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Universal Filtering Via Hidden Markov Modeling
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Abstract—The problem of discrete universal filtering, in which
the components of a discrete signal emitted by an unknown source
and corrupted by a known discrete memoryless channel (DMC)
are to be causally estimated, is considered. A family of filters are
derived, and are shown to be universally asymptotically optimal
in the sense of achieving the optimum filtering performance when
the clean signal is stationary, ergodic, and satisfies an additional
mild positivity condition. Our schemes are comprised of approxi-
mating the noisy signal using a hidden Markov process (HMP) via
maximum-likelihood (ML) estimation, followed by the use of the
forward recursions for HMP state estimation. It is shown that as
the data length increases, and as the number of states in the HMP
approximation increases, our family of filters attains the perfor-
mance of the optimal distribution-dependent filter. An extension
to the case of channels with memory is also established.

Index Terms—Finite alphabet, forward–backward recursion
state estimation, hidden Markov process (HMP), maximum-likeli-
hood (ML) parameter estimation, randomized scheme, stochastic
setting, universal filtering.

I. INTRODUCTION

THE problem of estimating a discrete-time, finite-alphabet
source signal from the entire observation of a

noisy signal , which has been corrupted by a known dis-
crete memoryless channel (DMC), has been thoroughly studied
recently in [21]. It has been shown that even though the source
distribution is unknown, an algorithm called DUDE can univer-
sally achieve the asymptotically optimal performance. This re-
sult has been extended in various directions such as the case of
channel uncertainty [9], the case where the channel has memory
[22], the case of nondiscrete noisy signal components [6], and
the case where the reconstruction is required to depend causally
on the noisy signal [18], [19]. In this paper, we revisit the last
case, taking a different approach from [18], [19].

The case where we estimate causally based on observa-
tion of the noisy signal , is referred to as
filtering. The filter can be either deterministic or randomized
(a concept that will be explained in detail later). In this paper,
we will only focus on the stochastic setting, where we assume

is a stationary and ergodic stochastic process. With the
stochastic setting assumption, and under the same performance
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criterion of [21], i.e., minimizing the expected normalized cu-
mulative loss, knowledge of the conditional distribution of
given at each time is required to achieve the optimal per-
formance. Also, by the same argument as in [21, Sec. III], this
conditional distribution can be obtained by the conditional dis-
tribution of given when the invertible DMC is known.
(We call a channel “invertible” if its transition probability ma-
trix is of full row rank.)

However, for the universal filtering setting, where the proba-
bility distribution of the source is unknown, the conditional dis-
tribution of given is also not known and needs to be
learned from the observed noisy signal. Therefore, if we can
learn this conditional distribution accurately as the observation
length increases, we can hope to build the universal filtering
scheme that achieves the asymptotically optimal performance
from the estimated conditional distribution. To pursue this goal,
[18], [19] adopt the universal prediction [15] approach. That is,
they first get an estimate of the conditional distribution of
given by employing a universal predictor for the observed
noisy signal, and then, by inverting the known DMC, obtain an
estimate of the conditional distribution of given .

Unlike the approach of [18], [19], in this work, we turn our
attention to the rich theory of hidden Markov process (HMP)
models to directly obtain a different kind of estimate of the con-
ditional distribution of given , without going through the
channel inversion stage.1

Generally, HMPs are defined as a family of stochastic pro-
cesses that are outputs of a memoryless channel whose inputs
are finite-state Markov chains. As can be seen in [7], these HMP
models arise in many areas, such as information theory, commu-
nications, statistics, learning, and speech recognition. Among
these applications of HMPs, there are many situations where
the state of the underlying Markov chain need be estimated
based on the observed HMP. If the exact parameters of the HMP,
namely, the state transition probability of the Markov chain and
the channel transition density, as well as the order, the number
of states, of the Markov chain are known, then this problem can
be easily solved via well-known forward–backward recursions
which were discovered by [4] and [2]. Especially, when we are
estimating the state based on the causal observation of the HMP,
we only need the forward recursion formula. In addition, much
work has been done for the state estimation, where the order
is known, but the parameters of the HMP are unknown. In this
case, the parameters are first estimated via maximum-likelihood
(ML) estimation or the expectation–minimization (EM) algo-
rithm, then the state is estimated by using the estimated param-
eters in the recursion formula. A detailed explanation of this ap-
proach and the property of the ML parameter estimation can be
found in [2], [3], [12], [8]. Furthermore, this was extended to the

1A part of this work was presented in [17].
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case where the order of the Markov chain is also not known, but
the upper bound on the order is known. In this case, the order
estimation is first performed before the parameter and state es-
timation, and the above process is repeated. The references for
the order estimation are given in [11], [13], [20]. There also has
been work for the case where even the knowledge of the upper
bound on the order of the Markov chain is not required [8], [23].

From these rich theories for the state, parameter, and order
estimation of HMPs, we can see that it is possible to build a uni-
versal filtering scheme if the underlying source process is known
to be a Markov process. That is, since the channel is memoryless
and fixed in our setting, if our source is a Markov process,
then obviously, is an HMP, and we can first estimate the
order2 of the Markov process, then estimate the parameter, and
finally perform forward recursion to learn the conditional dis-
tribution of given . From the consistency results of order
estimation and parameter estimation, this conditional distribu-
tion will be an accurate estimate of the true one, and we can use
it to build the universal filtering scheme.

Now, in our work, we extend this approach to the case where
our source is a general stationary and ergodic process
(with some benign conditions), which need not be a Markov
process at all, and show that we can still build a universal
filtering scheme that achieves asymptotically optimal perfor-
mance. The skeleton of our scheme is the following: We first
“model” our source as a Markov process with a certain order, or
equivalently, model the noisy observed signal as an HMP
in a certain class. Then, we estimate the parameters of the HMP
that “approximates” the noisy signal best in that class. We will
show that from the consistency result about the ML parameter
estimation for the mismatched model [8], these estimated
parameters will give an accurate estimation of the conditional
distribution of given , as the observation length increases
and the HMP class gets richer. Then, this result will guarantee
that our universal filter using this conditional distribution will
attain the asymptotically optimal performance. In practice,
this approach of HMP modeling has been heuristically em-
ployed in many applications, such as speech recognition [25],
target tracking [26], and DNA sequence analysis [27], without
theoretical justification. Additional samples of these practical
applications can be found in [28]. Therefore, we focus on pur-
suing the rationale of the existing practical methodologies, and
the main contribution of this work is in providing theoretical
justification of the HMP modeling based approach to universal
filtering.

The remainder of the paper is organized as follows. Section II
introduces some notation and preliminaries that are needed for
setting up the problem. In Section III, the universal filtering
problem is defined explicitly. In Section IV, our universal fil-
tering scheme is devised, the main theorem is stated, and proved.
Section V extends our approach to the case where the channel
has memory. Section VI gives discussions on our filter, and Sec-
tion VII concludes the paper with some related future direc-

2We slightly abuse the term “order” here. Generally, the order of a “finite-state
Markov chain” stands for the number of states, but we also refer by the “order of
a Markov process” to the length of the memory of the process. Hence, once we
know the order of a Markov process, we also know the order of the associated
finite-state Markov chain induced from the Markov process.

tions. Detailed technical proofs that are needed in the course
of proving our main results are given in the Appendices.

II. NOTATION AND PRELIMINARIES

A. General Notation

We assume that the clean, noisy, and reconstruction signal
components take their values in the same finite -ary alphabet

. The simplex of -dimensional column
probability vectors will be denoted as .

The DMC is known to the filter and is denoted by its transition
probability matrix . Here, denotes
the probability of channel output symbol when the input is .
We assume , and let . We
assume this channel matrix is invertible and denote the inverse
as . Let denote the th column of . We also assume
a given loss function (fidelity criterion) , rep-
resented by the loss matrix , where
denotes the loss incurred when estimating the symbol with the
symbol . The maximum single-letter loss will be denoted by

, and will denote the th column
of .

As in [21], we define the extended Bayes response associated
with the loss matrix to any column vector as

where denotes the minimizing argument, resolving
ties by taking the letter in the alphabet with the lowest index.

We let denote the true joint probability law of the clean
and noisy signal, and denote expectation with respect to

. Throughout the paper, every almost sure convergence is with
respect to , and any equalities or inequalities between random
variables should be understood in almost sure sense. If we need
to refer to the probability law of clean or noisy signal induced
by , we denote and , respectively. If is written in
a bold face, , with a subscript, it stands for a simplex vector
in for the corresponding distribution of the subscript. For
example, is a column -vector whose th component is

.
When we have some other probability law denoted as , and

want to measure its difference from , a natural choice of such
a measure is the relative entropy rate. First, denote the th-order
relative entropy between and as

Then, the relative entropy rate (also known as Kullback–Leibler
divergence rate) is defined as

if the limit exists. When is a probability law in a certain class
of HMPs, this limit always exists and the relative entropy rate is
well defined. A more detailed discussion about this limit will be
given in Lemma 2. This relative entropy rate will play a central
role in analyzing our universal filtering scheme.

B. Hidden Markov Processes (HMPs)

1) Definition: As stated in the Introduction, the HMPs are
defined as a family of stochastic processes that are outputs of
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a memoryless channel whose inputs are finite-state Markov
chains. Let us denote a general HMP as and the underlying
finite-state Markov chain as . The corresponding alphabet
sizes of each component are denoted as and , respec-
tively. Then, there are three parameters that determine the
probability laws of : , the initial distribution of
finite-state Markov chain; , the probability transi-
tion matrix of finite-state Markov chain, and , the
probability transition matrix of the memoryless channel. The
triplet is referred to as the parameter of HMP. Let

be a set of all ’s where . For each and
each realization , we can calculate the likelihood function

where is diagonal matrix whose th entry is
the th entry of , and is the vector with all
entries equal to .

Now, suppose is an output of a DMC , when the input
is a stationary Markov process . For simplicity, we assume
that the alphabet of each component of and are finite
and equal, i.e., . When the order of the underlying
Markov process is , we can associate the state of underlying
finite-state Markov chain with , which has alphabet size

. Then, clearly, is also a stationary HMP, and the pa-
rameter set of such HMP is denoted as . Note that when

, , , and .
Furthermore, for some , we define a set as the
set of that has following properties: for the th -tuple
state and the th -tuple state

• , if is equal to ;
• , otherwise;
• , for all and ;

where is the th entry of , and is the th
entry of . In particular, if then: 1) the stochastic
matrix is irreducible and aperiodic; thus, since the Markov
chain is stationary, is the stationary distribution of the
Markov chain, and is uniquely determined from , 2) is
the same for all , and, therefore, is completely specified by

. For notational brevity, we omit the subscript and denote
the probability law , if , and .

2) Maximum-Likelihood (ML) Estimation: Generally, sup-
pose a probability law is in a certain class . Then, the

th-order ML estimator in for the observed sequence , is
defined as

resolving ties arbitrarily. Now, if , then there is an al-
gorithm called expectation–maximization (EM) [4] that itera-
tively updates the parameter estimates to maximize the likeli-
hood. Thus, when is in the class of probability laws of a HMP,
the ML estimate can be efficiently attained.3 We denote the ML
estimator in based on by

3We neglect issues of convergence of the EM algorithm and assume that the
ML estimation is performed perfectly.

Obviously, when the -tuple is random, is also a
random probability law that is a function of .

3) Consistency of ML Estimator: When , an ML
estimator is said to be strongly consistent if

a.s.

The strong consistency of the ML estimator of the pa-
rameter of a finite-alphabet stationary ergodic HMP was proved
in [1]. For the case of a general stationary ergodic HMP, the
strong consistency was proved in [12].

We also have a sense of strong consistency for the case where
is a general stationary and ergodic process. By the similar

argument as in [8, Theorem 2.2.1], we have the consistency in
the sense that if the observed noisy signal is not necessarily an
HMP, and we still perform the ML estimation in , then we
get

a.s. (1)

where4

This second consistency result is the key result that we will use
in devising and analyzing our universal filtering scheme.

III. THE UNIVERSAL FILTERING PROBLEM

As mentioned in the Introduction, we will assume a stochastic
setting, that is, the underlying clean signal is an output of some
stationary and ergodic process whose probability law is .
From and , we can get the true joint probability law
and the corresponding probability law of noisy observed signal,

. That is

and

A filter is a sequence of probability distributions ,
where . The interpretation is that, upon observing

, the reconstruction for the underlying, unobserved is repre-
sented by the symbol with probability . The notation

stands for the th element of a vector . A filter
is called deterministic if is a standard basis vector in
for all and , and randomized if can be any vectors in

other than standard basis vectors for some and . The nor-
malized cumulative loss of the scheme on the individual pair

is defined by

4Just as in [8, Theorem 2.2.1], the notion of a.s. set convergence is used. For
any subset E � �, define E fQ 2 � : d(Q; E) < �g, where d is the
Euclidean distance. Then, lim Q̂[Z ] 2 E a.s. if for all � > 0;9N(�; !)
such that for all n � N(�; !); Q̂[Z ] 2 E :
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where

Then, the goal of a filter is to minimize the expected normalized
cumulative loss .

The optimal performance of the th-order filter is defined as

where denotes the class of all filters. Subadditivity arguments
similar to those in [21] imply

By definition, is the (distribution-dependent) op-
timal asymptotic filtering performance attainable when the
clean signal is generated by the law and corrupted by

. This can be achieved by the optimal filter
where

For brevity of notation, we denote . Note
that this is a deterministic filter, i.e., for a given , the filter is
a standard basis vector in for all . We can easily see that
this filter is optimal since it minimizes for all
, and thus, it minimizes for all .

As can be seen, needs the exact knowledge of ,
and thus, is dependent on the distribution of the underlying clean
signal. The universal filtering problem is to construct (possibly
a sequence of) filter(s), , that is independent of the dis-
tribution of underlying clean signal , and yet asymptotically
achieving . We describe our sequence of universal fil-
ters in the next section.

IV. UNIVERSAL FILTERING BASED ON

HIDDEN MARKOV MODELING

A. Description of the Filter

Before describing our sequence of universal filters, we make
the following assumption on the source.

Assumption 1: There exists a sequence of positive reals ,
such that as , and satisfies

a.s. (2)

For any probability law , we construct a randomized filter
as follows: For , denote -ball in as

. Then, we define a filter for fixed as

(3)

where is a random vector, uniformly distributed in
. For brevity of notation, we denote .

This filter is randomized since depending on and ,
can be a probability simplex vector in that is not a standard

basis vector. The reason we needed this randomization will be
explained in proving Lemma 3.

To devise our filter, let us first consider an increasing se-
quence of positive integers that satisfies following
conditions:

(4)

Now, define

Then, given that our source distribution satisfies (2), and for
fixed , define a random probability law

(5)

That is, is the ML estimator in based on . As
discussed in Section II-B.1, we only need to estimate the state
transition probabilities of the underlying Markov chain to ob-
tain this ML estimator, and this can be done by the EM al-
gorithm. Performing the EM algorithm requires iterative for-
ward–backward recursions, and is the most expensive part of our
scheme in terms of the complexity. However, since the recur-
sions are efficiently implemented by linear complexity dynamic
programming (a.k.a. the Bahl–Cocke–Jelinek–Raviv (BCJR) al-
gorithm), which is described in detail in [4], the overall com-
plexity of our scheme is still linear in data length. Once we get

, we can then calculate , which stands for the simplex
vector in whose th component is . This
vector can be obtained again from using the forward-recursion
formula. Note that we get this conditional distribution directly,
not by first estimating the output distribution, and then inverting
the channel, as was done in [18], [19], [21].

Finally, we take as our sequence of universal filtering
schemes, indexed by and

The following theorem states the main result of this paper.

Theorem 1: Let be a stationary, ergodic process
emitted by the source which satisfies Assumption 1. Let

be the output of the DMC, , whose input is .
Then

a) a.s.

b)

Remark: In defining our universal filter , one might
intuitively think that it would be better to use the ML estimator
that updates every point of time, i.e., to define .
However, our definition of , namely, using the same ML es-
timator throughout each block, is crucial for our proof of the
above theorem, especially for proving Corollary 1 that follows
below. Besides this technical reason, updating the ML estimator
every time would require higher complexity than our scheme
requires.



696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008

B. Intuition Behind the Scheme and Proof Sketch

The intuition behind our scheme parallels that of the uni-
versal compression and universal prediction problems in the sto-
chastic setting. In the th-order problem of both cases [5], [14],
the excess expected codeword length per symbol, and the ex-
cess expected normalized cumulative loss incurred by using the
wrong probability law in place of the true probability law
could be upper-bounded by the normalized th-order relative
entropy . Then, to achieve the asymptotically op-
timum performance, the compressor and the predictor try to find
and use some data-dependent that makes
as , that is, makes zero.

We follow the same intuition in our universal filtering
problem. For fixed and , our scheme, as can be seen from
(5), divides the noisy observed signal into subblocks of length

. Since tends to zero as , the length
of each subblock grows faster than exponential. Now, to filter
each subblock, it plugs the ML estimator in obtained
from the entire observation of noisy signal up to the previous
subblock. From (1), we know that as the observation length

increases, this ML estimator will converge to the parameter
that minimizes the relative entropy rate between the true output
probability law . Then, to show that this scheme achieves
the asymptotically optimum performance, we bound the excess
expected normalized cumulative loss with this relative entropy
rate, and show that the bound goes to zero as the HMP param-
eter set becomes richer, that is, increases.

To be more specific, we briefly sketch the proof of our main
theorem. Part b) of Theorem 1 states that our scheme is asymp-
totically optimal. As described in the proof of Theorem 1, it is
not hard to show that Part b) follows directly from Part a) and
Fatou’s lemma. Therefore, proving Part a) is the key in proving
the theorem. Part a) states that in the limit, the normalized cu-
mulative loss of our scheme, for almost every realization, is less
than or equal to the asymptotically optimum performance.

To prove Part a), we first fix and , and get the following
inequality:

a.s. (6)

where is some function such that as ,
and then .5 There are two keys in getting this inequality.
The first one is to show the concentration of
to its expectation which will be shown in Lemma 3 and Corol-
lary 1. The second is to get the explicit upper bound function

which will be based on Lemma 4. Once establishing
this inequality, we show that

a.s. (7)

from Lemma 5 and then send to get Part a). Keeping this
proof sketch in mind, let us move on to the detailed proof in the
next section.

5Note that Q inDDD(P kQ ) is a function of Z , and thus, is random.
A more formal definition of relative entropy rate between true and the random
probability law like this case will be given after Lemma 4.

C. Proof of Theorem 1

Before proving the theorem, we introduce several lemmas as
building blocks. Lemmas 1 and 2 below give some general re-
sults for the HMPs that we are considering. Our lemmas are
similar to [8, Lemma 2.3.4] and [8, Theorem 2.3.3]. The latter
assumed that all the parameters are lower-bounded by ,
whereas in , some parameters can be zero. We take this into
account in proving Lemmas 1 and 2. Lemma 3 shows the uni-
form concentration property of the normalized cumulative loss
on , which is an important property that we need to prove the
main theorem. Lemma 4 provides a key step to get the upper
bound described in (6), and Lemma 5, which needs three ad-
ditional definitions, enables to show (7). After building up the
lemmas, we give the proof of the main theorem, which is merely
an application of the lemmas.

Lemma 1: Suppose and fix . Then, for all ,
converges to a limit uniformly on .

Proof: To prove this lemma, we need three more lemmas in
Appendix A, which are variations on those found in [1]. Let us
denote and . Then, the sequence
uniformly converges on , if the following subsequences:

uniformly converge on , and have the same limit.
First, the uniform convergence of each subsequence

can be shown by showing the series
converges uniformly. From Lemma 8 in Appendix A, and set-
ting

where and does not depend on , ,
and . Therefore, the series converges
absolutely regardless of , and, hence, we conclude that each
subsequences converges uniformly on .

Now, to show that the subsequences have the same limit,
construct another subsequence, .
Since this subsequence contains infinitely many terms from all
subsequences, if this subsequence converges uniformly on ,
we can conclude that the subsequences have the same limit.
The derivation of the uniform convergence of this subsequence
is the same as that described above, but setting in
Lemma 8. Therefore, the original sequence converges to
its limit uniformly on .

The remarkable fact of this lemma is that the convergence is
not only uniform on , but also in . That is, the convergence
holds uniformly on every realization of .

Lemma 2: For the distribution of the observed noisy process
, , and every
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Moreover, uniformly on

a.s.

Proof: This lemma consists of three parts. The first part is
to show the existence of the first limit in the lemma so that the
definition of is valid. The second part is to show that

the value of the limit is indeed . Finally,

the last part is to show the uniform convergence of normalized
log-likelihood ratio to the relative entropy rate. The first two
parts and the pointwise convergence of the third part is a general-
ization of the Shannon–McMillan–Breiman theorem. The proof
of these parts is identical to those in [8, Theorem 2.3.3] even for
the case where some parameters in can be zero.

The uniform convergence in the third part of the lemma is
crucial in that it enables to obtain the second consistency result
(1) as in [8, Theorem 2.2.1]. We take into account our parameter
set, and repeat the argument of [8, Lemma 2.4.1]. To show the
uniform convergence, we need to show

a.s.

uniformly on . Since the pointwise convergence can be
shown and the parameter set is compact, it is enough to
show that is an equicontinuous sequence by
Ascoli’s theorem. That is, we need to show that for all ,
there exists such that if , then

for all (8)

where

is defined to be the distance between the two parameters
defining and . This equicontinuity can be proved by ob-
serving that a process is a Markov
process under any , where has a state space

. This is true since

Let denote the set of all possible
-tuples of , and let . Then,

the transition matrix of has elements
. Since all that are in are

irreducible and aperiodic, and for all and
, is also irreducible and aperiodic. Hence, has the unique

stationary distribution . In addition, from Assumption 1, we
can observe that for all , a.s. (with respect
to ).

Since is also stationary, we have

where

For another probability law , we have

(9)

(10)

where (9) follows from the fact that , , with
probability , and (10) follows from the fact that DMC is
equal for and . The summations are over the pairs that have
nonzero transition probabilities.

Since the function is a uniformly continuous
function for and that occur in the summation,
we have for

In addition, we know that all the elements of the stationary
distribution of are bounded away from zero, since the largest
element of the stationary distribution of is lower-bounded by

, and any state can be reached by a finite number of steps
whose transition probabilities are bounded away from zero.
Therefore, for some

Then, from the result of the sensitivity of the stationary distri-
bution of a Markov chain [10], for some

Hence, for , we obtain,

Therefore, by letting , we have

Let us now go back to the original process . From
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we have

thus

where the summations are again over the sequences that have
nonzero probabilities. By changing the role of and , we
get the result (8), namely, is an equicontinuous
sequence. Therefore, we have the uniform convergence of the
lemma.

Lemma 3 (Uniform Concentration): Suppose for
some fixed . Let be the randomized filter defined in
(3). Then

a.s.

uniformly on .
Proof: This lemma shows the uniform concentration prop-

erty of . The randomization of the filter is needed
to deal with ties that occur in deciding the Bayes response. A de-
tailed proof of this lemma is given in Appendix B.

Lemma 4 (Continuity): Consider a single letter filtering set-
ting. Suppoes is some other joint probability law of and .
Define single letter filters and as

where is a uniform random vector in as before.
Then

where the expectations on the left-hand side of the inequality
are under and , and

Remark: This lemma states that the excess expected loss of
a randomized filter optimized for a mismatched probability law
can be upper-bounded by the difference between the true and
the mismatched probability laws of output symbol, plus a small
constant term which diminishes with the randomization proba-
bility. This is somewhat analogous to a result for the prediction
problem which was derived in [14, eq. (20)].

Proof of Lemma 4: Define .
Then

(11)

(12)

where (11) follows from Hölder’s inequality, and (12) follows
from the fact that

Now, let us bound the first term in (12)

(13)

(14)

(15)

where (13) follows from the fact that ; (14) fol-
lows from Cauchy–Schwartz inequality, and (15) follows from
the fact that -norm is less than or equal to -norm.

The second term in (12) becomes

(16)

It is easy to see that the inner summation in (16) is always
nonnegative since by definition, assigns probability to

. Now, for a given , define

(17)

resolving ties arbitrarily. Then, we have
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(18)

(19)

(20)

where (18) follows from (17); (19) follows from the fact

and (20) follows from the Cauchy–Schwartz inequality. Note
that depending on and , (18) and (19) can be both zero and
hold with equality. Together with (15), the lemma is proved.

Before moving on to Lemma 5, we need the following
three definitions. In Lemma 2, we have seen that for ,

is well defined. Now, let us consider the case where
is some function of the noisy observation (denoted

as ). As mentioned in the footnote of Section IV-B, the
notion of the relative entropy rate between and that random

is defined in Definition 2 using Definition 1. Definition
3 is also needed for the inequality in Lemma 5.

Definition 1: Suppose and is some function
of such that the expectation

exists. Then, the notation is defined as

That is, in , the Lebesgue integration

with respect to the randomness of is excluded. Moreover,
suppose is a set of some time indices, and denotes a subse-
quence of with the time indices in . Then, the conditioning
on with respect to is defined as

where denotes the conditional probability measure
on given . Again, the randomness of is ex-
cluded in the Lebesgue integration.

Remark: The above definitions of and may seem
subtle. However, the main point of two definitions is simple,
namely, they exclude the randomness of in calculating
Lebesgue integrations.

Definition 2: Suppose . Then, the relative en-
tropy rate between and is defined as

Remark: Note that is a function of , and
still is a random variable.

Definition 3: Define the th-order Markov approximation of
for as

Furthermore, denote and as the probability law of the
output of DMC, , when the probability law of input is and

, respectively.

Remark: Note that is not the th-order Markov approxi-
mation of , but is the distribution of the channel output whose
input is , the th-order Markov approximation of the orig-
inal input distribution .

Now, we give the following lemma that upper-bounds the rel-
ative entropy rate between and the ML estimator.

Lemma 5: For the given sequence defined in Sec-
tion IV-A and for fixed , we have

a.s.

Proof: Recall that is an ML estimator in
based on the observation . From (1), we know that

a.s.

Also, (2) and Definition 3 assures that . Therefore,
we have

This is the link where we needed Assumption 1. Now, let us
denote as the joint probability law of when the
probability law of input process is . Then, by the chain rule
of relative entropy [5, eq. (2.67)], we have

Since the DMC is fixed, we have
. Moreover, by the nonnegativity of relative entropy,

. Therefore, we get

Since always exists
by ergodicity, we have

and the lemma is proved.
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We are now finally in a position to prove our main theorem.

Proof of Theorem 1: As mentioned in Section IV-B, we
first fix and , and try to get the inequality in the form of (6)
to prove Part a). To refresh, (6) is given again here

a.s.

From the definition of

where from (5), we know that is a function of . Since
is a function of , we can

define a quantity from Definition 1. From
this, we also define

Now, we have following Corollary 1 from Lemma 3, whose
proof is given in Appendix C. This corollary is a key step in
proving the main theorem, since it provides a crucial link that
enables to get the inequality in (6).

Corollary 1: For fixed and , we have

a.s.

From Corollary 1, we have following equality:

a.s.

Therefore , to get the inequality of the form of (6), we can equiv-
alently show

Now, let us consider following chain of inequalities:6

(21)

6All the equalities and inequalities between random variables in this proof
should be understood in almost sure sense.

(22)

(23)

The notation in (21) stands for the simplex vector
in whose th component stands for . The
inequality in (21) is obtained from Lemma 4, since does not
vary with , and given , estimating based on is equiv-
alent to the single letter setting as in Lemma 4 with the cor-
responding conditional distribution. Furthermore, (22) follows
from Pinsker’s inequality [5, Lemma 12.6.1], and (23) follows
from Jensen’s inequality. By taking on both sides, we
have

since the square root function is a continuous function. For the
expression inside the square root of the right-hand side of the
inequality

a.s. (24)

a.s. (25)

a.s. (26)

where (24) follows from Cesáro’s mean convergence theorem;
the numerator of (25) follows from the fact that is stationary
and almost surely by martingale
convergence theorem; and the denominator of (25) follows from
the fact that is also a stationary law, and with probability ,
for any , there exists such that for all

which is guaranteed by the uniform convergence result of
Lemma 1. Finally, (26) follows from Definition 2. Therefore

a.s.

(27)
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which finally is in the form of (6). Now, we need to check if the
right-hand side of (27) goes to zero if we let and .
To see this, consider the following further upper bounds:

(28)

(29)

where (28) follows from the fact that as ,
and (29) follows from Lemma 5. The inequality (29) holds for
every , and by Shannon–McMillan–Breiman theorem [5, Ch.
15.7], we know that as . Therefore

and thus

a.s.

Finally, sending to zero, Part a) of the theorem is proved. Part
b) follows directly from a), and Fatou’s lemma. That is

Note that the expectation here is with respect to the randomness
of probability law within the paranthesis, too. By sending to
zero, Part b) is proved.

V. EXTENSION: UNIVERSAL FILTERING FOR

CHANNEL WITH MEMORY

Now, let us extend our result to the case where channel has
memory. With the identical assumption on , now suppose

is expressed as

(30)

where denotes modulo- addition, and is an -valued
noise process which is not necessarily memoryless. We assume
we have complete knowledge of the probability law of .
Specifically, let us consider the case where is an HMP,
that is, it is an output of an invertible memoryless channel

whose input is irreducible, aperiodic
th-order Markov process , which is independent of .

Let , and suppose . For
simplicity, assume that the alphabet size of is also .

In this model, the channel between and at time is an
-ary symmetric channel, which is specified by the th row

of . Define an matrix whose th element is

where denotes modulo- subtraction. Now, let us make fol-
lowing assumptions on the noise process:

• is stationary, i.e., is identical for all ;
• is invertible;
• for all , there exists an such that

.
As stated in [22, Sec. 2-A], the first and the second assumptions
are rather benign. Especially, for the second assumption, it can
be shown that under benign conditions on the parametrization,
almost all parameter values except for those in a set of Lebesgue
measure zero, give rise to a process satisfying this assumption.
In addition, since this only corresponds to the case when
in [22, Assumption 1], it is a much weaker assumption. The third
assumption is a similar positivity assumption as Assumption 1,
which enables our universal filtering scheme.

Under these assumptions on the noise process, we can extend
our scheme to do the universal filtering for this channel. First, we
can convert this channel to the equivalent memoryless channel

, where the input process is
and the output is . Here, is matrix, and the
channel transition probability is

for all , and . To do the filtering, we apply our scheme to
this equivalent memoryless channel. For fixed , as in Sec-
tion II-B.1, define a parameter set of HMPs, , whose Markov
chain has states, and the memoryless channel has dimen-
sion . The th-order conditional probability of our
new input process is

(31)

where (31) follows from Assumption 1 and the third condition
on the noise process. Let . Then, we can model
in , or equivalently, model as th-order Markov
chain, and obtain , the ML estimator in based on .
By forward recursion, we can get , and by sum-
ming over ’s we can calculate , the simplex vector in

whose th component is . Then, finally, we
define our sequence of universal filtering schemes as

exactly the same as we proposed in Section IV-A.
The analysis of this scheme is identical to the one given in

the proof of the main theorem. Equation (21), which is the only
place where the invertibility of the is used, can also be ob-
tained in this case due to the second assumption of the noise
process. Thus, we again get

a.s.
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Since

by the same argument as Lemma 5, we have the same result
as Theorem 1. Thus, we can successfully extend our scheme to
the case where the channel noise is an HMP with some mild
assumptions.

VI. DISCUSSION

Throughout the paper, we have only considered the case
where the input, output, and reconstruction alphabets are equal.
However, we can easily extend our result to the case where the
alphabet sizes are different (but still finite). In that case, the
condition on the channel, parallel to the invertibility condition,
is that the channel transition matrix should have full row-rank.
Since the argument of the extension would be rather straight-
forward, we omit the details in this paper.

The result that we attain in Theorem 1 can also be attained
by the schemes devised in [18], [19]. Therefore, we have shown
that a completely different approach can achieve the same goal
in the universal filtering problem when the underlying signal is
a stationary and ergodic process. In addition, our work gives the
first theoretical justification of using HMP models for filtering,
which is a prevalent approach in practice where the underlying
signal need not be a Markov process. Furthermore, it is not clear
how to extend the schemes in [18], [19] to the case of channels
with memory, whereas the extension of our scheme to such cases
is quite simple in some settings (e.g., when the noise is an HMP),
as in Section V.

As described in Section IV-A, our filter is a randomized filter.
The randomization is necessary in obtaining the continuity re-
sult of Lemma 9 Part a), which we use for proving our main
theorem. Whether a deterministic version of our filter, i.e., a
filter that is defined without in (3), is universally optimal re-
mains an open question. The filter devised in [18], [19] is also
a randomized scheme, and a parallel discussion regarding the
randomization is also given in [19, Sec. VI]. In contrast, a filter
that appears in [24], which is equivalent to the scheme in [21]
that only utilizes a one-sided context, is a deterministic scheme
that can indeed achieve the asymptotically optimal performance
in Theorem 1. Therefore, when the channel is memoryless, the
randomization of a universal filter is not necessary in general
to achieve the performance goal of Theorem 1. However, when
the channel has memory as in Section V, we are not aware of
any deterministic filter that can be universally optimal for any
underlying stationary and ergodic process.

VII. CONCLUDING REMARK AND FUTURE WORK

In this paper, we proved that, for the known, invertible DMC,
a family of filters based on HMPs is universally asymptotically
optimal for any general stationary and ergodic satisfying
some mild positivity condition. That is, we showed that our se-
quence of schemes indexed by and achieves the best asymp-
totically optimal performance regardless of clean source dis-
tribution. We could also extend this scheme to the case where

channel has memory, especially where the channel noise process
is an HMP.

The future direction of the work would be to ascertain the re-
lationship between and , such that we can devise a single
scheme that grows with some rate related to . Attempting
to loosen the positivity assumption that we made in our main
theorem and extending our discrete universal filtering schemes
to discrete universal denoising schemes are additional future di-
rections of our research.

APPENDIX A
THREE LEMMAS

Here, we revise three lemmas from [1] regarding probability
law of HMP. These are needed to prove Lemma 1. For the fol-
lowing three lemmas, fix and , and suppose . Also,
fix some , such that . Proofs are similar to [1, the
Appendix]. Note that is still our clean signal and is
the noisy observed signal (not necessarily an HMP).

Lemma 6: We have

where

is independent of .
Proof: From Markovity and conditioning

(32)

Now, let us bound the terms in (32). First

where stands for the th element of , the th power
of the transition matrix .

Note that and , from the assump-
tion of . Let . Then, the
last expression is

(33)
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Since

we have

(34)

Now, let us look at the second term in (32). Suppose
, and let stand for the sequence

of ’s where . Then

(35)

where stands for the conditional probability
. Thus, from (34) and (35)

Let now , then

and thus, , which proves the lemma.

Lemma 7: Suppose when is a set of time indices,
and stand for the sequences of ’s and ’s where .
Now, consider following two arbitrarily given sets:

and

For , define

Then

where .
Proof: From the argument of Lemma 6, it is easy to see

that

is independent of as well. Now, define

Since , , and are fixed, let us simply denote .
Also, let us omit and the parenthesis for the above four quan-
tities to simplify notation. Then

(36)

(37)

where (36) is possible from Lemma 6, since for all .
By the similar argument, we get

(38)

By subtracting (38) from (37), we get

thus, proves the lemma. Note that since , we
know . Also, the result does not depend on .

Lemma 8: For all , , and

Proof: By conditioning

and, therefore

On the other hand

and, thus

Therefore, from Lemma 7, we have

Note that the result does not depend on either or .
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APPENDIX B
PROOF OF LEMMA 3

Before proving Lemma 3 we need the following lemma first.
Parts b)-d) are crucial for Lemma 3, and Part a) enables Part b).
The continuity result of in Part a) is the key reason
why we need the randomization of the filter.

Lemma 9: Suppose and fix .
a) We have

where are arbitrary integers. That is, for any
integer and any individual sequence ,
is a Lipshitz continuous function in .

b) a.s. uniformly on
.

c) For all , and for all , there exist
such that .

d) For fixed , there exists some finite set
, such that

Proof:
a) For given simplex vector , fixed , and defined as in

Section IV-A, we define followings:

• ;
• for all ;
• .

In words, is a set of vectors in -ball, , that
makes the Bayes response equal to ;
is a set of normal vectors that define the decision planes

which separate
the reconstruction alphabet and other alphabets, and

is the shortest distance from a sim-
plex vector to the plane . Then,
for some fixed , by definition

where is a volume of a set. Since is a
constant, for any and , we have

(39)

For the numerator, as a crude bound, we obtain

(40)

where . Since

we have

(41)

(42)

(43)

where (41) follows from the triangular inequality; (42)
follows from Cauchy–Schwartz inequality, and (43) fol-
lows from the fact that the -norm is less than or equal
to the -norm. Therefore, (40) becomes

and, thus, (39) becomes

Therefore, we have

and Part a) is proved.
b) By the exact same argument as in proving Lemma 1, we

can easily know that for all
, uniformly on . Since we have

we get the uniform convergence.
c) Again, let us follow the argument in the proof of Lemma

1. Suppose , where , and .
Then
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(44)

(45)

(46)

where as defined in Lemma 7, and (44) follows
from Lemma 8. By letting , and , we
have proved Part c).

d) We know that for the individual sequence pair

For , is fixed and we can think of
as a constant for the individual se-

quence pair . Since

is the ratio of two finite-order polynomials of
, and as is closed and bounded, is

a uniformly continuous function of . Therefore, for
given , such that implies

since there are only finite numbers of possible
pairs. Also, since is compact, we can always find a
finite set that for any , there exists at
least one that satisfies .
Therefore, Part d) is proved.

Proof of Lemma 3: To prove Lemma 3, first consider fol-
lowing limit:

(47)

(48)

(49)

where (47) is from Cesáro’s mean convergence theorem, (48) is
from stationarity, and (49) is from Lemma 9 Part b) and bounded
convergence theorem. Thus, to complete the proof, we need to
show that

a.s. (50)

uniformly on . Now, let us show the pointwise convergence
in (50) without the uniformity by using ergodic theorem. For
given , define

and denote by the shift operator. Then, what we should prove
becomes

a.s.

while the ergodic theorem gives

a.s.

Observe that

Since Lemma 9 Part c) holds for all , we can think that the
lemma holds for all individual sequence pairs . Thus,
it holds for all individual pairs as well, and we can
conclude that for all as

. Hence, by exactly the same argument as Lemma 9 Part a)
and Lemma 9 Part b), we conclude that

almost surely as . Now, by Cesáro’s
mean convergence theorem, we obtain

a.s.

Therefore, we get

a.s.

Note that up to this point we cannot guarantee the uniformity
of the convergence, since the ergodic theorem only gives the
individual convergence for each . To show the uniformity of
the convergence in (50), first define the following quantity for
some fixed integer :
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From Lemma 9 Part d), for any and fixed , we
can pick some such that , and
thus

By adding and subtracting some common terms involving such
, and from the triangle inequality, we have

(51)

Now, the goal becomes to show that the terms in the right-hand
side of the inequality converges to zero independent of as ,
, and vary. First, we will bound each term, and send .

i)

(52)

(53)

a.s. uniformly on (54)

where (52) follows from stationarity and Lemma 9 Part
a); (53) follows from Lemma 9 Part c), and (54) follows
from the Cesáro’s mean convergence theorem. Since (53)
does not depend on , the limit is uniform on .

ii)

(55)

a.s. uniformly on (56)

where (55) follows from Lemma 9 Part a), and (56) fol-
lows from Lemma 9 Part d). Since (56) does not depend
on , the limit is also uniform on .

iii)

a.s.

by following the same argument as i). Since is
finite, this convergence is uniform on .

iv)

a.s.

from the proof of pointwise convergence above. As in iii),
this convergence is also uniform on .

v)

by similar argument as in i) and ii).
Therefore, by taking limit supremum on both side of (51), we
get

a.s.

uniformly on . Since and are arbitrary, by sending
and , we have

a.s.

uniformly on . Thus, the lemma is proved.

APPENDIX C
PROOF OF COROLLARY 1

Proof of Corollary 1: First note the subtle point that Corol-
lary 1 does not directly follow from Lemma 3. Since the proba-
bility law that we are using to filter each block is changing
every block, whereas the uniform convergence in Lemma 3 is
for the fixed for all , it is not enough to guarantee
the corollary. However, since remains the same within each
block, we can still use the result of Lemma 3 if the block length
gets long enough. Keeping this in mind, let us take a more
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Fig. 1. The time line.

careful look at each block. In the proof, for brevity of notation,
let us denote

since we are always dealing with the randomized filter, and there
is no possibility of confusion. Now, fix any . Then, from
(4), there exists some , such that

and from Lemma 3, there exists some such that for all

(57)

Recalling the definition , we let
. Then, for any and

(58)

Note that in the second and third terms, is fixed to
and from the definition of our filter.

Fig. 1 summarizes the time line with the above notations.
Now, we can bound each term in (58). For the first term, since

, we know that

Therefore

For the second term, since , and from (57)

Finally, for the last term

Therefore, for any and , we
have

and since was arbitrary, we have the corollary.
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