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Since

D(Y nkXn) = log
1

PY (Cn)
+

C

log
dPY

dPX
(y)dP

Y
(y)

� log
Nn(Fn)

Nn(Cn)
� logPY (Fn) + n(r1 + ")

�nr � logPY (Fn)

we have

Du(YYY kXXX) � r: (93)

Since " > 0 is arbitrary, it follows from Theorem 2, (92) and (93) that

R
�
e(D; rjXXX) = inf

YYY :D (YYY kXXX)�r
R(DjYYY ) � g(r)� r

and that (90) holds. We now suppose that r > g(r1). Then

R
�
e(D; rjXXX) � R

�
e(D; g(r1)jXXX)

� [g(g(r1))� g(r1)]
+ = [g(r1)� g(r1)]

+ = 0

yielding (78).
Finally, if g(r; �) is continuous, then (79) follows from (78).

Example 2 (Stationary Ergodic Source): Let XXX = fXng be a
source corresponding to a stationary ergodic process fXng.We denote
byD the set of allX -valued random variables Y for which there exists
a 2 X such that E[d(Y; a)] < 1, and by E the set of all stationary
ergodic sources YYY = fY ng such that Y1 2 D. It is known (cf. [3],
[10]) that

Rfm(DjYYY ) = Rva(DjYYY ) = lim
n!1

1

n
R(DjY n) (94)

if YYY = fY ng 2 E . Combining Theorem 2, Theorem 4 and (94), we
have

R
�
e(D; rjXXX) � inf

YYY=fY g2E:D (YYY kXXX)�r
lim
n!1

1

n
R(D1jY

n):

0 < D1 < D. This inequality may be useful to show the direct part of
the coding theorem for the rate R�e(D; rjXXX).
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Universal Denoising for the Finite-Input General-Output
Channel

Amir Dembo and Tsachy Weissman, Member, IEEE

Abstract—We consider the problem of reconstructing a finite-alphabet
signal corrupted by a knownmemoryless channel with a general output al-
phabet. The goodness of the reconstruction ismeasured by a given loss func-
tion. We (constructively) establish the existence of a universal (sequence of)
denoiser(s) attaining asymptotically the optimum distribution-dependent
performance for any stationary source that may be generating the noise-
less signal. We show, in fact, that there is a whole family of denoiser se-
quences with this property. These schemes are shown to be universal also
in a semistochastic setting, where the only randomness assumed is that asso-
ciated with the channel noise. The scheme is practical, requiring ( )
operations (for any 0) and working storage size sublinear in the input
data length. This extends recent work that presented a discrete universal
denoiser for recovering a discrete source corrupted by a discrete memory-
less channel (DMC).

Index Terms—Denoising, discrete universal denoising, filtering, indi-
vidual sequences, memoryless channels, noisy channels, quantization,
sliding-window schemes, universal algorithms.

I. INTRODUCTION

The goal of a denoising algorithm is to recover a signal from its
noise-corrupted observations. Perfect recovery is seldom possible and
performance is measured under a given fidelity criterion. The problem
lies at the heart of a wide range of scenarios spanning such fields as
statistics, engineering, and bioinformatics (cf. [10] for a broader dis-
cussion of the problem and for a sample from the many references).
For discrete signals corrupted by discrete memoryless channels it was
recently shown in [10] that this task can be optimally and practically
performed with no knowledge of statistical (or any other) properties of
the signal.
Our interest in the present work is in the case where the components

of the underlying noise-free signal are still finite valued, yet their noisy
observations take values in a general alphabet. For concreteness, we
will let the alphabet of the noise-free signal be A = f0; . . . ;M � 1g,
M <1, and assume the channel output alphabet is . The channel in
this case, which we denote by C, is assumed memoryless and is given
by the set ffaga2A, fa denoting the density with respect to (w.r.t.)
Lebesgue measure, assumed for concreteness to exist, associated with
the channel output distribution for an input symbol a. All the deriva-
tions and results in this work carry over to the more general case where
the channel output distribution for some inputs may not have a density
w.r.t. Lebesgue measure by considering the density w.r.t. a different
dominating measure (which will always exist). Similarly, the results
carry over to output alphabets other than the real line. In particular, the
schemes and results that will be presented are applicable for the case
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of a finite channel output alphabet as well. Letting � denote Lebesgue
measure, our assumption on the channel is as follows.

Assumption 1: The set of densities ffaga2A is a set of linearly in-
dependent functions in L1(�).

Note that this parallels the assumption that the channel matrix is of
full row rank in the finite alphabet setting of [10]. This assumption is
equivalent to the requirement that the channel output distribution (in
the single input–output case) uniquely determine its input distribution,
clearly a necessary condition if universal denoising is to be feasible.

For a fixed k, the Discrete Universal DEnoiser (DUDE) of [10] was
based on accumulating counts of occurrences of strings of length 2k+
1 appearing along the noisy observation signal (first pass), and then
(second pass) employing a scheme tailored for the output statistics as-
sociated with each “double-sided context” of order k (i.e., the con-
ditional distribution of the middle component conditioned on the re-
maining components of the 2k+1 tuple). The efficiency of the scheme
was largely due to the fact that for small enough k, the limited number
of possible noisy 2k + 1 tuples guaranteed that most of these appear
enough times for decisions based on the empirical distribution within
the associated double-sided context to be reliable. This breaks down
completely in our setting (assuming channel output densities), where
all appearing 2k + 1 tuples will be distinct, with probability one.

Our approach in this work is to use a processed version of the noisy
signal to estimate the distribution of a 2k + 1-tuple in the underlying
noise-free signal, and then to operate “Bayesianly,” employing a
sliding-window scheme which estimates the clean input symbol at
each location based on the 2k + 1 noisy components around it,
assuming the estimated input distribution.

To demonstrate the simplicity and efficiency of this approach, we
begin by considering an asymptotically optimal scheme based on scalar
quantization of the noisy observations. The idea is to estimate the 2k+
1th-order distribution of the input based on the quantized observa-
tion signal in a first pass. We show that this can be done efficiently,
with any scalar quantizer having the property that the channel matrix
from clean to quantized observation is invertible. This, in turn, will be
shown to lead to performance bounds guaranteeing the asymptotic op-
timality of the associated denoising scheme (which employs the said
sliding-window denoiser assuming the estimate of the input distribu-
tion from the first pass). Note that the first pass coincides with the
first pass of the DUDE of [10], when employed on the quantized noisy
signal. It is somewhat surprising that this quantization does not prevent
our schemes from attaining the optimum performance.

After setting up some notation in Section II, we shall turn in
Section III to motivating the algorithm, presenting it concretely, and
establishing performance bounds and its asymptotic optimality for
the semistochastic setting (where the underlying noise-free signal
is an individual sequence, and the only randomness is due to the
channel noise). Section IV will show how the performance guar-
antees from the semistochastic setting of Section III directly imply
asymptotic optimality of the denoising schemes when the noise-free
signal is a stationary stochastic process. In Section V, we show that
estimating the distribution of the noise-free signal based on scalar
quantization of the channel output can be viewed as a special case of
a more general approach which uses a set of basis functions for scalar
(symbol-by-symbol) processing of the observations before using the
processed signal for the said estimation. We show that denoisers
belonging to this more general family are asymptotically optimal, and
point to a plausible guideline for the choice of a particular denoiser
from this family per a given channel. In Section VI, we show that for
the case where the effective channel output alphabet is equal to the
clean source alphabet, the denoiser of the previous sections coincides
with the discrete denoiser of [10] and, hence, can be seen as its natural

extension to the present setting. Section VII details the explicit form
of the denoiser for a couple of special cases, Section VIII presents a
few preliminary experimental results, and in Section IX we conclude,
mentioning a few directions for related future research.

II. BASIC SETUP AND NOTATION

We assume thatA is a finite alphabet of sizeM where both the clean
and reconstruction signal components take values. For any finite set B,
M(B) will denote the simplex of probabilities on B. More concretely,
v 2 M(B) will be regarded as a jBj-dimensional column vector with
components corresponding to some arbitrary ordering of the elements
of B.
Let themeasurableQ : ! A be a quantizer and��� denote theM�

M channel matrix associated with the channel induced by quantizing
the output of the original channel with the quantizer Q

�(i; j) =
y:Q(y)=j

fi(y)dy: (1)

Assumption 1 guarantees the existence of a quantizer for which ���

is invertible, and we assume Q has this property. We mention in
passing that, for “natural” channels, a simple and natural quantization
will be evident. For example, for the binary-input additive white
Gaussian noise (BIAWGN) channel, a natural quantizer will map
the real line into two values according to whether the argument is
positive or negative, in which case the resulting channel in (1) will
be a binar-symmetric channel (BSC) (details for this example will be
given in Section VII).
With slight abuse of notation we shall let ��1max denote

maxi;j �
�1(i; j), ��1(i; j) denoting the (i; j)th component of

the inverse of the channel matrix.
We will denote the source signal by1 xxx = (x1; x2; . . .) and its noisy

observation process by YYY = (Y1; Y2; . . .). ZZZ = (Z1; Z2; . . .), where
Zi = Q(Yi), will denote the quantized channel output. An n-block de-
noiser is a measurable mapping taking n intoAn. We assume a given
loss function � : A2 ! [0;1) and denote the normalized cumulative
loss of an n-block denoiser X̂n by

LX̂ (xn; yn) =
1

n

n

i=1

� xi; X̂
n(yn)[i] (2)

where X̂n(yn)[i] denotes the ith component of X̂n(yn). We denote
�max = maxfmaxi;j �(i; j); 1g and let ���x̂ denote the x̂th column of
�. We letM denote the set of M -dimensional column simplex prob-
ability vectors (corresponding to distributions on A). For PPP 2M, we
let

U(PPP ) = min
x̂2A

a2A

�(a; x̂)PPP (a) = min
x̂2A

���
T
x̂PPP (3)

denote its “Bayes envelope” [4], [8], [6]. In words, U(PPP ) is the min-
imum achievable expected loss in guessing the value of a variable dis-
tributed according to PPP , as measured by the loss function �. Finally,
kvkp will denote the p-norm of any vector v with real-valued compo-
nents.

III. SEMISTOCHASTIC SETTING

We start by assuming the semistochastic setting in which
xxx = (x1; x2; . . .) is an individual sequence corrupted by the channel
C = ffaga2A, its noise corrupted version being the stochastic process

1Lower case letters will be used to denote “individual” sequences or symbols
in the semistochastic setting where the noiseless source is assumed determin-
istic. They will also be used to denote specific realization values that the asso-
ciated random quantities may assume. Upper case letters will denote random
quantities.
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YYY = (Y1; Y2; . . .). Define the kth-order sliding-window minimum
loss of xn by

Dk(x
n) = min

g
E

1

n� 2k

n�k

i=k+1

� xi; g Y
i+k
i�k (4)

where the minimum is over all measurable maps g : 2k+1 ! A.
Define further the sliding-window denoisability of xxx by

D(xxx) = lim
k!1

lim sup
n!1

Dk(x
n) (5)

the limit existing for all xxx by monotonicity. For xn 2 An and uk�k 2
A2k+1 define

rrr x
n
; u

k
�k = k + 1 � i � n� k : xi+ki�k = u

k
�k : (6)

Note that Dk(x
n) can be expressed as

Dk(x
n) = min

g
u 2A

rrr xn; uk�k

n� 2k
Eu � u0; g Y

k
�k

(7)
where Eu denotes expectation when the underlying clean symbols

are uk�k (the expectation being, as in (4), over the channel noise) so
that

Eu � u0; g Y
k
�k

= � u0; g y
k
�k

k

i=�k

fu (yi) dy�k . . . dyk: (8)

For a probability distribution P over A2k+1 let further P 
 C and
EP
C denote, respectively, probability and expectation when the
channel input Uk

�k � P and Y k
�k is the channel output of the channel

C whose input is Uk
�k . So that, e.g.,

EP
C� U0; g Y
k
�k =

u

P u
k
�k Eu � u0; g Y

k
�k

=

u

P u
k
�k

� � u0; g y
k
�k

�

k

i=�k

fu (yi) dy�k . . . dyk : (9)

Let P 
C yk�kjU0 = a denote the density associated with the distri-
bution of Y k

�k conditioned on U0 = a, as induced by the distribution
P 
 C, namely,

P 
 C y
k
�kjU0 = a

=

u ;u

P 
 C y
k
�kjU

�1
�k = u

�1
�k; U

k
1 = u

k
1 ; U0 = a

� P U
�1
�k = u

�1
�k; U

k
1 = u

k
1 jU0 = a (10)

=

u 2A :u =a

P 
 C y
k
�kjU

k
�k = u

k
�k

� P U
�1
�k = u

�1
�k; U

k
1 = u

k
1 jU0 = a (11)

=

u 2A :u =a

k

i=�k

fu (yi)

� P U
�1
�k = u

�1
�k; U

k
1 = u

k
1 jU0 = a : (12)

Similarly

P 
 C U0 = ajyk�k =
1

K yk�k

�

u 2A :u =a

k

i=�k

fu (yi) P U
k
�k = u

k
�k (13)

K(yk�k) being the normalization term

K y
k
�k =

u 2A

k

i=�k

fu (yi) P U
k
�k = u

k
�k : (14)

Letting [P 
 C]U jy denote the vector inM whose ath component

is P 
 C(U0 = ajyk�k), it is then clear that

min
g

EP
C� U0; g Y
k
�k = EP
CU [P 
 C]U jY (15)

(U denoting the Bayes envelope defined in (3)), where the minimum is
attained by the Bayes response to [P 
 C]U jy , namely

gopt[P ] y
k
�k =argmin

x̂2A
���
T
x̂ [P 
 C]U jy

=argmin
x̂2A

a2A

�(a; x̂)

�

u 2A :u =a

k

i=�k

fu (yi)

� P U
k
�k = u

k
�k (16)

where the second line follows by substitution of the expression from
(13).
For xn 2 An, define now the distribution P k

x over A2k+1 by

P
k
x u

k
�k =

rrr xn; uk�k

n� 2k

i.e., P k
x is the empirical distribution of 2k + 1-tuples, as induced by

xn. It is then clear from (7) and (9) that

Dk(x
n) = min

g
EP 
C� U0; g Y

k
�k (17)

which is attained by gopt P k
x .

A. Description of the Algorithm

P k
x , and, therefore, also gopt[P k

x ], are unknown to an observer of
the noisy sequence. Our approach is to obtain an estimate ~P k

x of P k
x

from the quantized versions of the noisy data Zi = Q(Yi), and then,
by a plug-in approach, employ the sliding-window scheme gopt[ ~P k

x ].
To this end, we start by defining P̂ k

x [zn] by

P̂
k
x [zn] u

k
�k

=
1

n� 2k
v 2A

rrr z
n
; v

k
�k

k

j=�k

��1(vj ; uj) (18)

where rrr[zn; �] are the count statistics associated with the quantized
noisy signal (recall definition in (6)), as obtained in a first pass through
the noisy data (cf. Fig. 1). Note that the expression on the right-hand
side of (18) involves only the inversion of theM �M channel matrix
(from xi to Zi = Q(Yi)), and a summation over M2k+1 terms. As
we show later (Lemma 1), P̂ k

x [Zn] is an asymptotically efficient esti-
mate of the unobserved P k

x . Intuition for why this may be true can be
gained by verifying that

E P̂
k
x [Zn] u

k
�k = P

k
x u

k
�k
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Fig. 1. First pass.

for each uk�k, i.e., P̂ k
x [Zn] uk�k is an unbiased estimate of

P k
x uk�k .
For a fixed data size n, there are two ways in which the estimate

P̂ k
x [Zn] can be enhanced. The first is by ensuring that the estimated

probabilities are all nonnegative. The second is by quantizing their
values to some finite precision so as to facilitate their storage and re-
trieval. We thus define the modified estimate ~P k;�

x by

~P k;�
x uk�k = Q� P̂ k

x [zn] uk�k (19)

whereQ� denotes quantization to the nearest nonnegative integer mul-
tiple of � which is� 1. Equipped with ~P k;�

x [Zn], the natural candidate
for a denoiser is

~Xn;k;�[yn](i) = gopt ~P k;�
x [zn] yi+ki�k ; k + 1 � i � n� k

(20)
where gopt[�](�) is given explicitly in2 (16) and zn is the scalar quan-
tization of yn, i.e., zi = Q(yi). The value of ~Xn;k;�[yn](i) for i’s
outside the range k+1 � i � n�k, as in [10], will be asymptotically
inconsequential. A rough analysis of the time complexity associated
with the implementation of ~Xn;k;� is as follows.

1. Acquisition of rrr zn; vk�k for the different contexts: as in the
DUDE of [10], linear.

2. Computation of P̂ k
x [zn] uk�k for all uk�k:

O(M2k+1M2k+1(2k + 1))

multiplications and summation operations.
3. Computation of ~P k;�

x [zn] uk�k for all uk�k: O(M2k+1) oper-
ations.

4. Application of ~Xn;k;�(yn)[i] for all i’s:

O(nM2M2k+1(2k + 1))

operations.
Summing up, we get number of operations which is

O(nM2k+log k) = O(n1+"); for k = k(n) =
" logn

3 logM
:

Storage complexity, beyond the cost of storing the noisy data (bounding
generously) is O(log[1=�M ]), which will be made sublinear by
our choice of � (to follow).

B. Analysis

Let

�("; k; �) =
1

�
+ 1

M

(2M2k+1 + 1)

� A k; "+ ��max;min �max;�
�(2k+1)
max

� exp �nG k; "=(2�max);max �max;�
�(2k+1)
max

(21)

2Though g [P ] was derived assuming P was a probability, ~P [z ] may
not be a probability since after quantization its components may not sum to
unity. We extend the definition of g [P ] to the right-hand side of (16) to ac-
commodate this case.

whereA(k; "; B) = (2k+1) exp 2"
B

andG(k; ";B) = 2"
(2k+1)B

.

Take now k = k(n) and � = �(n) such that k(n) ! 1 and
�(n) # 0 while

n

�("; k(n); �(n)) <1; for all " > 0

and satisfying the growth order required in the above complexity anal-
ysis. For example, it is readily verified that any unboundedly increasing
k(n) with k(n)= logn ! 0 and, say, �(n) = 1= logn jointly satisfy
these requirements. Letting now

~Xn = ~Xn;k(n);�(n) (22)

our main result is the following.

Theorem 1: For all xxx 2 A1

lim
n!1

L ~X (xn; Y n)�Dk(n)(x
n) = 0 a.s. (23)

An immediate corollary is the following:

Corollary 1: For all xxx 2 A1

lim sup
n!1

L ~X (xn; Y n) � D(xxx) a.s. (24)

Proof of Corollary 1 (Assuming Theorem 1): For any fixed
k clearly, lim supn!1Dk(n)(x

n) � Dk(xxx) and, therefore, also
lim supn!1Dk(n)(x

n) � D(xxx)which, combined with (23), implies
(24).

Theorem 1 is a direct consequence of the following (combined with
the Borel–Cantelli lemma).

Theorem 2: For all n � 1; k; " > 0; � > 0 and xn 2 An

Pr (jL ~X (xn; Y n)�Dk(x
n)j > 4"+ 6��max) � �("; k; �):

(25)

Three lemmas employed in the proof of Theorem 2 are as follows.

Lemma 1: For all n � 1, xn 2 An, and �; " > 0

Pr ~P k;�
x [Zn] � P k

x
1

> "+ �

� Pr P̂ k
x [Zn] � P k

x
1

> "

�M2k+1A k; "; ��1max
2k+1

� exp �G k; "; ��1max
2k+1

n : (26)

Lemma 2: For every n�1, xn 2An, measurable g : 2k+1!A,
and " > 0

Pr
1

n� 2k

n�k

i=k+1

� xi; g Y i+k
i�k

� EP 
C� U0; g Y k
�k > "

� A (k; ";M;�max) exp (�G (k; ";�max)n) : (27)
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Lemma 3: For P; ~P 2 M(A2k+1) and g : 2k+1 ! A

EP
C� U0; g Y
k
�k � E~P
C� U0; g Y

k
�k

� �maxkP � ~Pk1: (28)

Proofs of these three lemmas are given in Appendix A, while the
proof of Theorem 2 is relegated to Appendix B.

IV. STOCHASTIC SETTING

Assume the source signal is now a stationary stochastic processXXX =
(X1;X2; . . .), whose distribution is PPPXXX . Let

(PPPXXX ; C) = lim
n!1

min
X̂

ELX̂ (Xn
; Y

n) (29)

where the expectation on the right side is assuming Xn are the first n
symbols emitted by the source PPPXXX and that Y n are the noisy output
from the channel C. The minimum is taken over all n-block denoisers
and the limit is guaranteed to exist by subadditivity.

Theorem 3: For all stationaryXXX

lim
n!1

EL ~X (Xn
; Y

n) = (PPPXXX ; C): (30)

If XXX is also ergodic then

lim sup
n!1

L ~X (Xn
; Y

n) = (PPPXXX ; C) a.s. (31)

Proof: By the definition of (PPPXXX ; C) clearly

lim inf
n!1

EL ~X (Xn
; Y

n) � (PPPXXX ; C):

On the other hand, by (17), for any k

EDk(X
n) =Emin

g
EP 
C� U0; g Y

k
�k

� min
g

E EP 
C� U0; g Y
k
�k

= min
g

E� X0; g Y
k
�k (32)

where in the right sideXk
�k is emitted from the (unique) double-sided

extension of the source PPPXXX . Using a standard martingale argument as
in [10, Sec. 5] one can show that

lim
k!1

min
g

E� X0; g Y
k
�k = (PPPXXX ; C): (33)

It thus follows from (32) that

lim sup
n!1

EDk(n)(X
n) � (PPPXXX ; C) (34)

implying, by Theorem 1 and bounded convergence, that

lim sup
n!1

EL ~X (Xn
; Y

n) � (PPPXXX ; C) (35)

and proving (30). To prove (31) assume stationary ergodic XXX . By the
ergodic theorem and continuity of ming EP
C� U0; g Y k

�k in
P 2 M(A2k+1), it follows from the representation in (17) that

Dk(XXX) = lim
n!1

Dk(X
n) = min

g
E� X0; g Y

k
�k a.s. (36)

and, by (33), that

D(XXX) = (PPPXXX ; C) a.s. (37)

Thus, the fact that lim supn!1Dk(n)(x
n) � D(xxx) for all xxx 2 A1

(recall proof of Corollary 1), combined with Theorem 1, implies

lim sup
n!1

L ~X (Xn
; Y

n) � (PPPXXX ; C) a.s. (38)

On the other hand, by Fatou’s lemma and the definition of (PPPXXX ; C)

E lim sup
n!1

L ~X (Xn
; Y

n) � lim sup
n!1

EL ~X (Xn
; Y

n)

� (PPPXXX ; C): (39)

The combination of (38) and (39) implies (31).

V. A GENERALIZED SCHEME

We now generalize the scheme of the previous sections. Our idea
is to pass the (2k + 1)th-order empirical distribution of a noisy tuple
through a transformation which maps distributions on 2k+1-tuples at
the channel output into the distribution of the channel input 2k+1-tuple
that gives rise to it. Assumption 1 guarantees that to every output distri-
bution on 2k+1-tuples there exists a unique channel input distribution.
Therefore, the said transformation is unique on the set of output distri-
butions that are bona fide in the sense of governing a 2k + 1 noisy
tuple at the channel output. One would like, however, to extrapolate
this transformation to be able to take any distribution of a 2k+1 noisy
tuple into a channel input distribution whose associated output distri-
bution is “close” to the given one. The reason is that one can only hope
for the 2k + 1th-order empirical distribution observed at the channel
output to be “close” to the true distribution, but cannot expect it to be
bona fide in the above sense. As we show later, this extrapolation is not
unique. The scheme of the previous sections can be seen as a particular
choice for this extrapolation from a larger family of schemes which we
now develop.
Let � = faga2A be a collection of measurable functions with the

property thatA = �CT is invertible, namely, theM�M matrix whose
(i; j)th entry is given by

A(i; j) = i(y)fj(y)dy (40)

is nonsingular. For any PX 2 M(A) we then have

PX =A
�1
APX (41)

=A
�1�CTPX (42)

=A
�1�PY (43)

where PY is the distribution of the output distribution (thought of here
as an infinite-dimensional column vector) when the channel input dis-
tribution is PX . �PY is theM -dimensional column vector whose ath
component is EP a(Y ) = a(y)dPY (y). It follows that if PY is
the output distribution associated with the input distribution PX then,
for u 2 A

PX(u) =
v2A

A
�1(u; v) v(y)dPY (y): (44)

Similarly, it can be seen that if PY is the channel output distribution

of a 2k+1-tuple when the input distribution is PX then, for uk�k 2

A2k+1

PX u
k
�k =

v 2A

k

j=�k

A
�1(uj ; vj)

�

k

j=�k

v (yj)dPY y
k
�k : (45)

Our approach to the estimation of P k
x is to substitute the empirical

distribution of a 2k + 1-tuple at the channel output for PY on the
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right-hand side of (45). The integral in (45) is then, up to normalization,
given by

� y
n
; v

k
�k =

n�k

i=k+1

k

j=�k

v (yi+j) (46)

leading to our estimate of P k
x as

�P k
x [yn] u

k
�k

=
1

n� 2k
v 2A

� y
n
; v

k
�k

k

j=�k

A
�1(uj ; vj): (47)

We note that P̂ k
x [zn] is obtained as a special case of �P k

x [yn] under a
particular �.

Example 1: Letting, for a 2 A

a(y) =
1; if Q(y) = a

0; otherwise
(48)

the matrix A defined in (40) coincides with �T (for the matrix � de-
fined in (1)) and for this case

� y
n
; v

k
�k = rrr z

n
; v

k
�k ; for all vk�k 2 A

2k+1
:

Substituting into (47) and comparing with (18) shows that in this case
�P k
x [yn] becomes P̂ k

x [zn].
Indeed, extending (19) to

~P k;�
x u

k
�k = Q�

�P k
x [yn] u

k
�k (49)

and defining ~Xn;k;� as in (20), Theorem 2 and, therefore, also Theorem
1 and Corollary 1, remain intact for this generalized scheme. This is
because the following extension of Lemma 1 holds.

Claim 1: For all n � 1, xn 2 An, and " > 0

Pr �P k
x [Y n]� P

k
x

1
> "

�M
2k+1

A k; "; (�maxA
�1
max)

2k+1

� exp �G k; "; (�maxA
�1
max)

2k+1
n (50)

where

�max = max
a

sup
y

a(y) and A
�1
max = max

i;j
A
�1(i; j): (51)

The proof of Claim 1, which is very similar to that of Lemma 1, can be
found in Appendix C. Equipped with Claim 1 it is easy to check that
all the bounds and performance guarantees of previous sections remain
intact for the scheme defined via (49), with the constant��1max replaced
by �maxA

�1
max.

Example 2: Letting, for a 2 A

a(y) = fa(y) (52)

results in

A(i; j) = fi(y)fj(y)dy (53)

which is nonsingular under our standing Assumption 1. In fact, for this
case, A�1�PY can be thought of as the Moore–Penrose inverse (cf.,
e.g., [5]) of the channel “matrix.” �P k

x [yn] in this case can be thought
of as the Moore–Penrose inverse of the channel matrix associated with
the 2k + 1th-order super-symbols (the 2k + 1-fold tensor product of
the original channel matrix) applied to the 2k + 1th-order empirical
distribution of the noisy signal.

Evidently, there is a lot of freedom in the choice of �. The only
requirement for the asymptotic optimality of the induced sequence of
schemes to be guaranteed is that the resulting matrix A (i.e., (40)) be
nonsingular. The dependence of the bounds on � seems to imply that a
good choice should strive to minimize �maxA

�1
max.

VI. COLLAPSE TO THE DUDE FOR THE INVERTIBLE DISCRETE

MEMORYLESS CHANNEL (DMC)

Consider the more brute force scheme which uses P̂ k
x [zn] instead

of its processed version ~P k;�
x [zn], i.e.,

X̂
n;k[yn](i) = gopt P̂

k
x [zn] y

i+k
i�k ; k + 1 � i � n� k:

(54)
Consider further the special case where the effective channel output
alphabet is3A, namely, the setting of [10]. We shall now show that, for
this case, lettingQ be the identity map (so that YYY = ZZZ), the scheme in
(20) coincides with that of [10].
For this case, using the notation of [10], we get (55) and (56) at the

bottom of the page, where (55) was established in [10] (cf., in partic-
ular, (9) therein), the/ notation indicating equality up to normalization
of the vector whose ath component is given, and the equality in (56)
follows from writing out the relationship

P
z ;Z ;z

(b)

=

u i2f�k;...kgn0

�(ui; zi) �(u0; b)P U
k
�k = u

k
�k :

Evidently, for k + 1 � l � n � k, we get (57) at the bottom of the
following page, where mmm zn; zl�1l�k; z

l+k
l+1 is the notation from [10]

for the noisy context statistics. Equality (a) follows from (56). For

3Note that, formally, this is outside the setting of output distributions given
by densities but, as indicated, the schemes and results presented carry over to
this case in an obvious way.

u 2A :u =a

k

i=�k

�(ui; zi) P U
k
�k = u

k
�k

/ ���z ���TP
z ;Z ;z

(a) (55)

= ���z � ��T
u i2f�k;...kgn0�(ui; zi) �(u0; 0)P Uk

�k = uk�k

...

u i2f�k;...kgn0�(ui; zi) �(u0;M � 1)P Uk
�k = uk�k

(a) (56)
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(b), we have used tensor product notation where �
(2k+1) denotes
a (2k + 1)-fold tensor power of the matrix �, which is the channel
matrix associated with symbols from the super-alphabet of 2k+ 1-tu-
ples under lexicographic ordering. The notation rrr[zn; �] denotes the
M2k+1-dimensional vector with components rrr[zn; uk�k] (ordering the
uk�k’s lexicographically). From the expression on the righthand side of
(57) it is clear that X̂n;k is nothing but the kth-order DUDE of [10].

VII. EXPLICIT FORM OF DENOISER FOR BINARY INPUT
ADDITIVE WHITE NOISE

A. BIAWGN Channel With Hamming Distortion

For this case A = f�1; 1g and fa is the density of an N(a; �2).
The natural quantizer to employ here would seem to be

Q(y) =
1; for y � 0

�1; otherwise
(58)

so the induced channel from clean bit to quantized observation is a
BSC(G(1=�)), with G(t) denoting the probability that a standard
Gaussian be larger than t. For this case we get

P̂ k
x [zn] uk�k =

1

n� 2k

�

v 2A

rrr zn; vk�k
�

� � 1

d (v ;u )
(59)

where dH denotes Hamming distance and � = �(�) = G(1=�). For
this case

gopt ~P k;�
x [zn] yk�k (60)

= argmin
x̂2A

a2A

�(a; x̂)

�

u 2A :u =a

k

i=�k

fu (yi) ~P k;�
x [zn] uk�k

(61)

= argmin
x̂2A

a2A

�(a; x̂)

�

u 2A :u =a

Q� P̂ k
x [zn] uk�k

� exp �
1

2�2
yk�k � uk�k

2

2
: (62)

Q� P̂ k
x [zn] uk�k , for each uk�k , is calculated according to the

right-hand side of (59). Note, however, that this computation need
be performed once (after the first pass through the (quantized) data),
when frrr[zn; vk�k]gv is available. Then, for the actual denoising, the

Q�(P̂
k
x [zn](uk�k)) in the summation in (62) are given constants.

B. Binary-Input Additive White pth-Power Noise With Hamming
Distortion

The above example immediately generalizes to the case
A = f�1; 1g and

fa(x) = c(�)e��jx�aj ; x 2 (63)

where p > 0, � > 0, and c(�) is the normalization constant. Em-
ploying the quantizer in (58), the induced channel from clean bit to
quantized observation is a BSC(�), where

� = �(�) =
1

1

c(�)e��x :

In this case

gopt ~P k;�
x [zn] yk�k = argmin

x̂2A
a2A

�(a; x̂)

�

u 2A :u =a

Q� P̂ k
x [zn] uk�k

� exp �� yk�k � uk�k
p

p
:

(64)

X̂n;k[yn](l) = gopt P̂ k
x [zn] yl+kl�k

= argmin
x̂2A

a2A

�(a; x̂) �

u 2A :u =a

k

i=�k

fu (yl+i) P̂ k
x [zn] uk�k

= argmin
x̂2A

a2A

�(a; x̂) �

u 2A :u =a

k

i=�k

�(ui; zl+i)

v 2A

rrr zn; vk�k

k

j=�k

��1(vj ; uj)

(a)
= argmin

x̂2A
���Tx̂ ���z � ��T

u i2f�k;...kgn0�(ui; zl+i) �(u0; 0) v
rrr zn; vk�k

k

j=�k �
�1(vj ; uj)

...

u i2f�k;...kgn0�(ui; zl+i) �(u0;M � 1)
v

rrr zn; vk�k
k

j=�k �
�1(vj ; uj)

(b)
= argmin

x̂2A
���Tx̂ ���z ���T

�
(2k+1)
T

(��1)
(2k+1)
T

rrr[zn; �] zl�1
l�k; 0; z

l+k
l+1

...

�
(2k+1)
T

(��1)
(2k+1)
T

rrr[zn; �] zl�1
l�k;M � 1; zl+kl+1

= argmin
x̂2A

���Tx̂ ���z ���T

rrr[zn; �] zl�1
l�k; 0; z

l+k
l+1

...
rrr[zn; �] zl�1

l�k;M � 1; zl+kl+1

= argmin
x̂2A

���Tx̂ ���z ���Tmmm zn; zl�1
l�k; z

l+k
l+1 (57)
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P
k
x u

k
�k � P̂

k
x [Zn] u

k
�k (A1)

=
1

n� 2k

n�k

i=k+1

111
x =u

�

v 2A

111
Z =v

k

j=�k

��1(vj ; uj) (A2)

=
1

n� 2k

2k

m=0 i2fk+1;...;n�kg;
d(i�m)=(2k+1)e=(i�m)=(2k+1)

111
x =u

�

v 2A

111
Z =v

k

j=�k

��1(vj ; uj) : (A3)

VIII. SAMPLE OF EXPERIMENTAL RESULTS

In the following, we present one representative sample of initial ex-
perimental results. A comprehensive study of the performance of the
proposed schemes, as well as good choices of the basis filters faga2A
for various data sets will be conducted separately.

A first-order symmetric binary Markov chain of transition proba-
bility 0:2 from one state to the other was simulated, and corrupted by a
BIAWGN channel of unit variance. The scheme ~Xn;k detailed in Sec-
tion VII-A was used, on a sequence length of 105, for k = 1; 2; 3. The
following table encapsulates the results. The first line shows the error
rates when employing a genie-aided scheme, which is informed of the
true empirical distribution of order 2k + 1 of the clean source real-
ization and operates optimally based on it. The second line shows the
results of employing the optimal distribution-dependent filter basing its
decisions on a noisy observation window of length 2k+1 around each
location. The third line contains the error rate of the optimum distri-
bution-dependent scheme, which bases its decision for each location
on all the observations (implemented via the backward–forward recur-
sions). The fourth line details the performance of ~Xn;k.

Similar experiments, with different noise-free process distributions
and channel characteristics (not necessarily Gaussian) were conducted,
with similar4 results.

IX. CONCLUSION

We have presented a family of (conceptually and algorithmically)
simple and universally optimal denoising algorithms for estimating the
components of a finite-alphabet signal corrupted by a general memo-
ryless channel. This extends the recent work [10] which presented uni-
versal denoisers for the case where the corrupting channel is a DMC.
It was shown that our schemes, when specialized to the case of equal
channel input and output symbols and an invertible DMC, coincide
with the scheme in [10] and can thus be regarded a natural general-
ization of it.

Though the emphasis of our work was on the case where the channel
output alphabet is the entire real line, our schemes apply just as well to
the case of any finite channel output alphabet larger than the input al-
phabet (provided the channel matrix is of full row rank). Interestingly,
they do not coincide in this case with the scheme suggested in [10,
IV-C]. Indeed, one interesting direction for future work is a compar-
ison of the performance of our denoisers to that of [10, Subsec. 3-C]
for the case of a finite channel output alphabet larger than the input

4Similar in the sense that the error rate of ~X with k = 2 and k = 3 was
already within a fraction of 1% from the optimum.

alphabet. We believe that our schemes will compare favorably in the
sense that, for fixed k and n (i.e., before the asymptotics “kick in”), the
excess loss relative to the class of kth-order sliding-window schemes
(i.e., the “redundancy”) will depend on the cardinality of the channel
input alphabet for our schemes, while being dependent on the size of
the channel output alphabet for the scheme of [10, Subsec. 3-C].
Additional directions of interest include the sequential denoising

problem (filtering), and the case of channel uncertainty. For the fil-
tering, a modified version of our scheme, where both collection of the
counts and the actual symbol estimation would be performed concur-
rently in one pass, can be shown towork. Results in this direction for the
discrete output case can be found in [7]. Regarding channel uncertainty,
at first glance, our schememay seem to accommodate uncertainty, since
one quantizer can satisfy the requirement for the invertibility of the in-
duced DMC (in (1)) simultaneously for a variety of different channels.
The second pass, however, is channel dependent, since the estimate of
the empirical distribution of the noiseless sequence (recall (18)) de-
pends on the induced DMC, which depends on the original channel.
It can be shown [2], [3] that, under channel uncertainty, attaining op-
timum noiseless-signal-dependent performance (in both the senses of
Section III and of Section IV) is, in general, not feasible. Variations
on the scheme developed in this work, to accommodate channel un-
certainty, can be derived and shown optimal w.r.t. a minimax criterion,
analogously to what was done for the DMC in [2], [3].
Finally, a natural next step is the problem where the input alphabet is

also arbitrary. For sufficiently “well-behaved” channels, a slight vari-
ation on our scheme can be shown to work. The general case is under
investigation.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 1

The first inequality is immediate from the definition of ~P k;�
x . Turning

to the second inequality, we fix n � 1, xn 2 An, and uk�k 2 A2k+1.
Writing out the definitions for P k

x uk�k and P̂ k
x [Zn] uk�k and in-

terchanging order of summation we obtain (A1)–(A3) at the top of the
page. It is easy to verify (cf., e.g., [9, Lemma 4]) that, for each i, the
bracketed term is a zero-mean random variable. Furthermore, note that
each of the inner sums in (A3) is a sum of at most n�2k

2k+1
independent

random variables, bounded in magnitude by (��1
max)

2k+1. The reason
for this independence is that each summand in the inner sum depends
on the sequence Zn only through Zi+k

i�k , and Z
i+k
i�k is independent of

Zi +k
i �k whenever ji � i0j > 2k. Applying Hoeffding’s inequality (cf.,

e.g., [1, Theorem 8.1]) gives for each 0 � m � 2k and " > 0, (A4) at
the top of the following page. Combining (A4) with (A3) and applying
the union bound

Pr P
k
x u

k
�k � P̂

k
x [Zn] u

k
�k > "

� (2k+ 1) exp �
2"2(n� 2k)

(2k+ 1) ��1
max

4k+2
: (A5)
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Pr
1

n� 2k
i2fk+1;...;n�kg;

d(i�m)=(2k+1)e=(i�m)=(2k+1)

111
x =u

�

v 2A

111
Z =v

k

j=�k

��1(vj ; uj) > "

� exp �
2"2(n� 2k)

(2k+ 1) ��1max
4k+2

: (A4)

Since a similar argument would give the same bound on

Pr P k
x uk�k � P̂ k

x [Zn] uk�k < �"

we obtain

Pr P k
x uk�k � P̂ k

x [Zn] uk�k > "

� 2(2k+ 1) exp �
2"2(n� 2k)

(2k+ 1) ��1max
4k+2

(A6)

which, by another application of the union bound, gives (26).

B. Proof of Lemma 2

By linearity of expectation,

1

n� 2k

n�k

i=k+1

E� xi; g Y i+k
i�k = EP 
C� U0; g Y k

�k :

Thus, the expression inside the absolute value brackets in (27) is a sum
of zero-mean random variables, bounded in magnitude by �max. Fur-
thermore,

� xi; g Y i+k
i�k and � xj ; g Y j+k

j�k

are independent whenever ji� jj > 2k. This allows the same decom-
position of the sum as in the proof of Lemma 1 into 2k + 1 sums of
independent, bounded, zero-mean variables, which, by a similar deriva-
tion, leads to (27).

C. Proof of Lemma 3

By (9)

EP
C�(U0; g(Y
k
�k))� E~P
C�(U0; g(Y

k
�k))

�

u

P uk�k � ~P uk�k

� �(u0; g(y
k
�k))

k

i=�k

fu (yi) dy�k . . . dyk

� �max

u

P uk�k � ~P uk�k : (A7)

APPENDIX B
PROOF OF THEOREM 2

We letFk
� denote the set ofA2k+1-dimensional vectors with compo-

nents in [0; 1] that are integer multiples of �. Note that ~P k;�
x [zn] 2 Fk

�

for all zn. Just as the notation gopt[P ] (given by (16)) was extended to
accommodate P ’s that are not bona fide simplex members, so we agree
to extend other notation. Thus, for example, EP
C� U0; g Y k

�k

should be understood as the right-hand side of (9) even when P is not
a probability. It is readily verified that Lemma 3 continues to hold for
general P , ~P that are not necessarily probabilities. Finally, let

Gk� = fgopt[P ]gP2F :

Now for the proof: We fix n � 1, xn 2 An, and note that

Pr sup
g: !A

E~P [Z ]
C
� U0; g Y k

�k

�EP 
C� U0; g Y k
�k > "+ ��max (A8)

� Pr ~P k;�
x [Zn] � P k

x >
"

�max
+ �

�M2k+1A k; "=�max; ��1max
2k+1

� e�G(k;"=� ;(� ) )n (A9)
where5 the first inequality in (A9) follows from Lemma 3 and the
second one from Lemma 1. Combining (A9) with Lemma 2 gives

Pr
1

n� 2k

n�k

i=k+1

� xi; g Y i+k
i�k

�E~P [Z ]
C
� U0; g Y k

�k > 2"+ 2��max

� A (k; "+ ��max;�max) e
�G(k;"+�� ;� )n

+M2k+1A k; "=(2�max); ��1max
2k+1

� e�G(k;"=(2� );(� ) )n: (A10)
By the union bound, (A10) guarantees that for any class G

Pr max
g2G

1

n� 2k

n�k

i=k+1

� xi; g Y i+k
i�k

�E~P [Z ]
C
�(U0; g(Y

k
�k)) > 2"+ 2��max

� jGj A (k; "+ ��max;�max) e
�G(k;"+�� ;� )n

+M2k+1A k; "=(2�max); ��1max
2k+1

� e
�G k;"=(2� );(� ) n

: (A11)
Consequently

Pr L ~X (xn; Y n)� min
g2G

E~P [Z ]
C
� U0; g Y k

�k

> 2"+ 2��max

= Pr
1

n� 2k

n�k

i=k+1

� xi; gopt ~P k;�
x [Zn] Y i+k

i�k

� E~P [Z ]
C
�(U0; gopt ~P k;�

x [Zn] Y k
�k)

> 2"+ 2��max (A12)

5The supremum inside the probability in (A8) is over measurable functions.
Although this is an uncountable set, the associated event is measurable as
P̂ [Z ] is finitely valued.
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P k
x uk�k � �P k

x [Y n] uk�k (A24)

=
1

n� 2k

2k

m=0 i2fk+1;...;n�kg
d(i�m)=(2k+1)e=(i�m)=(2k+1)

111
x =u

�

v 2A

k

j=�k

v (Yi+j)A
�1(uj ; vj) : (A25)

� Pr max
g2G

1

n� 2k

n�k

i=k+1

� xi; g Y i+k
i�k

�E~P [Z ]
C
� U0; g Y k

�k

> 2"+ 2��max (A13)

� jGk� j A (k; "+ ��max;�max) e
�G(k;"+�� ;� )n

+M2k+1A k; "=(2�max); (�
�1
max)

2k+1

�e�G(k;"=(2� );(� ) )n ; (A14)

where (A12) follows from the definition of ~Xn;k;� and the fact that for
any P 2 Fk

�

min
g2G

EP
C� U0; g Y k
�k = EP
C� U0; gopt[P ] Y k

�k

(A13) follows by the fact that ~P k;�
x [Zn] 2 Fk

� and, therefore,
gopt[ ~P

k;�
x [Zn]] 2 Gk� , and (A14) follows from (A11). It also follows,

from (A9), that

Pr min
g2G

E~P [Z ]
C
� U0; g Y k

�k

� min
g2G

EP 
C� U0; g Y k
�k > "+ ��max

�M2k+1A k; "=�max; ��1max
2k+1

� e
�G k;"=� ;(� ) n

: (A15)

Combining (A15) and (A14) gives

Pr L ~X (xn; Y n)� min
g2G

EP 
C�(U0; g(Y
k
�k))

> 4"+ 4��max

� Gk� A (k; "+ ��max;�max) e
�G(k;"+�� ;� )n

+M2k+1A k; "=(2�max); ��1max
2k+1

� e
�G k;"=(2� );(� ) n

+M2k+1A k; "=�max; ��1max
2k+1

� e
�G k;"=� ;(� ) n

: (A16)

On the other hand, letting P k
x [�] denote the element in Fk

� closest
(under L1 norm) to P k

x

Dk(x
n)� min

g2G
EP 
C� U0; g Y k

�k (A17)

= min
P2M(A )

EP 
C� U0; gopt[P ] Y k
�k

� min
g2G

EP 
C� U0; g Y k
�k (A18)

� min
P2M(A )

EP [�]
C� U0; gopt[P ] Y k
�k

� min
g2G

EP 
C� U0; g Y k
�k + �max� (A19)

= min
P2F

EP [�]
C� U0; gopt[P ] Y k
�k

� min
g2G

EP 
C� U0; g Y k
�k + �max� (A20)

= min
g2G

EP [�]
C� U0; g Y k
�k

� min
g2G

EP 
C� U0; g Y k
�k + �max� (A21)

� �max� +�max� = 2�max�; (A22)

where (A19) and (A22) follow from Lemma 3, and (A20) follows since
the achiever of the minimum in the first term of (A19) isP k

x [�], which,
by definition, is a member ofFk

� . Finally, combining (A16) with (A22)
gives

Pr (jL ~X (xn; Y n)�Dk(x
n)j > 4"+ 6��max)

� Gk� A (k; "+ ��max;�max) e
�G(k;"+�� ;� )n

+M2k+1A k; "=(2�max); (�
�1
max)

2k+1

�e�G(k;"=(2� );(� ) )n

+M2k+1A k; "=�max; (�
�1
max)

2k+1

� e�G(k;"=� ;(� ) )n: (A23)

The fact that both A(k; ";B) and G(k; ";B) are increasing in " and

decreasing in B, and the fact that Gk� � 1
�
+ 1

M
imply that

the right-hand side of (A23) is upper-bounded by �("; k; �), as defined
in (21).

APPENDIX C
PROOF OF CLAIM 1

The proof is similar to that of Lemma 1. By the definitions of
P k
x uk�k and �P k

x [Y n] uk�k one can show (A24) and (A25) at the
top of the page. It can now be verified that, for each i, the bracketed
term is a zero-mean random variable and that the inner sums in (A25)
are sums of independent random variables, bounded in magnitude by
�max�

�1
max

2k+1
. The proof is completed by applying Hoeffding’s

inequality on each of the inner sums.
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Error Exponents for Hypothesis Testing of the
General Source

Kiminori Iriyama

Abstract—In this correspondence, we consider the simple hypothesis
testing problems for general sources in the sence of Han and Verdú. Re-
cently Han established a compact formula for the supremum of achievable
exponents for the second-kind of error probability under the asymptotic
constraint of the form ( ) on the first-kind of
error probability , where is a given positive number. We investigate
the same hypothesis testing problems studied by Han. The aim of the
correspondence is to give a new expression for the supremum of achievable
error exponents. Our formula is expressed in terms of the divergences and
given in quite different forms from Han’s expression.

Index Terms—Abstract alphabet, divergence, error exponent, general
source, hypothesis testing, information spectrum, large deviation.

I. INTRODUCTION

In this correspondence, we consider the simple hypothesis testing
problems for general sources in the sence of Han and Verdú [5]. We
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investigate the same problems studied by Han [3]. LetXXX = fXng1n=1

and XXX = fX
n
g1n=1 be general sources taking values in the same

source alphabets fXng1n=1. Han [3] has defined the general hypoth-
esis tesiting problem with XXX as the null hypothesis and XXX as the al-
ternative hypothesis. One of the basic problems is to determine the
supremum Be(rjXXXkXXX) of achievable exponents for the second-kind
of error probability �n under the asymptotic constraint of the form

�n � e
�nr

; n!1 (1)

on the first-kind of error probability �n, where r > 0 is a prescribed
arbitrary constant. The quantity Be(rjXXXkXXX) is called the supremum
of r-achievable error exponents. Another basic problem is to determine
the infimumB�e (rjXXXkXXX) of achievable exponents for the second-kind
of correct probability 1� �n under the asymptotic constraint (1).
Han [3] proposed these problems and established general formulas

(see Theorems 1 and 3) for Be(rjXXXkXXX) and B�e (rjXXXkXXX). It may be
of interest to know that we can give different formulas for these quanti-
ties. The main aim of the correspondence is to derive new formulas for
Be(rjXXXkXXX) and B�e (rjXXXkXXX), which are expressed in terms of diver-
gence and given in quite different forms from the Han’s expressions.
Our results are stated in Theorem 2 and Theorem 4.
The quantitiesBe(rjXXXkXXX) and B�e (rjXXXkXXX) have been studied for

stationary memoryless sources (SMSs), Markov sources and stationary
Gaussian sources (see [3] and references therein), where XXX = fXng
is said to be a SMS if fXig

1
i=1 is a stationary memoryless process and

Xn = (X1; . . . ; Xn). IfXXX andXXX are SMSs, then it is known (cf. [3],
[4], [6], [11]) that Be(rjXXXkXXX) is given by

Be(rjXXXkXXX) = inf
Y :D(Y kX )<r

D(Y kX1) (2)

whereD(Y kX) denotes the divergence of Y with respect toX . In the
case of Markov sources (cf. [3], [12]) and stationary Gaussian sources
([1], [7]) it is also shown thatBe(rjXXXkXXX) is expressed in terms of the
divergence. It should be emphasized that our formula (Theorem 2) for
Be(rjXXXkXXX) seems to be a natural extension of the formula (2) for the
SMS.
Han [3] has shown that his results can be applied to obtain the for-

mulas ofBe(rjXXXkXXX) andB�e (rjXXXkXXX) of SMSs andMarkov sources.
Our theorems can also be applied to SMSs and Markov sources (see
Examples 1 and 2).
The main theorems are stated in Section II, and the proofs are given

in Section III. We apply our main theorems to some special cases in
Section IV.

II. MAIN RESULTS

Let XXX = fXng1n=1, XXX = fX
n
g1n=1 and YYY = fY ng1n=1 be

general sources, where Xn, X
n
and Y n are random variables taking

values inXn and (Xn;Bn) is a measurable space. Note that the random
sequenceXXX = fXng is not necessarily stationary nor consistent. We
denote by PX the probability distribution of a random variableX .
Our results are expressed in terms of the following divergences. The

divergence D(Y nkXn) � D(PY kPX ) of Y n with respect to Xn

is defined by

D(Y nkXn) =
X

log
dPY

dPX
(x)dPY (x)

if PY is absolutely continuous with respect to PX , otherwise
D(Y nkXn) = 1. We defineDu(YYY kXXX) and Dl(YYY kXXX) by

Du(YYY kXXX) = lim sup
n!1

1

n
D(Y nkXn)

Dl(YYY kXXX) = lim inf
n!1

1

n
D(Y nkXn):
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