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Tradeoffs Between the Excess-Code-Length
Exponent and the Excess-Distortion Exponent in

Lossy Source Coding
Tsachy Weissman, Student Member, IEEE,and Neri Merhav, Fellow, IEEE

Abstract—Lossy compression of a discrete memoryless source
(DMS) with respect to a single-letter distortion measure is consid-
ered. We study the best attainable tradeoff between the exponen-
tial rates of the probabilities that the codeword length and that the
cumulative distortion exceed respective thresholds for two main
cases. The first scenario examined is that where the source is cor-
rupted by a discrete memoryless channel (DMC) prior to reaching
the coder. In the second part of this work, we examine the universal
setting, where the (noise-free) source is an unknown member of
a given family � . Here, inspired by an approach which
was proven fruitful recently in the context of composite hypothesis
testing, we allow the constraint on the excess-code-length exponent
to be -dependent. Corollaries are derived for some special cases of
interest, including Marton’s classical source coding exponent and
its generalization to the case where the constraint on the rate of the
code is relaxed from an almost sure constraint to a constraint on
the excess-code-length exponent.

Index Terms—Excess-code-length exponent, excess-distortion
exponent, lossy source coding, Marton’s exponent, noisy source
coding, universal coding.

I. INTRODUCTION

L ET be a source sequence with components in
a finite alphabet and let be a reconstruction alphabet.

Let further be a given single-letter distortion
measure and define the distortion between sequences
and by

The problem of lossy source coding, or rate-distortion theory, is
typically the following. Given a rate and a block length , one
seeks a codebook, of size and a mapping,

, from into , making the distortion
as small as possible in some quantitative sense, most commonly
the expected distortion sense. Alternatively, lossy source coding
is often concerned with the reverse problem of fixed distortion
and variable rate (see [1], [10]).

Another sensible performance criterion is the large deviations
behavior of the distortion, which was first addressed, for a dis-
crete memoryless source (DMS), in Marton’s 1974 paper [17]
(cf. also [2], [3]). Specifically, the goal in that work was to find
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the best exponential decay rate of for
a given distortion level , when the size of the codebook is lim-
ited to words. This exponential decay rate was shown to be
given by

where is the marginal of the source, denotes the
rate-distortion function of a source, and denotes the
Kullback–Leibler distance. Error exponents for source codes
have since been studied by others (cf. [4], [6] and references
therein) and have been extended to more general settings, such
as that of successive refinement [14]. The excess-code-length
exponent has also been studied in the context of lossless coding,
cf. [12], [13], [22], [18] and the recent work [11] for the infor-
mation-spectrum approach.

In the work related to error exponents of various lossy source
coding scenarios, ordinarily, the rate constraint imposed is very
strict. The codebook size is not allowed to exceed, which
means, of course, that the codeword length should not exceed

bits, with probability one. The criteria by which the distor-
tion is typically evaluated, on the other hand, are considerably
softer and more pliable. Alternatively, the other setting typically
considered is that where the constraint on the distortion is strict,
while that on the rate is softer.

Our goal, in this work, is to treat the distortion and the rate in
a more symmetric way, in the context of large deviations per-
formance, in certain problems of lossy source coding. We shall
measure performance in terms of the tradeoff between the prob-
abilities that the distortion and the associated codeword length
exceed respective thresholds. Specifically, we characterize the
best achievable exponential rate of
(henceforth referred to as the “excess-distortion exponent”),
subject to the constraint code length of ,
for a given rate , and a given (henceforth referred to as
the “excess-code-length exponent”).

Consider first the extension of the setting of [17] where we
allow variable-length codes but restrict attention only to those
for which code length of . Assuming,
without loss of optimality (as will be proved in Section III),
that sequences of the same type class1 are assigned codewords
of roughly the same length, the optimal scheme allots approx-
imately bits to any sequence whose empirical probability
mass function (PMF) is within Kullback–Leibler distance of

1We assume that the reader is familiar with types and their properties [6], [5].
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from and bits when the Kullback–Leibler distance
from is more than . To get the idea of this, let us now ex-
amine two complimentary cases:

Case 1. All types with have .

Case 2. There are types with such that
.

In Case 1, by the type-covering lemma [6], the types in which we
cannot afford more than bits can be covered within distor-
tion . Hence,all sequences are covered within distortion
under the rate constraint, thus achieving an infinite excess-dis-
tortion exponent. In Case 2, essentially all sequences within
types for which are distorted by more than
and, hence, the best excess-distortion exponent achievable will
be the minimum of over all for which

, which is precisely . Furthermore, note that Case 1 pre-
vails if and only if . To sum up, the excess-distor-
tion exponent is a step function in, assuming the value for

and the value for (cf. Fig. 1 of
Section III-C2). This extension of Marton’s result will be shown
to be obtainable as a special case of the more general setting,
considered in Section III, where the source is corrupted by noise
prior to encoding. As will also be shown, in this more general
case, the behavior of the excess-distortion exponent is normally
more “graceful” than in the noise-free case.

In Section III, we shall analyze source coding exponents for
the case of a DMS corrupted by a discrete memoryless channel
(DMC). In this setting,2 the encoder accesses a noisy version

of the clean source sequence and pro-
duces a reconstruction sequence . We shall charac-
terize the best achievable excess-distortion exponent (where the
distortion measured is between and )
subject to the constraint that the excess-code-length exponent is
at least . Note that the problem considered in [17] is a special
case of this section, where the DMC is the clean channel (under
which almost surely (A’s.)) and . Staying with
the case where , the results of this section can be consid-
ered analogous to those of [17] for the noisy case. To the best
of our knowledge, the lossy source coding error exponent for
noisy sources has not been previously obtained in the literature.
Nor are we aware of results pertaining to the excess distortion
exponent even for , that is, pure filtering.

A more detailed outline of Section III is as follows. Sec-
tion III-A presents the main result on the above-described ex-
ponent, whose proof is given in Section III-B. In Section III-C,
we verify that Marton’s exponent is obtained as a special case

and we obtain the excess-distortion exponent for the
noise-free case as a function of. Section III-D will be dedi-
cated to the properties of the exponent function. Finally, in Sec-
tion III-E, we merely mention that a generalization of the model
to the case where additional side information is available at both
encoder and decoder is possible.

Section IV analyzes a universal coding problem from the per-
spective described above. Returning to the case of encoding the
clean sequence (uncorrupted by a DMC), emitted by a DMS

2Originally, studied under the ordinary, expected rate and distortion criteria
[1], [8], [9].

, where is an unknown parameter taking values in a set
, we characterize the best achievable (-dependent) distortion

exponent, such that the code-length exponent, with respect to
(w.r.t.) , is at least as large as a given function , uni-
formly for all . A universally optimal scheme will be
constructed. We shall also attempt to establish a quantitative re-
lationship between the “price” paid for universality (relative to
the source-dependent coding case), the geometry of, and the
form of the function . This somewhat parallels a recent work
[16], where a competitive Neyman–Pearson approach was de-
veloped for the composite hypothesis testing problem. In that
work, the goal was to decide, upon observing

, whether belongs to or to , and the best achiev-
able error exponent of the second kind was characterized such
that the constraint that the error exponent of the first kind is
lower-bounded by , for all . As it turns out, the optimal
scheme of [16] is intimately related and, in some sense, analo-
gous to the one presented here. As will be elaborated on in Sec-
tion IV-B, the coding scheme which turns out to be optimal in
the setting of this work uses two different strategies in two com-
plimentary subsets of sources, and these subsets exactly corre-
spond to the decision rule of [16].

As revealed by the proofs of the main results, there is a basic
structural feature, shared by the sequences of optimum schemes
in all of the scenarios considered. In all cases, the schemes di-
chotomize between two complimentary sets of types. If the ob-
served sequence is of a type which belongs to one set, the code-
word will be about bits long. If the type belongs to the com-
plimentary set, the codeword will be significantly longer. In Sec-
tion III, the dichotomy is according to whether or

. In Section IV, the dichotomy is dictated by the
Kullback–Leibler distances between the type of the sequence
and the sources , , corresponding to the decision rule
proposed in [16]. This phenomenon can be attributed to the fact
that the probability of excess-code-length is the expectation of
the indicator function of the excess-code-length event. Thus, all
codewords shorter than bits incur zero loss, whereas those
longer than bits share the value. Hence, in terms of distor-
tion, one can never gain from using significantly less than
bits and, on the other hand, having allotted more thanbits,
one may use arbitrarily many bits with no extra payment.

The remainder of the paper is organized as follows. Sec-
tion II, in which we present the notation and conventions used
throughout, will be followed by the two main sections (III and
IV) described above. Finally, in Section V, we summarize the
paper and discuss a direction for future research.

II. NOTATION AND PRELIMINARIES

For an arbitrary pair of nonnegative sequences, and
, we write as short-hand notation for

where we take throughout , , , and

for . We shall write for

(1)
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similarly, will be synonymous to the statement that (1)
holds with a strict inequality. Note that the negation of
doesnot imply that , but it does imply that

or, in other words,3 the existence of a and an increasing
sequence of natural numbers such that
for all . For an increasing sequence of natural numbers ,
we shall slightly abuse the notationby writing for

The notation should be understood analogously.
For finite sets and , we let denote the set of all

probability measures on and the set of all sto-
chastic matrices (or “channels,” or “conditional distributions”)
from to . We will let denote the subset of
containing all probability measures which assign strictly posi-
tive mass to all members of. For , we let
denote the entropy of a random variable distributed according
to . For any and we will write

for the measure governing the pair
when is generated according to and then is taken as
the output of the channel whose input is . We also let

denote the conditional entropy of given and the
mutual information between and . Alternatively, for

, we shall sometimes write to denote the mu-
tual information between and when jointly distributed ac-
cording to . For we will denote the Kull-
back–Leibler (informational) divergence by and for

we will let

denote the conditional (informational) divergence.
We assume a finite source alphabet, a finite reproduc-

tion alphabet , and a given single-letter distortion measure
satisfying4 for all

. For and we define

and for any we denote

The subscript will be omitted from in the sequel when
there is no room for ambiguity. We shall adopt the convention

3This is the form of the statement which will be used in a certain place in the
paper, so we take the opportunity here to make it explicit.

4Note that there is no essential loss of generality in this assumption as, oth-
erwise, we can look at the modified distortion measure given by~�(X; X̂) =
�(X; X̂) �min �(X; X̂ ).

throughout that capital letters represent random variables, while
the corresponding lower case letters represent specific sample
values. For we shall let and denote
the rate-distortion and distortion-rate functions, respectively, as-
sociated with the source.

For any we let denote the associated
empirical measure. For we let

denote the type class of . For we let
, or simply when the alphabet is clear from the con-

text, denote the set of all for which . For
, we let denote the set of all for

which (as a subset of ) is not empty. Following
[6], for any given and ,
we let (the “ -shell” of [6]) denote the
set of sequences having conditional type given

.
When dealing with expectations of functions or with func-

tionals of random variables, we shall sometimes subscript
their distributions when we want to make these explicit.
Thus, for example, for any and
we shall write for the expectation of when

is distributed according to . Similarly, we shall write,
for example, , to denote the conditional mutual
information between and given , when the triple

is distributed according to .
Also, if and , we shall
sometimes slightly abuse the notation by writing to
denote the distribution on where

are generated according to and then is taken
as the output of the channel whose input is (note that
in this case, form a Markov chain). Also, for

, and ,
we shall sometimes slightly abuse the notation by writing

for , where is the
channel which coincides with (i.e., the output of the channel

is independent of the -valued component of the input).
Since we will only be dealing with finite alphabets, there will

be no technicalities associated with convergence of probability
measures. For any sequence of probability measures and
a , all of which are members of, say, , we will write

for where, in the second limit, we
regard and as elements of .

For any function , we use the standard notation
to denote the respective limits , whenever
these limits exist. We shall use analogous notation with mul-
tivariate functions as well. Thus, for example, the notation

will stand for

and, similarly, for

whenever the limits exist.
Finally, the infimum or the minimum over the empty set is

defined throughout as and will denote subtraction of sets,
i.e., for two sets and , .
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III. ENCODING A NOISY SOURCE

In this section, we assume a DMS with finite input alphabet
and probability distribution , corrupted by a noisy channel

with output alphabet . We let further , , and
denote the marginal on, the joint distribution on ,

and the backward channel, respectively, induced by the source
and the DMC . We assume that .

will denote the product distribution on induced
by .

A variable-length scheme for combined filtering and
compression of noisy input vectors of length, ,
consists of a triple with the following
ingredients: a reconstruction codebook , a mapping

so that is the reconstruction
vector, and a uniquely decodable code .
For the noisy vector , let denote the length of the
codeword . We shall write when
we want to make the dependence on the particular code
explicit. Let denote the set of all such schemes for combined
filtering and compression of noisy input vectors of length.

In the classical setting of [17], which is noise-free, and there
is a strict constraint on the codeword length , the com-
pression scheme is completely determined by the codebook
as, clearly, the optimal way to use a given codebook is to apply
the nearest neighbor rule w.r.t.. In the noisy setting, given ,
it is not obvious how to encode, as distortion is measured with
respect to the unobserved . Moreover, even when there is no
noise, but the excess-code-length constraint is relaxed from the
stringent assumption of [17], to the milder one where

is finite, the compression scheme is not immediately deter-
mined by , because there might exist which may better
be represented by a reproduction word which is not the nearest
neighbor, but which has a shorter codeword.

For and we define now

(2)

In words, is the set of all variable-length schemes for
input vectors of length having excess-code-length exponent
for rate at least as large as. For we let

(3)
where the on the right-hand side of (3) is the mapping
from into associated with the scheme . In words,

is the least achievable probability for distortion
exceeding among all variable-length schemes having excess-
code-length exponent at least as large as.

A. Statement of the Main Result

The main result of this section is the following.

Theorem 1: For all , , and we have

(4)

(5)

where

(6)

is defined, for , by

(7)

and is defined, for , by

(8)

Remarks: A qualitative explanation for the origin of the ex-
pression for the exponent in (6) can be given as follows. As-
suming (what will be justified in the proof) that there is no loss
of optimality in restricting attention to schemes for which the
(joint) type of is constant all across the type

for all , fix a type and let
denote the channel induced by the joint type when

. It is then not hard to see (and will be formally estab-
lished), e.g., via the method of types, that

So the best coding scheme (in the sense of maximizing
the excess-distortion exponent) would be one for which

is maximized over , for each . However, as
discussed in Section I, if the excess-code-length constraint is
to be satisfied, types with cannot be afforded
more than bits. This translates into the requirement that
the maximization over , for with , is
restricted to ’s satisfying . For types with

, on the other hand, the maximization over
is unrestricted. Hence, since the exponential “price”

of observing a (noisy) source sequence of type is
, the best achievable exponential behavior for

is
when and when

, which explains the form of .
The monotonicity of in both (increasing) and

(decreasing) is shown in Appendix-B1 to imply that the limits
defining and both exist.
Furthermore, in Appendix-B2 we show that Theorem 1 implies
that for all pairs outside a set of zero Lebesgue mea-
sure

(9)

Note that the case of pure filtering is obtained by taking
or , where Theorem 1 gives the best achievable excess-dis-



400 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

tortion exponent for the filtering problem. The case of “pure
coding,” on the other hand, when the codebook is confined to a
size no greater than words, is obtained by taking .
A further discussion of the exponent and of special
cases of Theorem 1 of particular interest, is deferred to Sec-
tion III-D.

B. Proof of Theorem 1

The outline of the proof is the following. We start by obtaining
an exponentially tight estimate for

for an arbitrary and scheme (which defines the
mapping ). This estimate will be a functional
of the empirical distribution . So, in effect, we
are looking for that scheme in with empirical
distributions that minimize this functional, if
possible, for all . In the converse part, we show that any
member of must be such that for
essentially all for which . Therefore,
the exponent achievable for
must clearly be upper-bounded by the exponent obtained when
maximizing the above functional with respect to ,
for each , under the constraint that
whenever . The direct part is then estab-
lished by a construction of a scheme in , which
achieves the upper bound on the exponent established in the
converse part. This scheme is one under which
maximizes the above functional, subject to the constraint that

whenever . The existence
of such a scheme in is essentially guaranteed because
the fact that for all guarantees
the existence of a scheme that will need no more thanbits
to convey for . Hence, whenever for

with , the codeword will be no more than
bits long, guaranteeing the membership of the associated

scheme in . We now turn to making the above line of
argumentation precise.

For any scheme we have

(10)

Considering the inner sum in (10), we have for any
and

(11)

(12)

(13)

(14)

(15)

where equality (12) follows directly by a rewriting of
as

(16)

where is the count of the pair along
. To get to equality (15), we have used the easily veri-

fiable relationship

(17)

For an upper and a lower bound on (15), we now let ,
for , be defined by

(18)

Recall further (cf., e.g., [6, Lemma 2.5]) that for all

(19)
Therefore, (15) is upper-bounded by

(20)

and lower-bounded by

(21)

(22)

We turn to the proof of (5) first. Fix arbitrary
and a sequence of coding schemes such that

. Combining (10) with (22), we have the
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existence of (independent on the sequence )
such that for all

(23)

(24)

(25)

(26)

where we only need to justify the last inequality. To this end,
observe first that (24) upper-bounds the first line of (26) as
there clearly exists a such that

. So it remains to argue why (25)
upper-bounds the second line of (26). For this purpose, it will
suffice to establish the existence of (independent on
the sequence and on ) such that for all
and any with

(27)

(28)

Inequality (28) is proved in part C of the Appendix. The inde-
pendence of on the sequence guarantees that
(23) can, in fact, be replaced by

Furthermore, since the sums in (28) are over expressions which
do not depend on , (26) can be further lower-bounded
by

(29)

(30)

we have for all

(31)
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(32)

Combining the result of part D of the Appendix (Claim 2) with
the definition of (recall (6)) and the arbitrariness
of gives

(33)

which, by the arbitrariness of , finally implies (5).
Turning to establish (4), we fix arbitrary and con-

struct a as follows. We first construct the
codebook .

• For with we take

(34)

• For with let

achieve

(35)

Then, as is well known [6], there exists, for sufficiently
large (dependent on yet not on ), a set
of size

and a map such that

for all

Let, for each , be given by such a map.

The above two items completely specify the mappingand
the codebook comprising . We still need to specify
the codewords, or, equivalently, the uniquely decodable map

. We construct the codewords as follows:
use no more than bits to convey the type to which

belongs. Now, if with , use
any number of additional bits to convey . Otherwise,
use no more than bits to convey . This can
clearly be done, once the type to which belongs is known,
as is known to belong to , whose size is no more
than . Using this scheme, for sufficiently large,
the fact that implies that
for some such that . Consequently, for
sufficiently large (dependent on and ), we have

(36)

Hence, our scheme is a bona fide member of
for sufficiently large. Now, for the schemes , we have

(37)

(38)

(39)

where the inequality follows by combining (10) with (20) and
the equality by the construction of . Since

clearly upper-bounds , we have the inequality

(40)

which follows when considering the normalized logarithmic
limit of the two sides of the last chain of inequalities and
invoking Claim 2 of part D in the Appendix. Finally, the
arbitrariness of implies (4).

Remark: Note that the optimal scheme constructed in the di-
rect part of the proof is dependent on, since the maximizers in
(34) and (35) will, in general, depend on. This is in contrast to
Marton’s setting (cf. [17]), for which the scheme that essentially
represents the sequences of each type with the lowest distortion
possible at the given rate is optimal for all values of.

C. A Special Case: The Noise-Free Setting

We dedicate this subsection to verifying that and
Theorem 1 coincide with Marton’s classical result when the
source is not corrupted by noise and . We then look at the
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explicit form that assumes when Marton’s setting is
relaxed to .

1) Marton’s Exponent:Let us verify that for the noise-free
case and , Theorem 1 coincides with Marton’s classical
result [17]. To comply with the general formulation, we assume
that in this case and -a.s., so that

, where denotes the “clean” channel from into .
Taking in (6) we have

(41)

It is easy to see that for any

if

otherwise.
(42)

Consequently,

if

otherwise

if

otherwise.
(43)

Therefore,

if with
,

otherwise

if

otherwise.
(44)

Finally, this implies

where is precisely the exponent from [17].
2) A Slight Extension:Staying in the noise-free setting, we

now generalize the result of [17], where , to a general
. It is straightforward to show, similarly as in the

derivation of the preceding subsection, that for all ,
we have in the noise-free case

(45)

Plugging into (6) gives

Fig. 1. I(R; d; �) for the extension of Marton’s setting to the case of a general
excess-code-length exponent.

(46)

if with

otherwise

otherwise
(47)

where (46) follows from (44) and the rest from the definition of
. Theorem 1 now gives us the following generalization of

the result of [17] (cf. Fig. 1).

Corollary 2: For all , , and all
we have

(48)

(49)

For we have

(50)

Corollary 2 tells us the following two things.

• Even when the very strict requirement of [17]
is considerably relaxed to and , the excess-
distortion exponent is not improved.

• may decay at a super-ex-
ponential rate, while keeping the excess-codelength ex-
ponent arbitrarily close to . A more detailed anal-
ysis shows that, in fact, for , we have

for large enough .

A qualitative explanation for this behavior has been given in
Section I. A more thorough discussion of the dichotomic phe-
nomenon exhibited in Corollary 2 is deferred to Section IV,
where the setting of [17] will be further generalized to the case
of universal coding.
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D. Properties of the Function

Unfortunately, turns out to be quite arduous for
analysis. Convexity in , for example, has no hope of reigning,
as even is not necessarily convex. Also, the explicit an-
alytic form of for even the simplest cases, such as
the binary memoryless source, corrupted by a binary-symmetric
channel (BSC) with Hamming distortion measure, turns out to
be far too intricate to shed any insight on the problem.

We dedicate this subsection to a qualitative investigation of
the function and to a verification that the form of

adds up with what is known about rate-distortion
coding of noisy sources (cf. [8]).

1) Qualitative Investigation of the Function : We
recall here, for convenience, that

(51)

Clearly, we expect to be nonincreasing in. As this
may not be obvious from (51), let us verify that this is indeed
the case.

Claim 1: is a monotone nonincreasing function
of , for fixed .

Proof: For fixed and , consider the func-
tion defined by

if

if
(52)

Since the function lies above the function ,
it is clear that is a nonincreasing family of func-
tions (with increasing ). Consequently, the respective minima
of these functions is a nonincreasing function of. But, for
each

To get a feel for the qualitative behavior of the function
we further let

(53)

we let denote the achiever in the right side of
(53), and we let . Consider now one of two
possibilities.

Possibility 1: . In this case,
the minimum value of the function lies
below the value of and, hence, for all

with sufficiently small, we also
have . This means that there is a whole
interval in which

for all , where

Fig. 2. Possible behavior ofa(�; R; d), a(�; 1; d), andI(R; d; �) in the
caseI � a(P ; R; d).

Now, since (as ,
and therefore clearly, for any ,

, ),

this means that for any we have

Consequently, for all , we have

By the definition of it is also clear that for all , the
right branch in (51) “kicks in” and we have

In particular, for all , we clearly have
.
To sum up, the graph of the function starts

with a plateau at level until the right branch in (51)
“kicks in.” From the point and on, the function is at
a plateau again at level (see Fig. 2 for a qualitative il-
lustration). Note that the heights of the two plateaus men-
tioned are, respectively, and , the exponents asso-
ciated with the “pure filtering” and “pure coding” cases.
Hence, we see that, in this case, there is nothing to loose
in the excess distortion exponent relative to the “pure fil-
tering” regime when the constraint on the excess code-
length exponent is mild enough. It is also seen that when
the excess code-length exponent is confined to be above a
certain rate, there is nothing to gain relative to the “pure
coding” regime where the codewords are confined to a
length less than with probability one.

Possibility 2: . In this case, the fil-
tering regime, the left branch in the right-hand side of (51)
does not “kick in” at all except for . The reason is
that, in this case, we have for any
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Fig. 3. Possible behavior ofa(�; R; d), a(�; 1; d), andI(R; d; �) in the
caseI > a(P ; R; d) (note the discontinuity at the origin).

so that

On the other hand, when , the set
is empty, in which case the right branch in the right-hand
side of (51) is infinite and we have

Hence, in this case, we have an interesting disconti-
nuity phenomenon at . A qualitative explanation
for this phenomenon is that, in this case, where

, -typical sequences are such that the op-
timal filtering scheme on these sequences needs more than

bits, and, even when confined to bits only on ,
the optimal scheme will have an excess-distortion expo-
nent no higher than . Hence, when , this
is a purely filtering regime, whose exponent is. For any

, however, one cannot afford to allot the -typical
sequences more than bits, in which case the associated
exponent cannot be higher than (see Figs. 2
and 3 for a qualitative illustration). Note that the regime of
Possibility 2 will prevail when is sufficiently small.

2) The Region Where : Clearly, if the ex-
cess-distortion exponent is positive, we must have

for all
and sufficiently large . We, therefore, expect, for any
, to have for all ,where

is the rate-distortion function associated with the
noisy source coding problem (cf., e.g., [8]). Specifically, it was
shown in [8] that is no more than the rate-distor-
tion function of the source , with respect to the modified dis-
tortion measure , given by

(54)

Let us now show that our belief was justified.

Proposition 1: For any , we have

(55)

Proof: Fix a . From the definition of , it
clearly follows that

(56)

Since is nondecreasing, it will suffice to show that

(57)

Taking , the left-hand side of (57), is upper-bounded by

(58)

It will, therefore, suffice to show that the expression in (58)
equals zero. But this will be the case if and only if

s.t. (59)

Consequently, since if and only if
, we will be done upon showing

that

s.t. (60)

But

(61)

(62)

(63)

Consequently, if then

which implies (60).

E. Noisy Source Coding With Side Information

The setting considered thus far can be generalized to the
case where side information is available at both encoder
and decoder. Specifically, one can assume that the source

is a sequence of independent drawings
of a triple of dependent random variables, , , taking
values in the finite sets , , , respectively, and distributed
according to . As before, it may be desired to encode
the sequence in blocks of length , based on its noisy
version , while complying with rate limitations of the type
considered in previous subsections. In this setting we assume



406 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

the availability of side information. Namely, we assume that
both encoderand decoder have access to the side information

. Clearly, this setting contains that considered thus far as a
special case. A result generalizing and analogous to Theorem 1
can be obtained for this setting. The principles underlying the
treatment of this setting and the proof of such a generalized
result are the same as those underlying the proof of Theorem
1, with the only added ingredient of conditioning everything
on . The interested reader is referred to [21, Sec. 3.E] for
an elaborate treatment of this setting and for results which
generalize those of the previous subsections to the case where
side information is present.

IV. ERROREXPONENT FORUNIVERSAL LOSSYCODING

In this section, we consider the case of lossy coding for a
memoryless source (in the absence of noise and of side informa-
tion), which, rather than being completely known, is only known
to belong to a given parametric family. Note that the first step in
this direction has been taken by Marton in [17], as the scheme
achieving the optimal exponent in that setting did not depend on
the source. As we saw in previous sections, however, when the
constraint on the code-length overflow exponent is relaxed from
infinity to a finite value, the optimal scheme becomes source-de-
pendent. The basic reason for this is that, as opposed to the set-
ting of [17], where sequences of all types could be allotted no
more than bits, here the optimal scheme is one under which
the only types that are allotted no more than bits are those
that are sufficiently close (in the Kullback–Leibler sense) to the
source. Consequently, in general, such a scheme would clearly
be source-dependent. Thus, when the excess-code-length con-
straint is relaxed to a finite value of the exponent, the issue of
universality is more involved than it was in the setting of [17].

A. The Error Exponent and the Universally Optimal Scheme

Let denote a parametric family of mem-
oryless sources with the finite alphabet and the marginal

. Considering the standard correspondence be-
tween elements of and , we may think of as a
subset of (the simplex in) . Furthermore, to avoid tech-
nical nuances, we assume throughout thatis a closed (and,
hence, compact) subset of . In particular, this guaran-
tees the continuity of in , for all . This
also implies that , a fact that we
will rely on in the sequel. Note that the consideration of a gen-
eral subset of , rather than restricting attention only to
the whole of , is motivated by more than a desire to max-
imize the mathematical generality. As will be seen in the sequel,
there is a clear tradeoff between the size and structure of the un-
certainty set and the deterioration of the performance relative
to the nonuniversal setting, so that when the uncertainty set is
smaller than the whole of it is advantageous to consider
coding schemes which are tailored for this smaller set. Further-
more, in many situations of practical interest, the source is most
naturally modeled by a family of distributions which is a proper
subset of : e.g., the family of symmetric distributions or,
for a large alphabet, families of one-parameter exponential dis-
tributions (cf. [20], [19]).

Given a sequence of compression schemes,
we associate with every an exponent for distortion level

defined by

(64)

where , being the mapping from into
associated with the scheme (recall Section III for the

complete definition of a coding scheme). Our goal is to find
a sequence that is independent of and which maximizes

, uniformly for all if possible, under the requirement
that

(65)

for a continuous5 which is assumed given and
fixed throughout this section. Note that a requirement which is
similar to that in (65) can be given as follows. Letting

one might require that, for all sufficiently large

(66)

Clearly, the nonasymptotic requirement in (66) is slightly
stronger than the asymptotic one of (65), though they are sim-
ilar in spirit. The idea in letting vary with is motivated
by the fact that certain sources in the parameter spacemay
be “easier” to code than others, so it may make sense to require
a larger excess-code-length exponent for such sources, and a
smaller one for the more “difficult” sources. More specifically,
the set of (66) can, in general, be made
considerably larger by considering-dependent s, rather
than some value of which would be constant all across the pa-
rameter space. This point will be elaborated on in Section IV-B.
A similar approach was recently proven quite fruitful in the
context of composite hypothesis testing (cf. [16]). Indeed, there
is an intimate relationship between the decision rule proposed
in [16] and our coding scheme.

As we show next, for a given there exists a sequence
(where the superscript stands for “universal”) whose ele-

ments comply with (66) while maximizing universally
in . The idea in the construction of is the following. As-
suming without loss of optimality (what will be justified for-
mally in the proof of Theorem 4) that sequences of the same
type are assigned codewords of essentially the same length, if
the source sequence and , for some

, then we cannot afford more than bits, otherwise,
under , the probability of excess code length would be more
than the probability of , which would, in turn, be essentially
lower-bounded by , vio-
lating (65). Consequently, if for some
or, in other words,

5Continuity here is in the standard sense that for each� 2 � and" > 0
there exists� > 0 such thatj�(�) � �(~�)j � " whenever~� 2 � satisfies
k�� ~�k � �, where1�1= 0. Note, in particular, that when� is finite, all
�s are continuous.
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the best we can do is to allot sequences in just about
bits. For types with , we have no limitation. This is
the rationale behind the construction of which follows.

For a fixed , we construct the sequence
as follows. For the associated codebook,, we take the fol-
lowing.

• For with , we take .

• For with , the type covering lemma
assures us of the existence of a set with size

and such that

for all

where as and the sequence is
independent of . Let, for each , be the
-nearest neighbor of in .

The above two items completely specify the mapping and
the codebook comprising . We construct the uniquely
decodable map as follows: use no more
than bits to convey the type of . Now, if

with , use additional bits to
convey . Otherwise, use bits to convey

. Using this scheme, for sufficiently large
(such that ),
for some with . Consequently, there exists ,
independent of , such that for all and all

(67)

We now have a sequence of compression schemesfor any
. We construct our scheme, , as follows. Let now, for

each , . Since for every
(recall the second item in the construction of the code

book for the definition of ), we can readily construct a (not
necessarily strictly) increasing sequence of integers
satisfying

(68)

yet sufficiently slowly such that both

(69)

and

(70)

Note that, in particular, this construction satisfies

(71)

By the uniformity of (67) in , we have

(72)

for all sufficiently large . Finally, we define
. We shall write when we want to make the

dependence of on explicit. We begin by assessing the
performance of . In what follows, we let denote the
mapping from into associated with .

Theorem 3:
a) satisfies, for all

(73)

b) For each

(74)

and

(75)

where

(76)

and we define

(77)

Remark: Note the dependence of on the
threshold function . This dependence is suppressed in
order to avoid cumbersome notation. Note also that, since

is a nondecreasing function of, it can only be
discontinuous at a countable number of values of. Thus,
Theorem 3 gives

(78)

except, possibly, for a countable number of values of.

Proof of Theorem 3:Item a) follows from the construction
of and, in particular, (72). Turning to the proof of b), we
note that, by our construction of , we have for any and
sufficiently large

(79)

Inequality (74) now follows by considering the normalized log-
arithm of the two ends of the above chain, letting , and
then .

For (75), we fix and note that, by construction of ,
we have for all sufficiently large

(80)
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(81)

Furthermore, the definition of , the continuity of
and of (which together imply the continuity of

), and the continuity of in (cf. [6, Lemma 2.2])
imply that

(82)

Thus, considering the normalized logarithm of the two ends of
the chain of inequalities (80) and (81) and combining with (82)
gives

(83)
Finally, we take and establish (75).

Theorem 3 assessed the performance of. The following
theorem tells us that no scheme can do better.

Theorem 4: Let denote the set of all for
which is continuous at , and is contin-
uous at . For any sequence of schemessatisfying

(84)

we have

(85)

Remark: Theorem 4 establishes the universal optimality of
the scheme with respect to the class of all schemes com-
plying with the codeword overflow probability constraint dic-
tated by . Note that item a) of Theorem 3 implies, in partic-
ular, that satisfies (65)uniformly in . That is,

(86)
Theorem 4 tells us that if a scheme has an excess-code-length
exponent which is better than that of , it will necessarily
have an excess-distortion exponent upper-bounded by that of

uniformly for essentially6 all values of the parameter space.

Proof of Theorem 4:Let be any sequence of
schemes satisfying (84) and assume, conversely, that there exists
a for which

(87)

Before plunging into formalities, let us outline the idea. In-
equality (87) essentially implies, for large, the existence of a
type on which gives distortion while gives dis-
tortion . The latter fact essentially implies that

6It is tedious but straightforward to show, using the continuity ofD(�; �)
in M(X ) � [0; 1), that when� and �(�) are sufficiently well-behaved,
C(R; d; �) = �.

and that satisfies . This is because, by the con-
struction of , the only types on which this (sequence of)
scheme(s) suffers distortion are those for which
and . Now since and since suf-
fers distortion on , essentially all have

. Furthermore, the fact that im-
plies the existence of a for which .
Consequently, for large

(88)

which contradicts (84) for .
Turning to the formal proof, the fact that

implies that (87) holds for . It thus follows from (87) that
we can find an such that for all sufficiently large7

(89)

where , being the mapping associated
with the scheme . Therefore, for all sufficiently large

(90)

where the first inequality is a rewriting of (89) and the second
inequality follows from a reuse of the fact that (87) holds for

. The continuity of at (recall that
) guarantees the existence of some

such that for all sufficiently large

(91)
Now, by the definition of (recall (76)), there exists
a and a sequence , where
such that , , , and

. Hence, by the continuity of
, we must have for all sufficiently large

(92)

Also, the fact that (recall the continuity of in ,
the continuity of , and the compactness of) implies the
existence of with

(93)

such that and

(94)

On the other hand, since satisfies (92), there must exist a
with, say, such that

(95)

since, otherwise, (91) would be violated. By the converse to
lossy coding (or type covering), (95) necessarily implies that, for
all sufficiently large (dependent on yet not on the particular
sequence chosen),

7Throughout this proof, the “sufficiently largen” may be dependent on̂�.
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which, since , leads to

(96)

Inequality (96) inevitably implies, for sufficiently large
(again, independent of the particular sequence chosen),
the existence of with, say

such that

(97)

(this is established easily like in the proof of Theorem 1, cf.
(A36) in particular). Consequently, for sufficiently large

(98)

where the last inequality follows from (93). Therefore,

(99)

where the equality follows from the continuity of and the
fact that . To conclude, it is shown in the Appendix that
for any sequence , where and , we have

(100)

which implies

(101)

Consequently, we have established

(102)

contradicting (84).

B. Discussion

Working with the rate-distortion rather than the distortion-
rate function, (76) implies that

(103)

Let further denote Marton’s exponent [17] corre-
sponding to the source

(104)

Note first that when is a singleton we have

if

otherwise
(105)

where the branch on the right-hand side of (105) follows from
the fact that when , the set

is empty. Hence, as required, whenis a singleton,
coincides with the exponent function derived in Section III-C2.

The next simple observation we make is that when
then the achieving the minimum in (104) satisfies

and,a fortiori, satisfies so that
we have

s.t.
(106)

Equation (106) can be given both an optimistic and a pessimistic
interpretation. On the one hand, as we have seen in Corollary 2,
even in the nonuniversal setting, the best achievable exponent
for the distortion when subject to an overflow exponent larger
than is itself. Hence, (106) tells us that at all points

in which we are not paying any price
for universality, or, more explicitly, for the fact that our scheme
has to comply with the overflow exponent constraint dictated
by for all . For a pessimistic view, note that, in par-
ticular, the regime of (106) holds for given by

. In this case, we are back to Marton’s setting [17],
where the codeword length is restricted to bits with proba-
bility one. In this context, it is worthwhile to note that the op-
timal (sequence of) scheme(s) in Marton’s setting for achieving
the best exponent, which essentially covers each type to within
the lowest distortion achievable with bits, is universal. Equa-
tion (106) tells us that any relaxation of the overflow exponent
constraint to a value greater than will not lead to a
better distortion exponent.

A more significant divergence from the nonuniversal setting
is observed for values of for which . While
in the source-dependent setting, Corollary 2 gave a rate of,

can well be finite. Technically, this follows from the
fact that in the source-dependent setting, where , the
minimizing set in (103), namely,

is empty whenever (cf. Section III-C2). In the
universal setting, however, even when the set

is empty, the set

may not be empty and, hence, the exponent may be
finite. The rationale behind this phenomenon is the following.
The fact that implies that all types with

are such that . Therefore, in
the nonuniversal setting, one could allot to each typethe
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bits necessary to cover it with distortion no more
than , thereby essentially annihilating the probability for dis-
tortion exceeding , while complying with the requirement on
the exponent associated with the codeword length. In the uni-
versal setting, on the other hand, the fact that
doesnot imply that all types with can be cov-
ered with distortion less than . It only means, as in the nonuni-
versal case, that all types with are such that

. There might exist some other for
which and, if this is the case, complying
with the requirement on the codeword exponent forces one to
allot no more than bits to the type and, hence, to suffer
distortion greater than on this type.

Thus, unlike the nonuniversal setting, does
not automatically imply . What it does imply,
however, is that if all ’s achieving are such that

then is strictly greater than .
The situation in these cases is similar to that in the nonuni-
versal setting in the dichotomy exhibited between the regime

, where the best achievable exponent is ,
and the regime , where a better exponent is
achievable.

Notably, the discussion above tells us that if is such that
the set : is not empty
then, at all for which , the exponential
price of universality is infinite. This is because, in this case and
for such a , the -dependent scheme complying only with
the codeword overflow exponent constraint for the source
is infinite, while the universal one is finite. A natural question
arising in this context is whether there exists a such
that the regime is attained. For this we would
need the set : to be
empty or, in other words, we need for all with

. This implies that if and only if

where

and the equality holds by our compactness assumption on,
the continuity of , and the compactness of (which
follows from the continuity of in ). The
fact that

(107)

implies that a necessary and sufficient condition for
is

(108)

Finally, (108) (again, by the compactness of and )
implies that a necessary and sufficient condition for the exis-
tence of a strictly positive which will satisfy (108) is that

for all or, in other words,
that

(109)

This condition can be qualitatively explained as follows. Since
(109) implies that for every , no more
than bits are needed to represent sequences of types suffi-
ciently close to with distortion less than . Hence, one can
afford to cover all types with a sufficient rate to guarantee that
the distortion does not exceed for all sequences and, at the
same time, guarantee that the probability of the event that more
than bits would be needed will decay exponentially. Con-
versely, when (109) is not satisfied, there exists a with

. Since, in order to maintain exponential decay of
the probability of codeword length overflow, sequences whose
types are close to cannot be allotted more than bits, the
distortion on essentially all such sequences will have to exceed

, and, consequently, under , the probability of exceeding
distortion cannot be exponentially negligible.

We note the dichotomy established in the above discus-
sion between the regime and that where

. Specifically, note that the condition (109)
is independent of . In other words, we have either

for all or for all
. The qualitative reason for this is that, as was discussed

above, the regime is reached when a scheme
whose distortion onall sequences does not exceed is em-
ployed. In such a case, the probability of exceeding distortion

is annihilated under any source . In the case where
, on the other hand, the scheme employed is

such that the distortion suffered on some types exceeds. The
probability of these types cannot be exponentially negligible
under any source and, thus, we will have
for all .

From the above discussion it follows that when condition
(109) does hold, a logical choice of the function should
be based on the left-hand side of (108). One example for such a
choice is given by

for some small , which clearly satisfies (108) whenever
condition (109) holds, while also satisfying
for all and any other satisfying (108).

A discussion of the analogy between the optimal decision
rule in [16] and that of the present work now seems in order.
The setting in [16] is one of composite hypothesis testing. The
problem is that of deciding, based on observing an indepen-
dent and identically distributed (i.i.d.) sample of marginal

whether or . The goal is to find a decision
rule which will maximize the misdetection exponent, subject to
a constraint on the false-alarm exponent, which may be-depen-
dent. More specifically, the goal is to find a decision rule which
maximizes the second kind error exponent uniformly over,
subject to the condition that

(110)
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where is the first kind of error probability associated
with the decision rule , when the active source is .
The optimal decision rule for this setting was shown to be
one which decides on the first hypothesis when

(111)

and on the second hypothesis otherwise. Note the similarity be-
tween this optimal decision rule and the optimal coding scheme
constructed for the setting of the present work in Section IV-A.
The dichotomy between the sequences on which the first hy-
pothesis will be chosen and those on which the second hypoth-
esis will be chosen, in the former case, and that between the
sequences that will be allotted just about bits and those that
will be allotted an unlimited number of bits, in the latter case, is
essentially identical. This similarity is not due to mere chance.
The reasons for this dichotomy, in both settings, are analogous.
In the setting of [16], assuming that sequences of equal types
receive equal treatment (an assumption which is justified by the
fact that is a sufficient statistic for this problem, cf., e.g.,
[23, Lemma 1]), the fact that (111) holds implies the existence
of for which . Consequently,
the first hypothesis must be chosen whenever (111) is satisfied
since, otherwise, (110) would be violated. Analogously, in the
setting of the present work, as discussed in the previous subsec-
tion, assuming that sequences of equal types are allotted code-
words of approximately equal lengths (an assumption which is
justified by Theorem 4), the fact that the source sequence be-
longs to a type satisfying implies the existence
of for which . Hence, such source
sequences must be allotted no more thanbits as, otherwise,
the excess-code-length requirement (65) would be violated. An-
other analogy with [16] is in the motivation for taking a-de-
pendent and in the considerations guiding the search of a
sensible . In [16], a judicious choice of can make the
difference between the existence of a decision rule with expo-
nential decay of for all and the nonexis-
tence of such a rule. In the present setting, as discussed above,
a sensible choice of could mean the difference between not
having to pay a price for universality and having to pay such a
price. Furthermore, when there is an inevitable price to be paid,
the right choice of will mean the difference between paying
essentially this price and paying significantly more in the ex-
cess-code-length exponent.

1) Special Cases:
The Case Where
As an extreme example, note that when8 , we

trivially have, for any , for all .
Therefore, in this case, . Qualitatively,
the reason is that, in this case, one can clearly not afford to allot
sequences of any type more than bits. Under this restriction,
the best scheme is that of Marton’s, which is already universal
for the case . Hence, for this case, the fact that

does not result in a better exponent. Let us now examine a
slightly less trivial case, which concretely illustrates some of the
points discussed above.

8Note that, formally, this case does not conform to our standing assumption
thatP � M (X ). We will not be pedantic about that as the discussion of
this trivial case is only a qualitative one.

The Case
Consider the case where there are only two possible sources,

and . In this case, we have

(112)

if

if
and

if
and

(113)

Note that, by symmetry, looks the same with
and . Hence, we see that, as discussed above, we either

have or both
and finite. These two regimes are reached, respec-
tively, according to whether both and

or not. It is also evident from (113) that if we have both
and , then

To see why the inequality is strict
note that in this case, where we assume ,
if achieves then, by the definition of ,

and, hence, cannot belong to the
minimizing set in (112). Thus, we see that in the case where

yet , as in the source-depen-
dent case (cf. Section III-D), a better exponent than is
achievable. Unfortunately, unlike the source-dependent case, it
is finite.

V. CONCLUSION AND FUTURE DIRECTIONS

The study of error exponents for lossy coding under a con-
strained probability of codeword overflow has been initiated in
this work. A single-letter expression was obtained first for the
case of lossy coding of noise-corrupted memoryless sources,
and then generalized for the case where side information is
available at both encoder and decoder. Finally, the case of
a clean (uncorrupted) sequence, generated by an unknown
member of a family of memoryless sources, was considered.

It would be interesting to study the natural extension of the
universal setting of Section IV to the noisy case. This is not a
trivial extension of the noise-free universal setting. For this case,
one can show that the discrimination between the types on which

will be allotted no more than bits and those on which it
will not be limited in codeword length is quite similar to that
made in the noise-free case. The difficulty comes in at the stage
where one needs to find the best scheme within each type. While
in the noise-free case, the optimal scheme within each type was
independent of the particular active source, in the noisy set-
ting, as was seen in Section III, this is no longer the case. There
would, therefore, no longer be hope of finding a single universal
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scheme which would be optimal for all sources in the class, in
contrast to what was shown to be the case in the noise-free set-
ting. Furthermore, in universal coding of noisy sources, under
the expected distortion criterion, generally, schemes which are
optimal for all sources in the reference class do not exist. Thus,
in that setting, one is led to consider somewhat less ambitious
optimality criteria, such as the minimax criterion (cf. [15], [7]).
This will probably also be the case in the study of error expo-
nents for the noisy universal setting, which is under current in-
vestigation.

APPENDIX

A. Proof of (100)

Note that by our assumption on, so that

Let and recall that, by our choice of ,
. Now, for each

(A1)

(A2)

(A3)

(A4)

(A5)

Consequently,

(A6)
Analogously to (A5), we can show that

(A7)

which, upon taking ’s, completes the proof.

B. Other Proofs

1) Proof That and are
Well-Defined: We need to prove that the limits

(A8)

and

(A9)

exist. To establish the existence of the first limit, let
and be two arbitrary se-

quences of pairs converging to the pair and satisfying
and for all and . We will be done

upon showing that the limits

and

exist and are equal. The existence of these limits is guaranteed
by the monotonicity of in both (increasing) and

(decreasing). More specifically, this implies that for
and any there exists (namely, one for which

and for all ) such that

for all , which clearly implies the existence of the
limits , . To establish the equality be-
tween the limits it suffices to show that

(A10)

(since the arbitrary labeling of the indexes will imply
the reverse inequality as well). Inequality (A10), however, fol-
lows easily from the monotonicity of as well by ob-
serving that for any there exists (namely, one for

which and for all )
such that

for all . Thus, the existence of the limit in (A8)
is established. The existence of the limit in (A9) is proven
similarly.

2) Proof That Equation (9) Holds Outside a Set of Pairs
of Zero Lebesgue Measure:Since the monotonicity of

implies, for all pairs

it follows from Theorem 1 that it will suffice to show that the
set defined by

(A11)

has zero Lebesgue measure. To this end we note first that the fact
that and are well-defined,
i.e., that the limits which define these respective quantities exist
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(cf. part B1) of the Appendix), implies that for each pair
we have both

(A12)

and

(A13)

Consider now the family of univariate monotone functions
, where is defined by

(A14)

We note that, by the definition of and (A12) and (A13), for
each and we have

and

(A15)

Letting

(A16)

denote the set of discontinuity points of, it follows from the
definitions of and and from (A15) that

(A17)

where the union on the right-hand side of (A17) is clearly a
disjoint one. Letting and denote the Lebesgue measures
on and , respectively, (A17) gives

(A18)

Finally, we note that for all , is a monotone (non-
decreasing) function which, therefore, has, at most, a count-
able number of points of discontinuity. In particular, we have

for all which annihilates the right-hand side
of (A18) and completes the proof.

C. Proof of Inequality (28)

Assume, conversely, the existence of such
that for which

(A19)

(A20)

or, equivalently,

(A21)

(A22)

Letting : , we have

(A23)

(A24)

(A25)

(A26)

Combining (A26) with (A22) gives

(A27)

or

(A28)

where the right inequality holds for all sufficiently large(de-
pendent on yet independent of ). Combining
(A28) with the fact that

implies the existence of with

such that the set : (which
is a subset of ) satisfies

(A29)

On the other hand, letting , we
have

(A30)

(A31)

(A32)

which, combined with (A29), implies

(A33)

(A34)

(A35)

Now, since the number of members of that will be mapped
into a binary vector of length not exceeding is upper-
bounded by , and since there can be
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no more than members of that are
mapped into one member of , we have

(A36)

(A37)

(A38)

Consequently,

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)

(A45)

where the last (strict) inequality holds for all sufficiently large
(dependent on , yet independent of the

assumed to satisfy (A20)). Hence, for all ,
the assumption of the existence of such
that and for which (A20) holds leads to a
contradiction, as (A45) clearly violates the fact that were
taken such that . Thus, we have established
the fact that whenever , for any

such that , (28) holds for all
.

D. Technical Claim in Proof of Theorem 1

In this subsection, we aim to prove the following.

Claim 2: For any we have

(A46)

and

(A47)

where and are defined by (18) and (8), respec-
tively.

Proof: We start by recalling that

(A48)

and that

(A49)

Since , it follows that, in particular,
for all and . It therefore

follows that , which is ultimately given
by a finite convex combination of functions (of the form

) that are all uniformly
continuous in when is uniformly
continuous in the pair . This, combined with the fact that

as , implies that and are uniformly
continuous in and, further, that

(A50)

uniformly in . The proof of (A46) is completed
by combining (A50) with the easily verifiable fact that

as (A51)

where

and

Equality (A47) is established similarly.
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