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ABSTRACT 

We consider the problem of demising a binary irnage cor- 
rupted by a noisy medium which flips each component in 
the original image. independently, to its complementary value 
with some lixed but unhown probahility 6 < 1/2. We pro- 
pose a dcnoiser which assumes no knowledge of statistical 
properties of the image. yet asymptotically attains the per- 
Sormancc 01- Ihc scheme rhat knows the uoisy image statis- 
tics and operates optimally in a minimax sense. The pro- 
posed scheme is iinplerneutable, with complexity linear in 
the image size. Preliminary experimental results are prc- 
sented which indicate that the scheme has the potential to 
do well on real data. 

1. INTRODUCTION 

In [l], a practical scheme for recovering a binary image 
from its noise-conupted version was presented. The scheme 
was shown to be universal in the sense of asymptotically, 
for large images, attaining optimum performance no matter 
what the statistics of the image  tun^ out to be. This scheme 
was obtained by generalizing the discrete universal denoiser 
(DUDE) of [2] to multi-dimensionally indexed data. The 
experimental results presented in [ l ]  showed that the algo- 
rithm outperforms other popular schemes for binary image 
demising on various types of binary images. 

The assumption of a known channel inherent in the struc- 
ture of the DUDE of [2] was inherited by the binary image 
denoiser of [l] .  which assumes knowledge of the channel 
crossover probability. This assumption is indeed a realis- 
tic one in many practical scenarios where the noisy medium 
through which the image is observed is wellcharacterized 
statistically. Furthermore, even in many applications where 
this is not the case, the simplicity of the scheme in [I]  al- 
lows for a practically designed " h o b  which, in real time, 
enables a human observer to subjectively select the recon- 
struction which looks best among all reconstructions cor- 
responduig to employing the scheme of [ l ]  for the whole 
range OS possible noise characteristics. Thus, in practice, 
the scheme of [ I ]  is effective for denoising under channel 
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uncertainly in applications whcre it is reasonable to e x p t  
awilnhility of "feedback" on the quality of recomtmction. 

On the other haid. such lcedback 011 the quality o l  re- 
ccmlruction is not realistic in other scenarios, such as those 
involving processing of large databases of noisy iinagcs. or 
those involving texture images. where human lcedback rnay 
be too subjective. I n  such cases, an automated algorithm for 
image dcnoisiiig is sought. which will accommodate uncer- 
tainty i n  the statistical characteristics of the noisy medium. 
With this motivation, the c u e  o l  uncertainty in the charmcl 
characteristics. in addition to the uncertainty in the distrihu- 
tion of the noise-lrec signal, was recently studied in [31. It 
was shown that in this setting the task of attaining the per- 
fonn'mce of the optimum nowuniversal Bayesim scheme. 
which was shown to be attainable in the setting of 121. is 
impossible, even for a "genie-aided" scheme with complete 
knowledge of the noisy signal statistics. Under these cir- 
cumstances, the criterion suggested for judging the perfor- 
mance of a denoising scheme was its worst case perfor- 
mance under all noise-free source distributions and chan- 
nels consistent with the noisy source distribution. This is 
a lower bound on attainable performance for the setting of 
channel uncertainty. 

In this work, we present the practical binary image de- 
noiser obtained by extending the scheme of [3] to two- di- 
mensionally indexed data. We stan by introducing notation, 
definitions. and a concrete formulation of the problem in 
Section 2. Section 3 describes the suggested binary image 
denoiser, which we show in Section 4 to be asymptotically 
optimal in the minimax sense that we argue most appropri- 
ate for the present setting of noise distribution uncertainty. 
We discuss the implementation of.the scheme and report 
encouraging preliminary experimental results in Section 5. 
We conclude in Section 6 by summarizing and mentioning 
directions in which our scheme and results can he extended. 

2. NOTATION AND DEFINITIONS 
Throughout we assume the components of the clean, as well 
as those of the iioiseconupted image, take their values in 
{0,1}. We assume that the noiseless image is corrupted 
by a binary symmetric channel (BSC) with an unknown 
crossover probability 6 < 1/2. That is to say that each 
component in the noise-free image is flipped to the com- 
plementary value with probability 6, independently of other 
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components. 
A binary Oriagr, or simply irrrcrye. is a two-dimensional 

array of {O,l}-valued components. We let x = { : c ~ } ~ ~ A A  
denote a1 infinite noise-free image and z = {zi}iEN? its 
noise-cormpted version. where N is the set of positive in- 
tegers. For any s c N' we also denote z(s) = { s ~ } ~ , s  
and +(S) = (z iJ iEs.  Thus : c ( S )  is an ISI-dimensional vec- 
tor, with { O ,  I}-valucd components that are indexed by the 
elements of S. We let {0,1}" denote the set nf all such ISI- 
dimensional vectors. For ' r n ,  11. E W let V,,, denote the 
' r n  x 71. rectangle v,,,,,, = {i. = ( i z , i y )  E iV : i, 5 
r n ,  i, 5 71.}. TI) simplify notatinn we shall write : I ^ , ~ , ~ , ,  
for z(Vmx,,), aid z m t x n  for +(Vmx,,). We will also write 
{ O ,  l}"'x'' for (0, l}";7ixrL. For S C Z' and i E N' we Ict 
S + i = { j  + i : j E S} denote the i'shift of S. 

A rmrdotuized ' ru  x n hinary briage rleriuis~r is a map- 
ping ,T"lxrz : ( 0 ,  l}""" - [0, I ] " ' x " .  The interpretation 
is that upon seeing thc noisy signal z,, ,~, ,  t (0, I } " ' x " .  
the reconstruction at the i-th location is I wirh probahil- 
i ty f n Z x "  (z", ,, ) [ i ]  .where 2?rf' (& ,, ) [ij dcnotes the 
component o l ~ k r " x 8 ' ( z , ~ , x , ~ )  at the i-th location. Thus. Ibr 
: I ^ , , , ~ , ~ , Z , , , ~ , ,  E { O , I } " ' x "  wedenote 

which is the normalized expected number of errors that will 
be made by the imagc denoiser when the observed 
noisy image is zmX7& and the underlying one is :cmxn.  the 
expectation taken with respect to the randomization'. 

For a family of binary image denoisers {2"""'} = {Tmxn}m,n and a binary random field X = { S i } i E ~ z  dis- 
tnbuted according to PX let 

L{,t-.",(Px,6) = 

limsupEr,,a [L,~.,,..(X,,,, Zmx,)lZ] , 
m,n-m 

where EPx,d denotes expectation when X - Px and Z is 
the BSC(&)-corrupted version of X. 

Let Z = { Z i } i E N ~  be a spatially stationary binary ran- 
dom field and let PZ denote its distribution. Denote further 

A(&).= max ( 0  5 6 5 1/2 : W x  s.t. Px * 6 = Pz}, 
(1) 

where PX * 6 denotes the distribution of a random field 
distributed according to PX and corrupted by a BSC(6). 
In words, A(&) is the largest channel crossover proba- 
bility consistent with PZ in the sense of the existence of 
a field giving rise to this distribution when corrupted by a 

'Though io the setting of 111 there WBE nothing tobe gained by the ron- 
sideration of randomized denoisers (the optimum distribution-depcndent 
scheme is always nowrandomized and the universal scheme of [ I 1  was 
also non-randomized). for the channel uncectahty sening of cur present 
work randomized schemes play a key mle and, in fact, mininwX optimal 
schemes (in senses defined below) will. io general. be randomized. 

BSUA(Pz)). Define now MM(PZ) = 

(2) 
the minimum being over all possible families of sliding win- 
dow binary image denoisers. i.e. denoiscrs that einplny space 
invariant filters that depend on a finite number of ohserva- 
tions. and Q denotes the set of rationals. By its definition. 
MM(Pz) is an absolute lower bound on the asymptotic per- 
lormaice o l  any family of slidiig window denoisers, evcii 
a "gcnie-aided" one that has access to the noisy iinage dis- 
tribution Pz, in the SCIISC that fnr every such 1-mily there 
exists a clean image source Px that gives rise to PZ when 
corrupted by some BSC(6). 0 5 6 5 112. and such that 

L(~Tn,,",(PX.6) 2 MM(Kk) U . R .  (3) 

under that source. We shall thus say that a family of imagc 
dcnoisers is ~II~II~III~.~ optiilrol,pir the noisy briirge dislribu- 
t im  P, if 

A minimax optimal sequence of schcines. even wheii the 
distribution Pz is completely known. is. in  general difficult 
to obtain explicitly. A Ibrtiori. when this distribution is not 
a priori given. the task may seem even more difficult. Nev- 
ertheless. in the next section we describe a practical scheme 
that assumes no a priori knowledge of the said distribution, 
and yet is guaranteed to be minimax optimal whatever this 
distribution may tum out to be. 

3. DESCRIPTION OF THE DENOISER 
For a E [0,1]. 6 < 1/2, do E [0,1] and d l  E [0, I] let 

1 
1 - 26 

[(l - 6 - a ) ( Y -  &)do+ F(a36,do,d1) = - 

(1 - 6 -a )6d1  +(a 7 6)6(1 -do) + (a  - 6 )  (1 - 6) (1 - dl )]. 
In the single observation problem, for LY E [6,1 - 61, 
F(a,  6, do, d,) is readily verified to be the expected loss of 
a scheme which says 1 with probability do upon observing 
a zero and says 1 with probability dl upon observing a one; 
when observing a Bemoulli((a - 6)/(1 - 26)) cormpted by 
a BSC(6). so that the channel output is a Bemoulli(a). 

Let now S be a fmite subset of Z2 containing the point 
0 = (0,O). For a {0, l}S-valued random field U ( S )  let 
PLI(s) denote its distribution. For f : {0, l}s + [O, 11 we 
define now the functional G s  by 

Gs (Pu(s), 6, f) = (4) 

where: 1) The summation is over cs E {O , l } s \o ,  i.e.. the 
set of all 2is1-' possible "contexts" of U0 that U ( S  \ 0) 
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may assume. 2) ( C S ,  a )  denotes the hinary S-tuple formed 
by the "context" cs with the s mbol a at localion 0. 3) 
P,,(~) (tio = 1lcs)denotesPr ho = iicr,,, = cs).asin- 
duced by thc distribution P u ( ~ ) .  4) PU(q(cs)  is shorthand 
for Pr = cS),  as induced by P ~ ( ~ ) .  

Dcfiiie now funher J S  and fz by 

selecting ai arhitrxy achiever when it is not unique. Int 
further A, (Puts)) he defiiied by 

m a x { ~  5 6 5 l j ~  : wx(.s) s.t. i'ytS) * 6  = PU,s ) } ,  
(7) 

where P.,-(s) * 6 denotes tho distribution of the random field 
obtained when cormpling S(S), which is distributed ac- 
cording to J'.y!s), by the ASC(6). Finally. le1 Qs[z ' " " " ]  
dciiotc the empirical distribution on binary S-tuples induced 
hy fnix'', i.e., Qs[z""""](t,.(S)) = 

~(rEv;r , , , ,  :S+ i~v , , . , , , ; (S+ i )=1L(S) }~  
I{ i  t v,,,,,, : S+% c V",,,,)l 

Equippcd with this notation we now tum to describing the 
image deiioiser. 1x1 2;"" denote the 7. x 1% raidomized 
binary iinage denoiser defined for the a's satisfying S + i c 
Vmxn by 

, ~ ~ " " ( z " " " " ) [ i ]  = fz [Qs[ tmxn] ,As (zmxn  )] (z(S+i)), 
( 8 )  

where wewriteAs(zmx") asshonhandforns (Qs[zmXn]). 

I (z"""")[i] can be arbitrarily defined fori's with S + 
i V,,,. For space shortage we refrain from presenting 
A s ( P x n )  and f;[Pu(s), A] in closed form. Suffice it to 
say that both have closed form expressions that are simple 
to evaluate. For A s  it is easy to obtain the input distribution 
on a S-tuple giving rise to Qs[zmxn] when cormpted by 
a BSC(6), and then taking the largest 6 for which the said 
input distribution exists. This can he encapsulated pxticu- 
larly compactly using matrix notation'. The closed form for 
f;[Pu(s),A] is available since J s  in ( 5 )  can be expressed 
in closed form and then the minimization in (6) can be re- 
duced to a simple convex optimization problem involving 
21sI [O,l]-valued variables. Qs[z"""], which enters the 
denoising decision in the right side of (8) both as the first 
argument off; [., .] and as the argument of AS, is acquired 
before commencing with the denoising by going over the 
image and counting the number of occurrences of each pat- 
tem in {0,1}' along the noisy image. 

pmxm 

ZThe operator sing the distnbution of B random field mdrxed by S 
into the disuibution of the same field cormptted by the BSC can be pre- . .  
sented as the multiplication of the simplex vector representing the noise- 
free distnbution by the mtnn which is the ISI-fold tensor product of the 
2 x 2 maltix associated with the BSC. 

4. PERFORMANCE GUARANTEE 
For r 2 0 let B, denote the (2 ball of radius 1' in 7%'. i.e.. 
E,. = {i E Z2 : l l d l l n  5 T } .  Form, 7%. we let our 'nt. x n 
binary image deiioiser be given by 

where the right side of (9) is specified in ( X I  and r(riJ.;n) = 
g(inin{m, , I ( } )  for some function 9. 

Thc main theoretical result of our work. whose proof is 
similar to that of [3. Theorem I]. is the following: 

Thenrem 1 Tliefiirriil? ufmnrlunii~nl biiiar7 imige ilenois- 
rrs rlefined in ( 9 )  is uiiiver-.sdl? iiiininiux in the S P I I S ~  tho/ 
jur  all sparial/? strrtionory orid $-iiii.xing run~luirifirlds Pz, 
rhere e-xisrs an unhounded increosing sequence w t .  which is 
irfuncrion ofthe trii.ring coeflicienrs, such r k u r  q g ( t , )  5 tlJt. 
thoz MM(lJZ) 2 

The readcr is referred to 14. 51 fixthe definition of &mixing 
and its extension to random fields. :IS well as thc broadrange 
of circunistuices under which i t  holds (in fact. all processes 
used in the modclling 0 1  images arc .$-mixing). The reader 
is rcferred to [3] lor the explicit dependence of ut on the 
mixing cociiicicnls for one-dimensional signals, the multi- 
dimensional case being similar. The sequence of schemes 
defined in the above theorem is implementable with coin- 
plexity. with respect to both time and memory. linear in the 
size of the image [GI. 

5. IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

Theorem 1 guarantees the asymptotic performance of the 
denoiser family {k:;"}. The definition of this family 
involved the lunction g. which only needed to satisfy an 
asymptotic growth order condition and can be chosen arb- 
trarily on any finite subset of its domain. Thus, ill practice. 
for finite images, the choice of the radius of the ball is snb- 
j e a  tu heuristics and experimentation (cf. discussion in [I. 
Section 81). 

We have implemented the minimax binary hnage de- 
noiser (MMBID) of (9) for the case m = n = 2000. taking 
T = fi as the ball radius. More specifically, this implied 
that the role of S in (8) is played by the 3 x 3 square sur- 
rounding the origin. For the calculation of As,  we let the 
roleofS beplayedhy { 0, ( - l , O ) , ( - l ,  l ) . ( O , l )  }. There is 
obviously a tradeoff between the size of the neighborhoods 
S and the reliability of the associated empirical statistics. 
The choices of S, described above. were taken for the ini- 
tial experiments, detailed below, and future experimentation 
will involve other choices of S. In particular, we have no 
claim or reason to believe that our choices are optimal. 

We compare the performance of the MMBID to the per- 
formance of the binary image DUDE in [I]. In order to 
implement DUDE in the unlolown channel case we make 
use of a scheme suggested in [2 ]  for estimating the channel 
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crossover prohahility b. We will denote this estimate of 6 as 
&. It is not hard to show that for every S, A s  4 8s with a 
strict inequality for all hut degenerate cases. Furthermore. it 
can be shown that as the image dimensions and then S be- 
come large. & converges, from above. to the true A(Pz)  
defined in ( I ) .  

The test image for our initial experimentation is a sec- 
ond order Markov random licld (MRD with correlation pa- 
rameter 0, cf. I61 for the details of the generation of these 
fields. We have employed the MMBID 011 a test image ofdi- 
mensions 2000 x 2000. arid compared its perfonnmcc with 
that of the binary image DUDE of [ I]. The DUDE was e u -  
ployed twice: once using cis, as was suggested in [2] for the 
setting ofchatinel uncertainty, aid once using the true chaw 
ne1 paramctcr 6. This was done for several difl%renl chati- 
ncl parmeters b. Table 1 detiuls the values of aid AS 
for each channel. Denoising results are detailed in Tahle.2. 
which lists the normalized error rate of the dcnoised image. 
relative I o  Ihc original one. The results show that MMBID 
outpcrfurms the DUDE using &, aid often does as well 
as the DUDE with the’ true channel paramctcr 8, which is 
shown to be optimal in [2. I ] .  Table 3 shows a sample re- 
sult of dennising a text iinage using MMBID. As is seen. 
the MiMBID reduces the noise signilicmlly. though does 
1101 quite attain the perCormmce of the optimum chainel- 
depndeiit DUOE. It is xguahle. however. whichof the two 
reconstmctions is of higher visual quality. 

Channel parameter6 I 0.01 I 0.02 I 0.05 I 0.1 
As I 0.018 I 0.028 I 0.058 I 0.105 
sc I 0.061 I 0.072 I 0.105 I 0.16 

Table 1. d values and their estimates for noise corrupted 
MKF with U = 0.05 

I Scheme I 0.01 I 0.02 1 0.05 I 0.1 1 
MMBID 1 0.011 I 0.017 I 0.035 I 0.069 

DUDE(6.q I 0.018 I 0.023 I 0.046 I 0.07 
DUDE(6) I 0.009 I 0.017 I 0.035 I 0.068 

Table 2. Denoising results for MRF with a = 0.05 

6. CONCLUSION 
We have presented an algorithm for denoising binary im- 
ages corrupted by a BSC of an unknown crossover param- 
eter. The algorithm is asymptotically optimal in a mini- 
max sense appropriate for the case of channel uncertainty, 
universally for all stationary suurces with a mild mixing 
constraint. The preliminary experimental results prcsented 
seem to indicate that the denoiser has the potential of doing 
well on real data. 

The scheme and results can be generalized tu non-hinary 
images, as well as to data indexed by higherdimensional 
index sets. 

In a meat wmk [I], the authors inmxluced a dixcrefe 
univwsal denoiser (DUDE) for a signal with 
finite-valucd components .b--pt.d by finite-valuad, in- 
marelated noise. TIE DUDE is asymptoticdy optimal and 

. .  &adeof-.*~ .ftj:,& .+ -w.e~-*&& 
..xinwal+ ~L?>EJ. a .&a~ 
.*m&Kd .+F+?D+~&~by.. &if&* .e. 
~ @ & t C 3 ~ c  &WE ia a&di>@$i& p&ud eh4- 

lo ‘ B  I d  ?,n& I IJ. Ibe. mlJlborj il”l a duwuk 
mnwsal dmouw (Dt.q)E) t i  rc-n...erinp a Cipal L ~ I  

6Ji tcr-&d c o q m m a i ,  ~mrplerl %y li~ik-dud, m 
mlakd ma:. Ibc DUUE is aqt0;lbt~ally @bal and 

Table 3. Denoising of a 1000 x 600 text image. For the 
sake of space. we only show a 480 x 87 secdoo of the im- 
ages. The top image is the original image. next is the noisy 
version where 6 = 0.1. then a denoised version using MM- 
RID with an error rate of ,0479. and lastly for comparison, 
the DUDE(b). i.e. with the true value. with an error rate of 
,0329. 
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