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ABSTRACT

We consider the problem of denoising a binary image cor-
rupted by a noisy medinm which flips each component i
the original image, independently, to its complementary value
with some fixed but unknown probability § < 1/2. We pro-
pose a denoiser which assumes no knowledge of statistical
properties of the image. yet asymptotically ataing the per-
formance of the scheme that knows the noisy image statis-
tics and operates optimally in a minimax sense. The pro-
posed scheme is implementable, with complexity linear in
the image size. Preliminary experimental results are pre-
sented which indicate that the scheme has the potential to
do well on rcal data.

1. INTRODUCTION

In [1], a practical scheme for recovering a binary image
from its noise-corrupted version was presented. The scheme
wais shown to be universal in the sensc of asymptotically,
for large images, attaining oplimum performance no matter
what the statistics of the image tum out to be. This scheme
was obtained by generalizing the discrete universal denoiser
(DUDE) of [2] to multi-dimensionally indexed data. The
experimental results presented in [1] showed that the algo-
rithm outperforms other popular schemes for binary image
denoising on various types of binary images.

- The assumption of a known channel inherent in the struc-
ture of the DUDE of [2] was inherited by the binary image
denoiser of [1]. which assumes knowledge of the channel
crossover probability. This assumption is indeed a realis-
tic one in many practical scenarios where the noisy medium
through which the image is observed is well-characterized
statistically. Furthermore, even in many applications where
this is not the case, the simplicity of the scheme in (1] al-
lows for a pracetically designed “knob” which, in real time,
enables a human observer to subjectively select the recon-
struction which looks best among all reconstructions cor-
responding to employing the scheme of [1] for the whole
range of passible noise characteristics. Thus, in practice,
the scheme of [1] is effective for denoising under channel
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uncertainty in applications where it is reasonable o expect
availability of “feedback™ on the quality of reconstruction.

On the other hand. such feedback on the quality of re-
construction is not realistic in other scenarios, such as those
involving processing of large databases of noisy images, or
those involving texture images. where human feedback may
be too subjective. n such cases, an automated algorithm for
image denoising is sought, which will accommodate uncer-
tainty in the statistical characteristics of the noisy medium.
With this motivation, the case of uncertainty in the channel
characteristics. in addition to the uncertainty in the distribu-
tion of the noise-frec signal, was recently studied in [3]. It
was shown that in this setting the task of attaining the per-
formance of the optimum non-universal Bayesian scheme,
which was shown to be attainable in the setting of [2]. is
impossible, even for a “genie-aided” scheme with complete
knowledge of the noisy signal statistics. Under these cir-
cumstances, the criterion suggested for judging the perfor-
mance of a denoising scheme was its worst case perfor-
mance under all noise-free source distributions and chan-
nels consistent with the noisy source distribution. This is
a lower bound on attainable performance for the setting of
channel uncertainty.

In this work, we present the practical binary image de-
noiser obtained by extending the scheme of [3] to two- di-
mensionally indexed data. We start by introducing notation,
definitions, and a concrete formulation of the problem in
Section 2. Section 3 describes the suggested binary image
denoiser, which we show in Section 4 to be asymptotically
optimal in the minimax sense that we argue most appropri-
ate for the present setting of noise distribution uncertainty.
We discuss the implementation of .the scheme and report
encouraging preliminary experimental results in Section 5.
We conclude in Section 6 by summarizing and mentioning
directions in which our scheme and results can be extended.

2. NOTATION AND DEFINITIONS

Throughout we assume the components of the clean, as well
as those of the noise-corrupted image, take their values in
{0,1}. We assume that the noiseless image is corrupted
by a binary symmetric channel (BSC) with an unknown
crossover probability & < 1/2. That is to say that each
component in the noise-free image is flipped to the com-
plementary value with probability 4, independently of other
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components.

A binary image. or simply image, is a two-dimensional
array of {0, 1}-valued components. We let x == {w; }iene
denote an infinite noise-free image and 2 = {2 }iepe its
noise-corrupted version, where N is the set of positive in-
tegers. Tor any & C N2 we also denote 2(S) = {z:}ies
and 2(8) = {z:}ies- Thus «(&) is an |S|-dimensional vec-
tor, with {0, 1}-valued components that are indexed by the
elements of 8. We let {0, 1} denote the set of all such |S)-
dimensional vectors. For m,n € N let Vi, denote the
m x n rectangle Vi, = {i = (i,i,) € N? 1 4, <
i, < u}. To simplify notation we shall write ., «,,
for «{ Vi wn). ad Zpxn f0r 2(Vixn). We will also write
{0,1}m%" for {0,1}¥»>~_ For & C Z? and i € N? we let
S+i={j7+1i: € S} denote the ¢'shift of S.

A randomized m x n binary image denoiser is a map-
ping XX - {0, 1}m%" — [0, 1]™*". The interpretation
is that upon seeing the noisy signal z,,., € {0,1}™%",
the reconstruction at the #-th location is 1 with probabil-
ity Xm0z, L)) where X7 (z,,..)]i] denotes the
component ol Kmxn (2mxw) at the i-th location. Thus. for
T Zmxe € 10, 1177 we denote

L_{'m»u (:"nl xny Sex n) =

1
b

€V

£y — —’XI’W.XH (3m xn ) ["] )

which is the normalized expected number of errors that will
be made by the image denoiser Xmxn when the observed
NOISY IMAage IS Zmx, and the underlying one is @ <. the
expectation taken with respect to the randomization!.

For a family of binary image denoisers {X™*"} =
{X’mx“}m,n and a binary random field X = {X; hiepe dis-
tributed according to Py let

L{X’mxﬂ-}(PX! 5) =
limsupEpy 6 [L g mxn(Xmxn, Zmxn)lZ]

m,n—oc

where Ep, s denotes cxpectation when X ~ Px and Z is
the BSC(8)-corrupted version of X. :

Let Z = {Z;};ecne be a spatially stationary binary ran-
dom field and let Pz denote its distribution, Denote further

A(Pz)=max{0 < <1/2:3Pxst. Px 6= Pg},
(D
where Px * & denotes the distribution of 2 random field
distributed according to Px and corrupted by a BSC(J).
In words, A{Pz) is the largest channel crossover proba-
bility consistent with Pz in the sense of the existence of
a field giving rise to this distribution when corrupted by a

Though in the setting of [1] there was nothing to be gained by the con-
sideration of randomized denoisers (the optimum distribution-dependent
scheme is always non-randomized and the universal scheme of [1] was
also non-randomized). for the channel uncertainty setting of our present
work randomized schemes play a key role and, in fact, minimax optimal
schemes {in senses defined below) will, in general. be randomized.

BSC(A(Fz)}). Define now MM( Pz} =

min su L{‘{-mm}(Px;fs),
{ XX} ((Py,8): Pxwd= Pz, 8€[0,A( Py ))nQ}
1
the minimum being over all possible families of sliding win-
dow binary image denoisers, i.¢. denoisers that employ space
invariant filters that depend on a finite number of observa-
tions, and © denotes the set of rationals. By its definition.
MM( Pz) is an absolute lower bound on the asymptotic per-
formance of any family of sliding window denoisers, even
a “genie-aided” one that has access to the moisy image dis-
tribution Pz, in the sensc that for every such family there
exists 4 clean image source Px that gives rise to Pz when
corrupted by some BSC(4), 0 <4 < 1/2, and such that

L gormy (Px.8) 2 MM(Pz) a.s. (3)

under that source. We shall thus say that a family of image
denoisers is minimax optimal for the noisy image distribu-
tion Pg if

MM(Fz) >

SUpr L{;{'m)tn}(PX”;J
{(Px,8): Px +6="1Pg 5[0, P2)NnQ}

Pz — a.s.

A minimax optimal sequence of schemes, even when the
distribution Pz is completely known, is, in general difficult
to obtain explicitly. A fortiori, when this distribution is not
a priori given, the task may seem even more difticult. Nev-
ertheless. in the next section we describe a practical scheme
that assumes no a priori knowledge of the said distribution,
and yet is guaranteed to be minimax optimal whatever this
distribution may tum out o be.

3. DESCRIPTION OF THE DENOISER
Fora € [0,1]. 8 < 1/2,do € [0, 1] and d; € [0, 1] Fet

Fla,8,dy,dy) = [(1 =6 —a)(l—d)do+

1-25
(1=6 ~a}8d, + (e~ 8)8(1 —do) + (e —8)(1—8) (1 —dy)]-

In the single observation problem, for o € 6,1 — 4],
F{o,8,dy, dy) is readily venfied to be the expected loss of
a scheme which says 1 with probability dy upon observing
a zero and says 1 with probability d; upon observing a one;
when observing a Bemoulli({a. — &) /(1 — 24)) corrupted by
a BSC(8), so that the channel output is a Bernoulli{«).

Let now S be a finite subset of Z? containing the point
0 = (0,0). For a {0,1}-valued random field U(S) let
Fys) denote its distribution. For f : {0, 115 — [0,1] we
define now the functicnal G g by

GS (PU(S)aéwf) = (4)

> F(Puesy (Vo = les), 8, fles, 0), f(es, 1)) Pus)(es),

cs

where; 1) The summation is over ¢g € {0,1}5'0, ie., the
set of all 2151—1 possible “contexts” of Ug that U(S\ @)
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may assume. 2) (cs, @) denotes the binary S-tuple formed
by the “context” ¢s with the symbol e at location 0. 3)
PU(S) ([IQ = 1|CS} denotes Pr (Up = llUg\g = Cs)1 asin-
duced by the distribution Py (sy. 4) Pyy(s)(cs) is shorthand
for Pr (Ugs\o = cs). as induced by Py (s)-

Defing now further Jg and f3 by

Is (Pyisp A, f) = JIRE, s (Pusyd.f), 4

min

P e Al =
T5lPusy, A argf;{(l,l]s_’[g>ll

Js (Pysy, A f), (©)

selecting an arbitrary achiever when it is net unique. Let
further Ag (P(s;) be defined by

max {0 <8< 1/2: IPxs) 84 Pxysy* 6 = PU(S)} ,
(N

where Py ) *d denotes the distribution of the random field
obtained when corrupting X'(8), which is distributed ac-
cording to Px gy, by the BSC(d). Finally, let Qs[z™*"|
denote the unplncal distribution on binary S-tuples mduced

hy .Tﬂxﬂ le QL]; TILXH}(U'(S)) —

i € Vi 0 S+ C Vi, 2(S +4) = a(S)}
|{) € ‘/;ILXTL S+ g Vm.xn}l .

Equipped with this notation we now turn to describing the

image denoiscr. Let X"”‘” denote the m x n randomized
bm:uy imnage denoiser deﬁned for the ¢’s satisfying § + ¢ C
by
mxn

Xger(am Ml = f3 [Qe, [, As(x"*“)] (2(8+1)),
t)]

where we write Ag{z™*") as shorthand for A g (Qs [szn]) )

X7"(2™*")fi| can be arbitrarily defined for i’s with S -+
i g Vinxn. For space shortage we refrain from presenting
As(z™*") and f§[Pys), Al in closed form. Suffice it to
say that both have closed form expressions that are simple
to evaluate. For A s it is easy to obtain the input distribution
on a S-tuple giving rise to Qs|z™*"] when corrupted by
a BSC(4), and then taking the largest & for which the said
input distribution exists. This can be encapsulated particu-
larly compactly using matrix notation®. The closed form for
f3lPus)y, Al is available since Js in (5) can be expressed
in closed form and then the minimization in (6) can be re-
duced to a simple convex optimization problem involving
2151 [0, 1]-valued variables. (s[z™>"], which enters the
denoising decision in the right side of (8) both as the first
argument of f3 [+, -] and as the argument of Ag, is acquired .
before commencing with the denoising by going over the
image and counting the number of occurrences of each pat-
tem in {0, 1}° along the noisy image.

2The operator taking the distribution of a random field indexed by &
into the distribution of the same field cormupted by the BSC can be pre-
sented as the multiplication of the simplex vector representing the noise-
free distribution by the matrix which is the |S|-fold tensor product of the
2 x 2 matrix associated with the BSC.

* formance of the binary image DUDE in [1].

4. PERFORMANCE GUARANTEE
For » > 0 let B, denote the &5 ball of radius » in Z2, ie..

= {i € Z2 : ||i]la < r}. For m, n, we let our m X n
binary image denoiser be given by
(-mXn __ {rmxn
\unlv — Brfn ) &)

where the right side of (9) is specified in (8) and r(m, n) =
g{min{m,n}) for some function g.

The main theoretical result of our work. whose proof is
similar to that of [3. Theorem 1], is the following:

Theorem 1 The fumily of randomized binary image denois-
ers defined in (9) is universally minimax in the sense that
Jor all spatially siationary and -mixing random fields Pz,
there exists an unbounded increasing sequence wy, which is
a funciion of the mixing coefficients, such that if g() < w;
then MM(Fg) >

sup Lr‘{rn):u}(f.)x.(S) Pg—cu.s.
{{Px ) Px=f= Pz S€[0,A(P2)|nQ}

The reader is referred to [4. 5} for the definition of «-mixing
and its extension to random fields. as well as the broad range
of circumstances under which it holds (in fact, all processes
used n the modelling of images are -mixing). The reader
is referred to [3] for the explicit dependence of w; on the
mixing cocflicients for one-dimensional signals. the mukti-
dimensional case being similar. The sequence of schemes
defined in the above theorem is implementable with com-
plexity, with respect to both time and memory, linear in the
size of the image [6].

5. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

Theorem 1 guarantees the asymplotic performance of the
denoiser family {XX"}. The definition of this family
mvolved the function g, which only needed to satisfy an
asymptotic growth order condition and can be chosen arbi-
trarily on any finite subset of its domain. Thus, in practice, .
for finite images, the choice of the radius of the ball is sub-
ject to heuristics and experimentation (cf. discussion in [1.
Section 8]).

We have implemented the minimax binary immage de-
noiser (MMBID) of (9) for the case m = n = 2000, taking
r = /2 as the ball radius. More specifically, this implied
that the role of S in (8) is played by the 3 x 3 square sur-
rounding the origin. For the calculation of Ag, we let the
role of S be played by { 0,{-1,0),{-1,1).{0,1) }. There is
obviously a tradeoff between the size of the neighborhoods
S and the reliability of the associated empirical statistics.
The choices of S, described above, were taken for the ini-
tial experiments, detailed below, and future experimentation
will imvolve other choices of &. In particular, we have no
claim or reason to believe that our choices are optimal.

We compare the performance of the MMBID to the per-
In order to
implement DUDE in the unknown channel case we make
use of a scheme suggested in [2] for estimating the channel
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crossover probability 6. We will denote this estimatc of & as
ds. 1t is not hard to show that for every §, Ag < dg witha
strict inequality tor all but degenerate caseés. Furthermore, it
can be shown that as the image dimensions and then & be-
come large, As converges, from above, to the true A(Pz)
defined in (1).

The test image for our initial experimentation is a sec-
ond order Markov random field (MRF) with correlation pa-
rameter o, cf. |6] for the details of the generatton of these
fields. We have employed the MMBID on a test image of di-
mensions 2000 x 2000, and compared its performance with
that of the binary imnage DUDE of [L}. The DUDE was em-
ployed twice: once using 5, as was suggested in [2] for the
setting of channel uncertainty, and once using the true chan-
nel parameter §. This was done for several different chan-
nel parameters 8. Table 1 details the values of 85 and Ag

tor each chaimel. Denoising results are detailed in Table:2, -

which lists the normalized error rate of the denoised image.
relative to the origmal one. The results show that MMBID
oulperforms the DUDE using ds. and often does as well
as the DUDE with the true channel parameter 4, which is
shown to be optimal in {2, 1]. Table 3 shows a sample re-

. sult of denoising a text image using MMBID. As is seen,
the MMBID reduces the noise significantly, though does
not quite attain the performance of the optimum channel-
dependent DUDE. It is arguable. however, which of the two
reconstructions is of higher visual quality.

Channel parameter ¢ | 0.01 | 0.02 | 0.05 0.1
As 0.018 | 0.028 | 0.058 | 0.105

ds 0061 | 0.072 | 0.105 | 0.16

Table 1. & values and their estimates for noise corrupted
MRF with o = 0.05

Channel Parameters &
Scheme 001 | 002 [ 0.05 0.1
MMBID 0.011 | 0.017 | 0.035 | 0.069

DUDE(ds) | 0.018 | 0.023 | 0.046 | 0.07

DUDE() | 0.009 | 0.017 | 0.035 | 0.008

Table 2. Denoising results for MRF with v = 0.05

6. CONCLUSION

‘We have presented an algorithm for denoising binary im-
ages corrupted by a BSC of an unknown crossgver param-
eter. The algorithm is asymptotically optimal in a mini-
max sense appropriate for the case of channel uncertainty,
universally for all stationary sources with a mild mixing
constraint. The preliminary experimental results presented
seem to indicate that the denoiser has the potential of doing
well on real data.

The scheme and results can be generalized to non-binary
images, as well as to data indexed by higher-dimensional
index sets.

In a receni work [1], the authors introduced a discrete
universal denoiser (DUDE) for recovering a signal with
finite-valucd compencuts comrupted by fimite-valued, wn-
correlated noise. The DUDE is asymptotically optimal and

Inaraeeniworkilj tbeam&oanaermdatfkm_
‘universal degover (DUDEY. for Teenvariog a signal vk
it yalped rommporits comuptad by Tinite-valusd; oy
Lorrelated goipe. The DUDE is asyripiotically aptinat did -

Io a raccnf wark [1f. the. avthors inipoduced a dacrele
wuversal demerser (INE) {or weonsering a sigoal wiitt
fLaite-yvaloed compomwnts comupled by finite valued, un
uvorrelated nownz. 1he DUDE 15 asyssploticaBy aptimal and

Table 3. Denoising of a 1000 x 600 text image. For the
sake of space. we only show a 480 x 87 section of the im-
ages. The top image is the original image. next is the noisy
version where & = 0.1, then a denoised version using MM- .
BID with an error rate of .0479. and lastly for comparison,
the DUDE(4), i.c. with the true value, with an error rate of
.0329.
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