions of these quantities).

Recalling that , this implies via (64) and the
Borel–Cantelli lemma that

-a.s.

From the notation defined in (14), we see this is exactly (17).

C. Proof of Corollary 2

The proof follows the same lines as the proof of Proposition 1
without the added complexity of an infinite and having to
estimate of . Hence we will omit the proof of
Corollary 2.

D. Proof of Theorem 2

The main idea is to show that the -mixing condition of The-
orem 2 implies the conditions on needed in Lemma 7. Once
this is shown, it only remains to appeal to Lemma 7 to conclude
the proof. To demonstrate that the -mixing condition implies
the conditions on , we break the -block into subblocks which
are separated by uniform gaps. By controlling the rate at which
both the subblocks and gaps grow with , we can guarantee that
the content in the gaps essentially does not effect the empirical
distribution, while letting these gaps grow with . We then use
the -mixing condition and the fact that the gap size is growing
with to drive the joint distribution of the subblocks to that of
the distribution of independent subblocks. This then allows us
to uniformly bound the rate of convergence of the empirical dis-
tribution to that of the true distribution, which is exactly what is
needed for a bound on . We can then apply Lemma 7.

Fixing and we begin by showing bounds on

Using the union bound we have

(65)

For each

where is the indicator function on the event
and . For the

sake of notational simplicity, we will fix and
use for . Since is -mixing with coefficients

, then is -mixing with coefficients for
all .
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We now define . Therefore, we have

We can further decompose this as

In order to make use of the Chernoff bound, we rewrite the above
as

Using the Chernoff bound we have

(66)

where , and . Choose
and large enough such that

where is the Kullback–Leibler distance between
Bernoulli and Bernoulli distributions, and

.
We now turn our attention to bounding . Letting

we have

(67)

where comes from the fact that and the definition
of . Similarly, we can derive the bound

(68)

Combining (66), (67), and (68) we have

(69)

Since is -mixing, we know that the Radon–Nykodim deriva-
tive of and with respect to the
product of the marginals is less than or equal to . Hence,
(69) gives us

By our choice of and we get

(70)

We also know that subject to the constraint that
and is maximized when is m

with probability and with probability . Hence

(71)

Similarly

(72)

Combining (70), (71), and (72) we get
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Since the preceding equation is true for all we can take
the infimum over all and get

(73)

Since is the rate function for a Bernoulli process,
it follows that the infimum in (73) yields

(74)

We can now further upper-bound by taking the maximum over
. Letting

further bounding of (74) yields

(75)

Since (75) is true for all , then (65), (75), and the
definition of yield

(76)

Further upper bounding by
we obtain

(77)

the bound in (77) being valid for all (since if
the bound is greater than ). Note without loss of gener-

ality assume . Hence where is defined
by

(78)

with and chosen such that

and .

We now turn to bounding as defined in (39). We first define
the following:

For , we can now expand as follows:

(79)

For a given sequence , choose

This restriction on assures us that there exits such that

We now choose

and define

Notice that is monotonically decreasing to and that is
independent of . Also, by our choice of , we are assured that
there exists such that

(80)

Combining the monotonicity of in and (80) gives
the following: If

(81)

then

We now construct an unbounded sequence . For
small, can be chosen arbitrary. For large, let be defined
such that

(82)

where

with chosen such that

and

(83)
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Notice that both and are
decreasing in . Furthermore, their dependence on comes
only through the sequence . Hence combining the fact
that and by allowing to grow slowly with respect
to , we can insure that inequality (82) holds.

Expanding , we see that (81) holds whenever
and are unbounded sequences such that

and

(84)

Note, since is unbounded and from Lemma 6 we know
that , we can choose and to be unbounded.
Recall that is used to denote and is a function
of the distribution . Hence, although the constraint on
is independent of , the constraint on is not. However,
from Lemma 6 we know that uniformly in .
Uniform convergence implies

We can therefore choose independent of and
hence independent of . In particular, we can choose
unbounded and satisfying

(85)

Theorem 2 now follows by applying Lemma 7 for any un-
bounded sequences and satisfying (84) and (85).

E. Proof of Proposition 1

The idea of the proof that follows is to combine Lemmas 1
and 2 and the triangle inequality to get a bound on the terms
of the limit in (23), and then to use Lemma 7 to show that the
bound vanishes in the limit.

Before going through the proof, we note that by the same
argument as in the proof of Theorem 2, we can construct se-
quences and such that for all

(86)

(87)

where and are defined as in the proof of Theorem 2.
Lemma 7 gives us

-a.s.

Letting stand for expectation under and taking expecta-
tion in the above equality, it follows from the bounded conver-
gence theorem that

Expanding the inner terms gives

where for notational simplicity, we suppress the constraints on
in the maximization. Moving the expectations in we

get

(88)

Defining

(88) gives us

(89)

For notational convenience denote

Let

(90)
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where follows from Lemma 1. Since (90) holds for all
we have

(91)

To proceed, we establish the following.

Claim 1:

-a.s.

Proof of Claim 1: The definition of is readily seen to
imply

By the construction of , for any we have

Since by hypothesis, the right-hand side is summable, the
Borel–Cantelli lemma implies

-a.s.

Note that for each

is continuous in , that , and by Tychonoff’s
theorem is compact. We can therefore apply Dini’s theorem
which implies that the limit is uniform in . Due to the finiteness
of , uniform convergence in implies the convergence is
uniform in , thus establishing the claim.

Returning to the proof, the combination of Claim 1 and (91)
gives

-a.s.

Since is chosen such that

(recall Lemma 1 for what can be chosen to be) and therefore,

-a.s.

implying

-a.s.

by the arbitrariness of . We also note that

and therefore,

-a.s. (92)

From Lemma 2 we have

Therefore, applying the union bound, we obtain
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Since

we have

Hence,

Since this is true for all we have

Since

we also have

and therefore,

Since is chosen such that

Lemma 2 implies that can be chosen such that
and therefore,

implying, by the arbitrariness of , that

(93)

Before completing the proof, we shall need to establish the
following.

Claim 2:

Proof of Claim 2: Since

it is sufficient to show

-a.s.

The definition of , via an elementary continuity argument, is
readily verified to imply
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By the construction of , for any we have

(94)

Since by hypothesis the right-hand side is summable, by the
Borel–Cantelli lemma

Since is arbitrary, we can take and get

-a.s.

The proof is now completed similarly to the proof of Claim 2.

Equipped with Claim 2, we now complete the proof of Propo-
sition 1 as follows. We have

From (92), (93), Claim 2, and the fact that it follows
that

-a.s. (95)

Combined with (95) and (89) this gives

(96)

On the other hand, since

When combined with (96), we get the desired result
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