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Abstract— ossy compression of a discrete memoryless sourcethe best exponential decay rateRf{ p,, (X", X™) > nd} for
(DMS) with respect to a single-letter distortion measure is consid- a given distortion leved, when the size of the codebook is lim-

ered. We study the best attainable tradeoff between the exponen- ited to2"® words. This exponential decay rate was shown to be
tial rates of the probabilities that the codeword length and that the '

cumulative distortion exceed respective thresholds for two main given by

cases. The first scenario examined is that where the source is cor-

rupted by a discrete memoryless channel (DMC) prior to reaching Fy(R) = min D(Q||P)
the coder. In the second part of this work, we examine the universal Q: R(Q, d)2R

setting, where the (noise-free) source is an unknown membdf, of . .
agivenfamily {Ps, 8 € ®}. Here, inspired by an approach which Where P is the marginal of the source?(@, -) denotes the
was proven fruitful recently in the context of composite hypothesis rate-distortion function of a sourd@, and D(-||-) denotes the
testing, we allow the constraint on the excess-code-length exponentkullback—Leibler distance. Error exponents for source codes
to beg-dependent. Corollaries are derived for some special cases ofp gy since been studied by others (cf. [4], [6] and references
interest, |n_cluq||ng Marton’s classical source co_dlng exponent and therein) and have been extended to more general settings, such
its generalization to the case where the constraint on the rate of the : ’ !
code is relaxed from an almost sure constraint to a constraint on @s that of successive refinement [14]. The excess-code-length
the excess-code-length exponent. exponent has also been studied in the context of lossless coding,
Index Terms—Excess-code-length exponent, excess-distortionCf [12], [13], [22], [18] and the recent work [11] for the infor-
exponent, lossy source coding, Marton's exponent, noisy source mation-spectrum approach.
coding, universal coding. In the work related to error exponents of various lossy source
coding scenarios, ordinarily, the rate constraint imposed is very
strict. The codebook size is not allowed to excég#, which
means, of course, that the codeword length should not exceed
ET Xy, X, ... be asource sequence with components iR bits, with probability one. The criteria by which the distor-
afinite alphabe®’” and lett’ be a reconstruction alphabetijon is typically evaluated, on the other hand, are considerably
Let furtherp: X x X — R* be a given single-letter distortion softer and more pliable. Alternatively, the other setting typically
measure and define the distortion between sequeliCes X"  considered is that where the constraint on the distortion is strict,

. INTRODUCTION

and X" € A" by while that on the rate is softer.
o oons . N Our goal, in this work, is to treat the distortion and the rate in
pn (X7, X)) = ; X, Xi). a more symmetric way, in the context of large deviations per-

fgrmance, in certain problems of lossy source coding. We shall

typically the following. Given a rat& and a block length, one measure performance in terms of the tradeoff between the prob-
seeks a codebooB,, C A" of size2"® and a mappingk™ = abilities that the distortion and the associated codeword length
on(X™), from X" innto_B making the distortiom,, (X" ’ Xn) exceed respective thresholds. Specifically, we characterize the

as small as possible in some quantitative sense, most commdifiyt @chievable exponential rate B#{p,, (X, X*) > nd}
the expected distortion sense. Alternatively, lossy source coditignceforth referred to as the “excess-distortion exponent”),

H ', X —nA
is often concerned with the reverse problem of fixed distortiotHPIECt {0 the constraiiit-{code length o™ > nR} < ™",
and variable rate (see [1], [10]). for a given rateR, and a giverh > 0 (henceforth referred to as

Another sensible performance criterion is the large deviatio%hse "excess-code-length exponent’).
P 9 Consider first the extension of the setting of [17] where we

behavior of the distortion, which was first addressed, for a dis-

crete memoryless source (DMS), in Marton’s 1974 paper uzilow variable-length codes but restrict attention only to those

. : '~ fdr which Pr{ code length off™ > nR} < ¢ "™*. Assuming,
(cf. also [2], [3])- Specifically, the goal in that work was to fIr]dwithout loss of optimality (as will be proved in Section IlI),

that sequences of the same type dlag® assigned codewords
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from P andnlog || bits when the Kullback-Leibler distanceP,, wheref is an unknown parameter taking values in a set
from P is more than\. To get the idea of this, let us now ex-©, we characterize the best achievalflalépendent) distortion
amine two complimentary cases: exponent, such that the code-length exponent, with respect to
. (w.r.t.) Py, is at least as large as a given functiaf®), uni-
Case 1. All types) with D(QHP) < AhaveR(Q, d) < R. formly for all # € ©. A universally optimal schergfg will be
Case 2. There are type€ with D(Q[|P) < A such that constructed. We shall also attempt to establish a quantitative re-
R(Q, d) > R. lationship between the “price” paid for universality (relative to

In Case 1, by the type-covering lemma [6], the types in which vj8€ Source-dependent coding case), the geomet#y ahd the
cannot afford more thanR bits can be covered within distor- form of the function\(-). This somewhat parallels a recent work
tion nd. Hence all sequences are covered within distortioh [16], where a competitive Neyman-—Pearson approach was de-
under the rate constraint, thus achieving an infinite excess-d§loped for the composite hypothesis testing problem. In that
tortion exponent. In Case 2, essentially all sequences with#9rk, the goal was to decide, upon observitg, ..., X,) ~
typesQ for which R(Q, d) > R are distorted by more thani P,, whetheré belongs to®; or to @?, and the best a_chiev-
and, hence, the best excess-distortion exponent achievable @€ error exponent of the second kind was characterized such
be the minimum ofD(Q)|| P) over allQ for which R(Q, d) > that the constraint that the error exponent of the first .kmd is
R, which is preciselyF, (R). Furthermore, note that Case 1 prelower-bounded by\(6), for all 6. As it turns out, the optimal
vails if and only if A\ < F,(R). To sum up, the excess-distor-Scheme of [16] is intimately related a_nd, in some sense, _analo-
tion exponent is a step function iy assuming the valuso for  9ous to the one pr.esented here. As will be elaborated onin Sec-
A < Fy(R) and the valug’,(R) for A > Fy(R) (cf. Fig. 1 of tion IV—!S, the cpdmg scheme whl_ch turns out to be.optlmal in
Section I11-C2). This extension of Marton’s result will be showrhe setting of this work uses two different strategies in two com-
to be obtainable as a special case of the more general settfiffnentary subsets of sources, and these subsets exactly corre-
considered in Section IIl, where the source is corrupted by noeond to the decision rule of [16]. _ _
prior to encoding. As will also be shown, in this more general As revealed by the proofs of the main results, there is a basic
case, the behavior of the excess-distortion exponent is normalijuctural feature, shared by the sequences of optimum schemes
more “graceful” than in the noise-free case. in"all of the scenarios considered. In all cases, the schemes di-
In Section IIl, we shall analyze source coding exponents f§potomize between two complimentary sets of types. If the ob-
the case of a DMS corrupted by a discrete memoryless chanff@lved sequence is of a type which belongs to one set, the code-
(DMC). In this setting, the encoder accesses a noisy versighord will be about 72 bits long. If the type belongs to the com-
Z1, Zs, ... of the clean source sequeng, Xo, ... and pro- pllmentary set, the cod_eword W|_II be significantly longer. In Sec-
duces a reconstruction sequertg X, . ... We shall charac- tion Ill, the dichotomy is according to wheth&(Q|| ”) < A or
terize the best achievable excess-distortion exponent (wheredH&?||£) > A. In Section IV, the dichotomy is dictated by the
distortion measured is betwedfy, X, ... and X, X5, ...) Kullback—Leibler distances between 'Fhe type of th(_a sequence
subject to the constraint that the excess-code-length exponer@1d the sourcesy, 6 € ©, corresponding to the decision rule
at least\. Note that the problem considered in [17] is a Specig|roposed in [16]. This phenomenon can be attributed to the fact

case of this section, where the DMC is the clean channel (undf@@t the probability of excess-code-length is the expectation of
which X; = Z; almost surely (A's.)) and = ~c. Staying with the indicator function of the excess-code-length event. Thus, all

the case wherg = oo, the results of this section can be consigeodewords shorter than/t bits incur zero loss, whereas those

ered analogous to those of [17] for the noisy case. To the bi¥tger tham R bits share the value Hence, in terms of distor-

of our knowledge, the lossy source coding error exponent PN, Oneé can never gain from using significantly less than

noisy sources has not been previously obtained in the literatuf&S and, on the other hand, having allotted more thérbits,

Nor are we aware of results pertaining to the excess distortis€ may use arbitrarily many bits with no extra payment.

exponent even faR = log |X|, that is, pure filtering. _ The _rema_mder of the paper is or_ganlzed as follqws. Sec-
A more detailed outline of Section 1ll is as follows. Section Il, in which we present the notation and conventions used

tion 111-A presents the main result on the above-described gkroughout, will be followed by the two main sections (Ill and
ponent, whose proof is given in Section 1II-B. In Section I1I-c!V) described above. Finally, in Section V, we summarize the
we verify that Marton’s exponent is obtained as a special cad@Per and discuss a direction for future research.

(A = o) and we obtain the excess-distortion exponent for the

noise-free case as a function bf Section IlI-D will be dedi- [I. NOTATION AND PRELIMINARIES

gated to the properties of Fhe exponent fungtion. Finally, in Sec-gq; an arbitrary pair of nonnegative sequencks,} and
tion lll-E, we merely mention t_hat a genergllzgtlon o_fthe mod Ibn}, we writea,, = b, as short-hand notation for

to the case where additional side information is available at both

encoder and decoder is possible. lim 1 log 9n _
Section IV analyzes a universal coding problem from the per- nmee n n
spective described above. Returning to the case of encoding{}&re we take througho0og 0 20 log 0 2 _ o929 and
clean sequence (uncorrupted by a DMC), emitted by a DMS. o oo
q ( P y ) y N%Sé oo for a > 0. We shall writea,, >b,, for
20riginally, studied under the ordinary, expected rate and distortion criteria liminf l log n >0 (1)

(1], [8], [9]. n—oo 7

n
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similarly, a,,>b,, will be synonymous to the statement that (1)hroughout that capital letters represent random variables, while
holds with a strict inequality. Note that the negatiorugf>0,, the corresponding lower case letters represent specific sample

doesnotimply thata,, <b,,, but it does imply that values. ForP € X we shall letR(P, d) and D(P, R) denote
1 b the rate-distortion and distortion-rate functions, respectively, as-
limsup — log — > 0 sociated with the source.
noco Tl For anya™ € A™ we letP,» € M(A) denote the associated

or, in other words, the existence of & > 0 and an increasing empirical measure. FaP € M(A) we letTp = {a" € A™:
sequence of natural numbefs, }, such thath,, > a,, e F,» = P} denote the type class df. Forn € N we let
for all k. For an increasing sequence of natural numbefs;, Man(A), or simplyM,, whenthe alphabetis clear from the con-
we shall slightly abuse the notatienby writing a,,, = b,,, for text, denote the set of alf € M(A) for which 7> # §. For

P e M,,,weletC,(P) denote the setofaV € C(A — B)for

lim S log G _ whichTpw (as a subset df4 x 5)™) is not empty. Following
koo g by [6], for any giveni™ € A", 2" € Z"andV € C(Xx Z — X),
The notations,,, >b,,, should be understood analogously. ~ We 1etZy (2", 2™) (the “V'-shell” of (", 2") [6]) denote the

For finite sets4 and B, we let M(.A) denote the set of all sertl ofnsequences" € A" having conditional typé/ given
probability measures osl andC(A — B) the set of all sto- (@, 27). _ _ _ _ _
chastic matrices (or “channels,” or “conditional distributions’ 2 When dealing with expectations of functions or with func-
from A to B. We will let M (A) denote the subset d¥1(A) ionals of random variables, we shall sometimes subscript
containing all probability measures which assign strictly pogi€ir distributions when we want to make these explicit.
tive mass to all members of. For P € M(A), we letF(P) 'hus, for example, for any: A — R and P € M(A)
denote the entropy of a random variable distributed accordilt§ Shall write Ef(4) for the expectation off(4) when
to P. For anyP € M(A) andW € C(A — B) we will write A’ is distributed according ta”. Similarly, we shall write,
P x W for the measure governing the péit, B) € A x B for example Io(X; Y|Z), to denqte the conditional m_utual
when A is generated according 1(-) and thenB is taken as INformation betweenX and Y given Z, when the triple

the output of the chann&/” whose input is4. We also let (X, Y, 7) is distributed according t@) € M(X x Y x 2).
Also, if @ € M(Y x Z2)andV € C(Z — X), we shall

H(W|P) = Z P(a)H(W(-|a)) sometimes slightly abuse the notation by writifGgx V' to

aCA denote the distribution ofiY, Z, X) € Y x Z x & where

(Y, Z) are generated according 9 and thenX is taken
as the output of the channé& whose input isZ (note that

in this case,X © Z © Y form a Markov chain). Also, for
VelYxZ—-A&)UellZ—X)andQ € M(Y x Z),

we shall sometimes slightly abuse the notation by writing
D(V||U|Q) for D(V||U|Q), whereU € C(Y x Z — X) isthe

denote the conditional entropy &f given A and(P; W) the
mutual information betweer and B. Alternatively, forQ ¢
M(A x B), we shall sometimes writ&()) to denote the mu-
tual information betweent and B when jointly distributed ac-
cording toQ). For P, @ € M(A) we will denote the Kull-

back-Leibler (informational) divergence Wy(P||2) and for channel which coincides with (i.e., the output of the channel

V, W € C(A — B) we will let U is independent of th¢’-valued component of the input).
_ ) ) Since we will only be dealing with finite alphabets, there will
bwiwir) = Z P@DV(|a)|W(a) be no technicalities associated with convergence of probability
measures. For any sequence of probability meadufgs,, and
denote the conditional (informational) divergence. a P, all of which are members of, say1(.A), we will write
We assume a finite source alphab®t a finite reproduc- p . p for |P, — P|| — 0 where, in the second limit, we
tion aIphabetX and a given single-letter distortion measurgegardP,, and P as elements dRM!.

aCA

pr X x X — [0, %) satisfying ming . p(X, X)=oforall  For any function/, we use the standard notatidtR + 0)
X € X.ForX" € X" andX" € A" we define to denote the respective limitan, o= I(R + ), whenever
n these limits exist. We shall use analogous notation with mul-
pn(X™, XM = Zp(Xi, X)) tivariate functions as well. Thus, for example, the notation
i=1 I(R+0, d, A — 0) will stand for
and for anyB C X" we denote im  [(R+e d, A—6)
. e—01,6—01
pn(X", B) = min p,(X", X").
XmcB and, similarly,/(R — 0, d, A + 0) for
The subscripth will be omitted fromp,, in the sequel when

there is no room for ambiguity. We shall adopt the convention Eﬁolﬁf?%m I(R—e,d A+

3This is the form of the statement which will be used in a certain place in thehenever the limits exist.

paper, so we take the opportunity here to make it explict. Finally, the infimum or the minimum over the empty set is
4Note that there is no essential loss of generality in this assumption as, oth- !

erwise, we can look at the modified distortion measure givep@y, X) = ¢ efined throughout aso and\ will denote subtraction of sets,
p(X, X) —ming, o5 p(X, X'). i.e., for two setsA andB, A\B = A N B-.
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I1l. ENCODING A NOISY SOURCE < limsup {_1 log Gn(R, d )\)}

In this section, we assume a DMS with finite input alphabet n—oe "
X and probability distributior, corrupted by a noisy channel <I(R+0,d,A-0) ®)
Pz x with output alphabeg. We let furtherP;, Px, z, and where
P,z denote the marginal o8, the joint distribution ont’ x Z,
and the backward channel, respectively, induced by the souycigg d, \) = mm{ inf a(P, oo, d)
Px andthe DMCPz| x. We assume thdty, ; € M (X' x Z). T P: D(P||Pz)>A o
P, will denote the product distribution dit’ x Z)™ induced .

: f P R, d 6
by Px, 7. P:D(II’I|1|PZ)<)\ AP B, d) o (6)

A variable-length schemd,, for combined filtering and
compression of noisy input vectors of lengih z* ¢ 2", a(l> R, d)is defined, forP” € M(Z), by
consists of a tripleD,, = (B,,, X™(-), C,) with the following
ingredients: a reconstruE:tion cocge)bcﬁk) C X™, a mapping (P, R, d) = D(P||Pz) + We;‘f_} ). F(Px W, d) (7)
X™: 27 — B, sothatX"(Z") € &A™ is the reconstruction I(P;W)<R
vector, and a uniquely decodable codg: B, — {0, 1}*. R
For the noisy vectoZ", let L,,(Z") denote the length of the andF'(-, d) is defined, forQ € M(X x Z), by
codewordC,,(X™(Z™)). We shall write L,,(Z™, D,,) when

we want to make the dependence on the particular dagle Q. d) = »ch(i%lefz:_)x); D (V||PX|Z|Q) . (8)
explicit. LetD,, denote the set of all such schemes for combined Egxvp(X,X)>d

filtering and compression of noisy input vectors of length

In the classical setting of [17], which is noise-free, and there Remarks: A qualitative explanation for the origin of the ex-
is a strict constraint on the codeword length= oc), the com- pression for the exponent in (6) can be given as follows. As-
pression scheme is completely determined by the codeBpok suming (what will be justified in the proof) that there is no loss
as, clearly, the optimal way to use a given codebook is to apply optimality in restricting attention to schemes for which the
the nearest HEigthI' rule W.Iet.In the noisy setting, giVEZn, (joint) type of(zn’ X(zn)) is constant all across the typeé €
it is not obvious how to encode, as distortion is measured witf}, for all P € M,,(Z), fix a type P and letW € ¢(Z — X)
respect to the unobserved!*. Moreover, even when there is nodenote the channel induced by the joint type, X (=")) when

noise, but the excess-code-length constraint is relaxed from thec 7. It is then not hard to see (and will be formally estab-
stringent assumption = oo of [17], to the milder one where |ished), e.g., via the method of types, that

A is finite, the compression scheme is not immediately deter- .

mined byB,,, because there might exi&t” which may better Pr{p(X", X(Z™)) > nd|Z" € Tp}~exp{—nF(PxW, d)}.

be represented by a reproduction word which is not the nearest

neighbor, but which has a shorter codeword. So the best coding scheme (in the sense of maximizing
ForR’> 0 and) € [0, oc] we define now the excess-distortion exponent) would be one for which

F(P x W, d) is maximized oveW, for eachP. However, as
discussed in Section |, if the excess-code-length constraint is
to be satisfied, types witlb(P||Pz) < A cannot be afforded
(2)  more thannR bits. This translates into the requirement that
the maximization ovedV, for P with D(P||Pz) < A, is
Inwords, A, (R, ) is the set of all variable-length schemes fofestricted toW’s satisfying I(P; W) < R. For types with
input vectors of lengtt. having excess-code-length exponent)(p||P,) > A, on the other hand, the maximization over

Ay(R, N)={D, €Dy: P} ,{Ln(Z", Dy)>nR} < e}

for rate R at least as large as Ford > 0 we let W is unrestricted. Hence, since the exponential “price”
) of observing a (noisy) source sequengzé& of type P is
Gn(R,d, \)= min Py {p(X", X"(Z")) >nd}  D(P|Pz), the best achievable exponential behavior for

PuCan(RA) Pr{p(X", X(Z"))>nd, Z" € Tp} is ~exp{—na(P, R, d)}

®3) :
where theX™(-) on the right-hand side of (3) is the mapping¥nen D(P[[Pz) < A and =exp{—na(P, o0, d)} when
from 2" into B, associated with the scheni®,. In words, LD(£[lP7)> A, which explains the form of (R, d, A).
Gn(R, d, \) is the least achievable probability for distortion The monotonicity of (R, d, A) in both 1 (increasing) and.
exceeding:d among all variable-length schemes having exceslécreasing) is shown in Appendix-B1 to imply that the limits

code-length exponent at least as large\as defining{(R — 0, d, A+ 0) andI(R+ 0, d, A — 0) both exist.
Furthermore, in Appendix-B2 we show that Theorem 1 implies
A. Statement of the Main Result that for all pairs(R, ) outside a sef of zero Lebesgue mea-
. . . . sure
The main result of this section is the following.
. 1
Theorem 1:For alld > 0, R > 0, and) € [0, o] we have Jm | == log Gu(R, d. A)| = I(R. d, A). ©)

Note that the case of pure filtering is obtained by takithg o
or A = 0, where Theorem 1 gives the best achievable excess-dis-

n—oo

1
I(R—0,d, A+ 0) < liminf |—= logG,(R, d, \)| (4)
n
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tortion exponent for the filtering problem. The case of “pure = Z [Ty (27, 2™)|
coding,” on the other hand, when the codebook is confinedtoa  v. g, = | ,(x,%)>d
size no greater tha2i*’* words, is obtained by taking = oc. c

A further discussion of the exponehtR, d, A) and of special X expi{=nEp.. ov[-logPxiz(X]|Z2)]} (12)
cases of Theorem 1 of particular interest, is deferred to Sec- = > Ty (2", 2")|
tion 111-D. ViEpg, axve(X, X)>d

X exp{—nH(V|Psn )} (13)

B. Proof of Theorem 1

- —H V Pa’r}n Zmn E L n 4
The outline of the proof is the following. We start by obtaining X exp{=n (7 [Bon, 20 ) 4 Bp o0
an exponentially tight estimate for x [—log Px|z(X[Z)])} (14)
= > Ty (2", 2")

P)?:Z{p(Xn’ Xn(Zn)) > nd|Zn = Zn} ViEp, ., _nxvp(X, X)>d

for an arbitraryz* € Z" and schemd),, (which defines the x exp{—nH (V[P .n)}

mappingX™(.): 2% — A™). This estimate will be a functional x exp{—nD(V||Px|z|Psn, .n)} (15)
of the empirical distributionPy.,. .., ... So, in effect, we _ . N

are looking for that scheme im, (R, A\) with empirical Where equality (12) follows directly by a rewriting of
distributions Pg., ..., .. that minimize this functional, if Fx;z(«"[2") as
possible, for alk™ € Z™. In the converse part, we show that any

member of4,, (R, X\) must be such thalt(PXn(Zn)jzn) <R for T2 (a"]2") =
essentially alk™ € Z™ for which D( P, Pz) < A. Therefore, i=1
the exponent achievable fary ,{p(X", X"(Z")) > .nd} _ H Px|z(alb)N((“’ OIE"=")  (16)
must clearly be upper-bounded by the exponent obtained when

imizing the ab functional with R ny s ; ;
maximizing the above functional with respectig.....) . whereN((a, b)|(z", »™)) is the count of the paifa, b) along

for each 2", under the constraint thak(Px.,. .., ..) < R n o on . . .
wheneverD(P,.||Pz) < A. The direct part is then estab-(.aj 2. T.O getto equality (15), we have used the easily veri-
fiable relationship

lished by a construction of a scheme (R, A), which
achieves the upper bound on the exponent established in ﬁa/llvalpam ")

converse part. This scheme is one under whitgh, .., .. B T ) .
maximizes the above functional, subject to the constraint that™ —H(V|Pin, 2) + Epe o xv[=log Pxz(X[Z)]. (17)
I(Pg. .y .») < R WheneverD(P..||Pz) < A. The existence
of such ascheme in,,( R, \) is essentially guaranteed becaus
the fact that/(Px...., ..) < R for all 2™ € T guarantees
the existence of a scheme that will need no more th&rbits Fo(Q, d) = min D(V||Px2]Q). (18)
to conveyX"(2™) for 2™ € Tp. Hence, whenever™ € T for {V: Egxvp(X,X)>d}NC, (Q)

P with D(P||Pz) < A, the codeword will be no more than .

nR bits long, guaranteeing the membership of the associafdgcall further (cf., e.g., [6, Lemma 2.5]) that for &l 2", ="
scheme in4,, (R, A). We now turn to making the above line of PRy o

argumentation precise. (n+1) <|Tw (2", 2") exp{—nH(V|FPsn o)} <1.

For any schemd,, we have _ (19)
Therefore, (15) is upper-bounded by

=

Pxz(xi|2)

(a,b)eX x2

For an upper and a lower bound on (15), we nowHgt-, d),
or @ € M,(X x Z), be defined by

P p(X™, X™(Z™) > nd}
= > Py(2") - Py (a"]2") >

Vi Ty (@7, 2™)#0, Epyy _nxvp(X, X)>d

(:L,n7 Zn)E(XXZ)n: (:L,n7 f(n(zn))>nd
’ x exp{—nD(V||Px|z| Py~ =)}

= > P > Py (a2 . < (n+ DYIE exp{—nFy(Pin o, d)}  (20)
Zmezn " CX™: p(ac”,j(” (z"))>nd
(10) and lower-bounded by
—|XZ|R
Considering the inner sum in (10), we have for aftye 2" (n+1) Z i
andz™ € &A™ ViTy (@7, 2720, Bpyy sy p(X, X)>d
> P x exp{~nD(V||Px|7|Por, )} (21)
x|z\T 1% > —lx) 2| _
e 8y >(n+1) exp{—nFy(FPsn on, d)}. (22)
= Z Z Pg(™z") (11) We turn to the proof of (5) first. Fix arbitrary, 6, » > 0
VeC(¥xzx):  an€Tv (3", 2") and a sequence of coding schemg®,} such that

Epryn nxve(X,X)>d D,, € A,(R — e, A). Combining (10) with (22), we have the
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existence ofg (s, 6, n) (independent on the sequengB,, })
such that for allh > no(e, 6, )

PR ZAp(X", X™(Z27)) > nd)

> (n+1)"IEIYES™ PR ) exp{—nFn Py oy 2nr d)}
Zmn ezn
(23)

— (n+ 1)~ ¥IZI4

2. 2

{P: D(P||Pz)>A=5}nM,, 2"€Tp

X exp {—n [D(P||PZ)+H(P)+F" (PX”(Z”):Z”’ d)}}

(24)
+ 2. 2

{P: D(P||Pz)<A—6}NM,, 2" CTp

X exp{—ﬂ[D(P||PZ)+H(P)+F" (PX”(Z”):Z”’ d)}}]

(25)
>(n+ 1)—|‘YIIZIIK’| Z Z
{P: D(P||P7)>A—8}NM,, 27€Tp
Xﬂp{_”IXPW&)+HUﬂ
+ max F,(PxW, d)] }
WeC(Z—X)NC,, (P)
+ Z Z
{P: D(P||Pz)<A=6}NM,, z"€Tp
xexp { —n | D(PI|P7) + H(P)
a F,(PxW,d 26
T B, FnlE X W d) (26)
I(P;W)<R
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Inequality (28) is proved in part C of the Appendix. The inde-
pendence ofy(e, 6, n7) on the sequencgD,, } guarantees that
(23) can, in fact, be replaced by

PE (X", X™(Z™) > nd}

min
D,€A,(R—¢,A)

= Gu(R—e¢,d, \).

Furthermore, since the sums in (28) are over expressions which
do not depend or™ € T’p, (26) can be further lower-bounded

by

|Tp|

>

{P: D(P||Pz)>A—6}NM,,

xwp{—nPXPW&)+fﬂP)

M+W”Mm[

4+ max
WCC,(P)

>

(P: D(P||Pz)<A—8}NM,,

xwp{—nPXPW&)+EHP)

F, (P xW, d)} }

|Tp|

max
{W: I(P;W)<RINC, (P)

Fn<pxmd>+4}]

> (n + 1)~(¥I2I¥1+12D
{P: D(P||Pz)>A—56}NM,,

F,(PxW, d)} }

max

—n | D(P||P
X@m{ n[< P2)+  max

+ 2.

exp {—n {D(PHPZ)
{(P: D(P||Pz)<A—5}NM,,

max

F,(PxW,d 29
{W: I(P;W)<RINC, (P) ( 8 ) M 77} }] (29)

> (n+ 1)—(|X||Z||i’|+|2|)

X exp | —n min min
{P: D(P||Pz)>A=6}NM,,

where we only need to justify the last inequality. To this end,
observe first that (24) upper-bounds the first line of (26) as
there clearly exists & € C(Z — AX) N C,(P.~) such that
P X W = P 0(ny- SO it remains to argue why (25)
upper-bounds the second line of (26). For this purpose, it will
suffice to establish the existencernf(e, 6, n) (independent on
the sequencéD,, } and onP) such that for alh > no(e, 6, 1)

and anyP € M(Z)n M, with D(P||Pz) < A—6

> exp{=n[D(PIIPz) + H(P) + Fu( P ooy o A}
= CTp

27)
> 5 e {on|DUPIPL) + HOP)

zneTp

max

F(PxW,d . (28
(W: I(P;W)<R}NC, () ( % ) * 77:| } ( )

X [D(PHPZ)—i— max
WCC,, (P

i

)a@xW@]

min [D(PHPZ)
{Pr: D(P||Pz)<A=6}NM,,

F.(Px W, d) +77} }) (30)

max
{W: I(P;W)<RINC, (P)

we have for alln > ng(n, €, 6)

1
— ZlogGu(R—¢, d, A) (31)
n
X||Z|| X+ |2
< X2+ 2]

: 1
- g(n +1)
+ min { min {D(PHPZ)
{P: D(P|IP7)>A—6}nM,,

4+ max

ﬂ@xW@]
WCCn (P)
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D(P||P2) Hence, our schemB,, is a bona fide member of,,(R + =, A)

{P: D(P||Igl)n<1)\—6}ﬂ/\/ln for n sufficiently large. Now, for the schemg®,, }, we have

s 1 e Fo(Px W, d)+ 77} } 32) PR {p(X", X™(Z™)) > nd} (37)
Combining the result of part D of the Appendix (Claim 2) with - (n+ 1)|x||2||{x>| Z Z
the definition of/(R, d, A —é) (recall (6)) and the arbitrariness —

) {P: D(P||Pz)>A4+6}NM,, z"€Tp
of n > 0 gives

: x exp{—n| D(PIIP2)+H(P) + Fo(Pgoony o0 d) |}
lim sup - logG,.(R — =, d, )\)} <I(R,d, A—§) (33) (38)

b + > >

which, by the arbitrariness ef 6 > 0, finally implies (5). (P2 D(P| P ) e A8} My, 21T

Turning to establish (4), we fix arbitrary, 6 > 0 and con-

struct aD,, € A,(R + ¢, A) as follows. We first construct the
codebookB,,. exp {_n [D(PHPZ)JFH(PHF" (PX”<Z”>:Z”’ d)}}]
* Forz" € Tp with D(P||Pz) > A + 6 we take (39)
X™(2") = arg max F, (P .n, d). 34 2
(=") g max (Psn, ) (34) = (n41)¥IZIY] Z Z
{P: D(P||P2)> +6}NM,, 2" €T

» Forz™ € Tp with D(P||Pz) < A+ 6 let
. X exp {—n [D(PHPZ) + H(P)
W*eC(Z — X)NC,(P)

: ax F(PxW,d
achieve +W1€1161>(<P) (P x )}}

max F,(P xW,d). (35) + Z Z

WCC(Z—X)NC,.(P): . el
I(P;W)<R {P: D(P||Pz)<A+86}NM,, 2" cTp

Then, as is well known [6], there exists, for sufficiently X exp {—” {D(PHPZ) + H(P)
largen (dependent oma yet not onP), a setB(FP) C A™
+ max F,(PxW, d)}}] ,
{W: I(P;W)<R}NC,, (P)

of size
and a mapi’"(-); Tp — B(P) such that where the inequality follows by combining (10) with (20) and
the equality by the construction of™(-). Since

|B(P)| < r(I(PsW7)+e/2) < gn(R+2/2)

(z", X™(z")) € Tpyw-, forall 2" e Tp. )
. P z{p(X™, X™(Z"™)) > nd}
Let, for each:™ € T, X™(2™) be given by such a map. xzt '

The above two items completely specify the mappingand clearly upper-bound&. (K + e, d, A), we have the inequality

the codebookB,, comprising D,,. We still need to specify 1
the codewords, or, equivalently, the uniquely decodable mapinsup | —logGu(R+e, d, A)| < —I(R, d, A+6) (40)
Cn: B, — {0, 1}*. We construct the codewords as follows:

use no more thal£| log(n+ 1) bits to convey the type to which which follows when considering the normalized logarithmic
2" belongs. Now, ifz" € Tp with D(P||Pz) > A + 6, use limit of the two sides of the last chain of inequalities and
any number of additional bits to convey™(z"). Otherwise, invoking Claim 2 of part D in the Appendix. Finally, the
use no more tha® + /2 bits to conveyX"(z"). This can arbitrariness o, 6 > 0 implies (4). O
clearly be done, once the type to whieh belongs is known,
asX"™(z") is known to belong ta3(P), whose size is no more
than 27(f+</2) Using this scheme, for sufficiently large,
the fact thatZ,,(Z~, D,,) > n(R + ) implies thatZ™ € Tp
for someP such thatD(P||P;) > A+ 6. Consequently, for
sufficiently largen (dependent or andé), we have

Remark: Note that the optimal scheme constructed in the di-
rect part of the proof is dependent @nsince the maximizers in
(34) and (35) will, in general, depend dnThis is in contrast to
Marton’s setting (cf. [17]), for which the scheme that essentially
represents the sequences of each type with the lowest distortion
possible at the given rate is optimal for all valuesiof

PR ALn(Z", Dy) > (R +2)}
C. A Special Case: The Noise-Free Setting
< Px z U {z" € Tp} We dedicate this subsection to verifying tHaf2, d, A) and

PeM(Z): D(P||Pz)zA+6 Theorem 1 coincide with Marton’s classical result when the
<e ™, (36) source is not corrupted by noise aheg= ~. We then look at the
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explicit form that/ (R, d, A\) assumes when Marton’s setting is

relaxed to\ < oo.
1) Marton’s Exponent:Let us verify that for the noise-free

case and\ = oo, Theorem 1 coincides with Marton’s classical
result [17]. To comply with the general formulation, we assume

thatin this caseZ = A andZ = X Px, z-a.s., so thalyx|; =
6x|z,» Whered x|z denotes the “clean” channel froginto X'.
Taking A = oo in (6) we have

I(R, d, oo)
— inf |D(P|P2)+ sup F(PxW, d)|.
rem(z) WeC(2—A): I(P;W)<R

(41)
It is easy to see that for ang € M(X x Z)

D (V||Pxz1Q) =D (Q x V||Q x Px|z)
=D (Q X VHQ X 6X|Z)

0, fQxV=Qxé
_ { Q _ Q X éx|z (42)
o0, otherwise.
Consequently,
F(Q, d): 0, if EQX(?X‘Zp(A,A)>d
o0, otherwise
_J)0 if EQp(.Z, X)>d (43)
00, otherwise.
Therefore,
sup F(P x W, d)
W: I(P;W)<R
0, if YW € C(Z — &) with )
= I(P;WY< R, Epxwp(Z, X) >d
00, otherwise
0, if R(P,d)> R
= _ (44)
00, otherwise.

Finally, this implies

I(R, d, 00) = D(P||P7) £ Fu(R)

inf
PEM(Z): R(P,d)>R

whereZ;(R) is precisely the exponent from [17].
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I(R,d,\)

A

oo

))
\\

Fy(R)

i >

A

Fig.1. I(R, d, X\)forthe extension of Marton's setting to the case of ageneral
excess-code-length exponent.

inf D(P||P;) (46
PEM(Z):D(P|1|111>Z)<)\7R(p7d)ZR (P||Pz) (46)

00, if V. P with D(P||Pz) < A,
— R(P,d)<R
LFy(R), otherwise
= inf D(P||Pz)
PEM(Z): D(P||Pz)<\,R(P,d)>R
, A< Fy(R
= {OO 1 (47)
LFy(R), otherwise

where (46) follows from (44) and the rest from the definition of
F4(R). Theorem 1 now gives us the following generalization of
the result of [17] (cf. Fig. 1).

Corollary 2: Foralld > 0, R > 0, and all\ € (F,(R), ~]
we have

Fy(R-0) < liminf

n—oo

[_% log G(R, d, A)} (48)

< limsup [—l log G, (R, d, )\)}
n—oo n
<Fy(R+0). (49)
For A € [0, F4(R)) we have
1
lim [—— log G(R, d, )\)} = oo, (50)
n—oo n

2) A Slight Extension:Staying in the noise-free setting, weCorollary 2 tells us the following two things.

now generalize the result of [17], wheke= oc, to a general

A € [0, oo]. It is straightforward to show, similarly as in the

derivation of the preceding subsection, that forrale M(2),
we have in the noise-free case

sup (P x W, d)=co. (45)

wee(z—X)

Plugging into (6) gives

I(R, d, \) D(P||Pz)

= 111
PEM(Z): D(P||Pz)<A

+ sup

F(PxW,d)
WCC(Z2—X): I(P;W)<R

« Even when the very strict requiremeht = oo of [17]
is considerably relaxed to and > Fy(R), the excess-
distortion exponent is not improved.

« Py {p(X", X"(Z")) > nd} may decay at a super-ex-
ponential rate, while keeping the excess-codelength ex-
ponent arbitrarily close td(R). A more detailed anal-
ysis shows that, in fact, foh € [0, Fy(R)), we have
G,(R, d, \) = 0 for large enough.

A qualitative explanation for this behavior has been given in
Section I. A more thorough discussion of the dichotomic phe-
nomenon exhibited in Corollary 2 is deferred to Section 1V,
where the setting of [17] will be further generalized to the case
of universal coding.
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D. Properties of the Functiof(R, d, A)

Unfortunately, (R, d, A) turns out to be quite arduous for
analysis. Convexity iz, for example, has no hope of reigning,
as even/;(R) is not necessarily convex. Also, the explicit an-
alytic form of I(R, d, A\) for even the simplest cases, such as
the binary memoryless source, corrupted by a binary-symmetric
channel (BSC) with Hamming distortion measure, turns out to
be far too intricate to shed any insight on the problem.

We dedicate this subsection to a qualitative investigation of
the function(R, d, \) and to a verification that the form of
I(R, d, \) adds up with what is known about rate-distortion
coding of noisy sources (cf. [8]).

1) Qualitative Investigation of the Functidit R, d, A): We
recall here, for convenience, that

I(R, d, \) = min{ a(P, oo, d),

inf
P: D(PI[Pz)2A

inf
P: D(P||Pz)<A

a(P, R, d)} . (51)

Clearly, we expeci(R, d, A) to be nonincreasing iA. As this
may not be obvious from (51), let us verify that this is indeed
the case.

Claim 1: I(R, d, A\) is a monotone nonincreasing function
of A, for fixed R, d.
Proof: For R, d fixed andA € [0, o], consider the func-
tion fi: M(Z) — R U oo defined by

 (a(P.co,d), if D(P||Pz) 2 A
Py = {a(P, R.d), if D(P||Py) < .

Since the functior(-, oo, d) lies above the functioa(-, R, d),
itis clear that{ fo(-) } ac[o, o] IS @ NONincreasing family of func-
tions (with increasing\). Consequently, the respective minima
of these functions is a nonincreasing functionofBut, for
each\

(52)

inf P)=I(R, d, ). O
Pl SA(P) =12, d, )

To get a feel for the qualitative behavior of the function
I(R, d, -) we further let

IR = inf

a(P, R, d)
PEM(Z)

(53)
we let P}, € M(Z) denote the achiever in the right side of
(53), and we let\r = D(P}||Pz). Consider now one of two
possibilities.

Possibility 1: I.., < a(Pz, R,d). In this case,

the minimum value of the functiom(-, oo, d) lies

below the value ofa(Pz, R, d) and, hence, for all

P e M(2Z) with D(P|Pz) sufficiently small, we also

havel,, < a(P, R, d). This means that there is a whole

interval [0, A) in which
inf

a(P, R, d) > I,
P: D(P|IPz)<A

for all A € [0, L), where
A =inf {D(P||Pz):a(P, R, d) > I.}.

Fig. 2.
casel.. < a(Pz, R, d).
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a(-,00,d
a(Pz,Rjd)
N \/ W
Ig
:\ AR >\oo D(P"Pz)
I(R,d,-)
I
filterin,
TegiI

Possible behavior af(-, R, d), a(-, >, d), andI(R, d, ) in the

Now, since A < M. (@s a(P:, R, d) < a(Pr,
oo,d) = I, and therefore clearly, for any} > A,

inf a(P,R,d) < inf a(P, R,d)
P: D(P|| Pz )<\ P: D(P||Pz )N
= inf a(P,R,d)<a(P~, R d)< ),
P: D(P||P2)<D(Px|IP7) .
this means that for any < [0, A) we have
inf a(P, 0o, d) = 1.
P: D(P|[Pz)>A
Consequently, for alk € [0, ), we have
I(R,d, )\) = mm{P: D(}’Ihfl’z)zk a( P, 00, d),
inf a(P, R, d)}

P: D(P||Pz)<A
inf

= a(P, 0o, d) = 1.
P: D(P||Pz)yzA

By the definition of) it is also clear that for alh > A, the
right branch in (51) “kicks in” and we have

IR, d, \) = a(P, R, d).

inf

P: D(P||Pz)<A
In particular, for allA> Ag, we clearly havd (R, d, \)=
Ig.

To sum up, the graph of the functid{R, d, -) starts
with a plateau at level,, until the right branch in (51)
“kicks in.” From the pointAg and on, the function is at
a plateau again at levél, (see Fig. 2 for a qualitative il-
lustration). Note that the heights of the two plateaus men-
tioned are, respectively,,, and Ig, the exponents asso-
ciated with the “pure filtering” and “pure coding” cases.
Hence, we see that, in this case, there is nothing to loose
in the excess distortion exponent relative to the “pure fil-
tering” regime when the constraint on the excess code-
length exponent is mild enough. It is also seen that when
the excess code-length exponent is confined to be above a
certain rate, there is nothing to gain relative to the “pure
coding” regime where the codewords are confined to a
length less tham R with probability one.

Possibility 2: I, > o(Pz, R, d). In this case, the fil-
tering regime, the left branch in the right-hand side of (51)
does not “kick in” at all except foA = 0. The reason is

that, in this case, we have for any> 0
inf P R, d)<a(Pz, R, d) < I

P DBy @ B ) < alFz, R, d)
< inf

< a(P, 00, d)
P: D(PIIP2)>A
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Proof: Fixa\ > 0. From the definition off (R, d, A), it
clearly follows that
I(R, d, A)
, : < inf D(P||Pz)+  sup F(PxW, d)
: rPeM(Z): WCC(Z—X):
Ak Aoo D(P||F;) D(P||Pz)<A 1(PW)<R
I(R,d,-} (56)
Sincel(-, d, A) is nondecreasing, it will suffice to show that
ﬁltenng/ S
regime [N " R i\r}lf(z) D(P||Pz)+ sup F(PxW,d)
""""""""" € : WeC(2—X):
\ \ / D(P[IPz)<A I(PW)<R*(Px.z,d)
\?SSEJA%/ A =0. (57)
Fig. 3. Possible behavior af(-, R. ), a(-, oo, d), and I(R, d, -} in the Taking P = P, the left-hand side of (57), is upper-bounded by
casel.. > a(Pz, R, d) (note the discontinuity at the origin). sup F(PZ x W, d). (58)
WeC(Z—X):
so that I(Pz;W)<R"(Px,z,d)
I(R, d, \) = iuf (P, R, d). It will, therefore, suffice to show that the expression in (58)

P: D(P||[Pz)<A equals zero. But this will be the case if and only if

On the other hand, whex=0, the se{ P: D(P||Pz) <A} F(Pz x W, d) =0,
is empty, in which case the right branch in the right-hand 7 < C(Z — X) stI(Py; W) < R*(Px 7, d).
side of (51) is infinite and we have ’ e

I(R,d,0)= inf a(P,
P: D(P||Pz)>0 hat

Hence, in this case, we have an interesting dlsconh-a
nuity phenomenon at = 0. A qualitative explanation E(r, xw)xpy (X, X) > d,

(59)

Consequently, sincd'(P; x W,d) = 0 if and only if

00, d) = Ioo. E(p, xw)x Py, ,#(X, X) > d, we will be done upon showing

for this phenomenon is that, in this case, whége > VW € C(Z — X)st.I(Pz; W) < R*(Px.z, d). (60)
a(Pz, R, d), P-typical sequences are such that the op- ’
timal filtering scheme on these sequences needs more t
nR bits, and, even when confined #d? bits only onPz, R*(Px, z, d) = inf I(Pz; W) (61)
the optimal scheme will have an excess-distortion expo- WeC(Z—):
nent no higher than(Pz, R, d). Hence, when = 0, this Epg,xwp’ <Z’X)§.d
is a purely filtering regime, whose exponenfis. For any = chl(gf_h%): I(Pz; W)
A > 0, however, one cannot afford to allot tlig;-typical Bz aympy xwlEpy , [p(X,8)|Z=2]<d
sequences more thark bits, in which case the associated (62)
exponent cannot be higher tha(Pz, R, d) (see Figs. 2 _ it I(Py; W) (63)
and 3 for a qualitative illustration). Note that the regime of - w’ec(g’:ﬁ%): Z
Possibility 2 will prevail when R is sufficiently small. Ep, xwixpy , PX,X)<d
2) The Region Wheré(R, d, A) = 0: Clearly, if the ex- Consequently, if (Pz; W) < R*(Px, 7, d) then
cess-distortion exponent is positive, we must have S
Ep(X™, X™(Z")) <nd+e, foralle >0 Btz xwyxrz (X, X) > d
which implies (60). O

and sufficiently largen. We, therefore, expect, for any >

0, to haveI(R, d, A\) = 0 for all R < R*(Px, z, d),where

E. Noisy Source Coding With Side Information

R*(Px, z, -) is the rate-distortion function associated with the
noisy source coding problem (cf., e.g., [8]). Specifically, it was The setting considered thus far can be generalized to the
shown in [8] thatR*(Px. z, -) is no more than the rate-distor-case where side information is available at both encoder
tion function of the sourc&y, with respect to the modified dis- @nd decoder. Specifically, one can assume that the source

tortion measure*: £ x X — [0, o), given by {(Xx, Zx, Y2)}72, is a sequence of independent drawings
of a triple of dependent random variablés Y, Z, taking

(2, &) = Epx o [p(X, 8)|Z = 2] (54)  values in the finite set&’, V), Z, respectively, and distributed
Let us now show that our belief was justified. according toPx y, z. As before, it may be desired to encode
. ) the sequencé X} } in blocks of lengthn, based on its noisy
Proposition 1: For anyA > 0, we have version{ Z; }, while complying with rate limitations of the type
I(R, d, \)=0 VR < R*(Px,z,d). (55) considered in previous subsections. In this setting we assume
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the availability of side information. Namely, we assume that Given a sequenc® = {D, },>1 of compression schemes,
both encodeand decoder have access to the side informatione associate with evey € © an exponent for distortion level
{Y;}. Clearly, this setting contains that considered thus far ag/aefined by

special case. A result generalizing and analogous to Theorem 1 AL 1 N

can be obtained for this setting. The principles underlying the ca(DIf) = liminf —— log B {p(X", X") > nd}  (64)
treatment of this setting and the proof of such a generallz\?vg]ereXn = Xn(X™), X(.) being the mapping from™ into

result are the same as those underlying the proof of Theor%n : i >
. . . Lo - B, associated with the schenig, (recall Section Il for the
1, with the only added ingredient of conditioning everythm%omplete definition of a coding séheme). Our goal is to find

on Y™. The interested reader is referred to [21, Sec. 3.E] forSe Uenced) that is independent of and which maximizes
an elaborate treatment of this setting and for results whién>¢9 P

generalize those of the previous subsections to the case erﬁlaDW)' uniformly for all ¢ if possible, under the requirement
side information is present. 1

er(D|6) £ liminf — = log PP {L.(X", D,) > nR}

IV. ERROREXPONENT FORUNIVERSAL LOSSY CODING 2)\?9_))?0 @9 co (65)

In this section, we consider the case.of lossy chin_g forsgr a continuous \: © — (0, oc] which is assumed given and
memoryless source (in the absence of noise and of side informgay throughout this section. Note that a requirement which is
tion), which, rather than being completely known, is only Knowgmilar to that in (65) can be given as follows. Letting
to belong to a given parametric family. Note that the first step in 5 N
this direction has been taken by Marton in [17], as the schem@n(&; A) = {Dn € Dn: P{Ln(Z", D) > nR} < ™™}
achieving the optimal exponent in that setting did not depend gRe might require that, for ail sufficiently large
the source. As we saw in previous sections, however, when the 0
constraint on the code-length overflow exponent is relaxed from Dy € ﬂ An (B, A(6))-
infinity to a finite value, the optimal scheme becomes source-de- fco
pendent. The basic reason for this is that, as opposed to the Sé@arly, the nonasymptotic requirement in (66) is slightly
ting of [17], where sequences of all types could be allotted féonger than the asymptotic one of (65), though they are sim-
more tham.R bits, here the optimal scheme is one under whidkar in spirit. The idea in letting\(¢) vary with 6 is motivated
the only types that are allotted no more thaR bits are those PY the fact that certain sources in the parameter sgaoeay
that are sufficiently close (in the Kullback—Leibler sense) to tHe “easier” to code than others, so it may make sense to require
source. Consequently, in general, such a scheme would cledl{@rger excess-code-length exponent for such sources, and a
be source-dependent. Thus, when the excess-code-length &daller one for the more “difficult” sources. More specifically,
straint is relaxed to a finite value of the exponent, the issue B St oo AR (R, A(#)) of (66) can, in general, be made
universality is more involved than it was in the setting of [17].considerably larger by considerirgdependent\(-)s, rather

than some value of which would be constant all across the pa-
A. The Error Exponent and the Universally Optimal Schemerameter space. This point will be elaborated on in Section IV-B.
A ) _ A similar approach was recently proven quite fruitful in the

Let Po = {Fs: § € ©} denote a parametric family of mem-context of composite hypothesis testing (cf. [16]). Indeed, there
oryless sources with the finite alphab&tand the marginal ig an intimate relationship between the decision rule proposed
Py € M(&). Considering the standard correspondence bgr[16] and our coding scheme.
tween elements of1(') and[0, 1]"*/, we may thinkofo asa  as we show next, for a giveR > 0 there exists a sequence
subset of (the simplex irfp, 1]*1. Furthermore, to avoid tech- pu (where the superscript stands for “universal”) whose ele-
nical nuances, we assume throughout #as a closed (and, ments comply with (66) while maximizing;(D|¢) universally
hence, compact) subset @, 1)!*!. In particular, this guaran- jn @ The idea in the construction d@"* is the following. As-
tees the continuity oD(-[| ) in M. (), for all ¢ € ©. This  syming without loss of optimality (what will be justified for-
also implies thatnin, v mingco Fy(x) > 0, afact that we majly in the proof of Theorem 4) that sequences of the same
will rely on in the sequel. Note that the consideration of a gefype are assigned codewords of essentially the same length, if
eral subse® of M(X), rather than restricting attention only tothe source sequena# € Tp» andD(P||Ps) < A(6), for some
the whole ofA1(X), is motivated by more than a desire tomaxg ¢ ©. then we cannot afford more thark bits, otherwise,
imize the mathematical generality. As will be seen in the sequghderp,, the probability of excess code length would be more
there is a clear tradeoff between the size and structure of the {4, the probability of >, which would, in turn, be essentially
certainty se® and the deterioration of the performance relativeyer-bounded byxp{—nD(P|Fs)} > exp{—nA(6)}, vio-

to the nonuniversal setting, so that when the uncertainty sefdging (65). Consequently, ID(P||Ps) < A(6) for somes € ©
smaller than the whole o#1() it is advantageous to considergy in other words,

coding schemes which are tailored for this smaller set. Further- A L

more, in many situations of practical interest, the source ismost ~ “(£) = u(P, A(-)) = elgg[D(PHPe) —A@)] <0
naturally modeled by a family-Of diStribUtion-S Which s a proper 5Continuity here is in the standard sense that for éach © ande > 0
subset ofM(X'): e.g., the_f_am|ly of symmetric dlstr|but|on§ OF,there exist$ > 0 such thaiA(8) — A(8)] < ¢ wheneverd € © satisfies
for a large alphabet, families of one-parameter exponential dig—_ 4| < 5, whereso — o0 2 0. Note, in particular, that whe® is finite, all
tributions (cf. [20], [19]). As are continuous.

(66)
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the best we can do is to allot sequencedjnjust aboutn R
bits. For types withu(FP) > 0, we have no limitation. This is
the rationale behind the constructionof which follows.

For afixeds > 0, we construct the sequent® = {D: },>1
as follows. For the associated codebos¥, we take the fol-
lowing.

« Forz™ € Tp with u(P) > 0, we takeX " (") = z".
» Forz™ € Tp with «(P) < 0, the type covering lemma

assures us of the existence of aB¢P) C X with size
|B(P)| < 2™%~¢) and such that

lp(ac", B(P)) < D(P, R—¢e)+6,(¢), forall 2™ € Tp
n

whered, (¢) — 0 asn — oo and the sequenc,.(¢)} is
independent of°. Let, for each:™ € Tp, X™(z™) be the
p-nearest neighbor of" in B(P).

The above two items completely specify the mapp¥ig(-) and
the codebookB,, comprisingD,,. We construct the uniquely
decodable mag’,,: B, — {0, 1}* as follows: use no more
than |X|log(n + 1) bits to convey the type of™. Now, if
x" € Tp with «(P) > 0, usenlog|X| additional bits to
conveyX"(z™) = z". Otherwise, use(R — ¢) bits to convey
X™(z™) € B(P). Using this scheme, for sufficiently large
(such thaj X' |(log(n+1))/n <e), {L.(X", D;)>nR}CTp
for someP’ with w(P) > 0. Consequently, there exisé(<),
independent of € ©, such that foralh > N(e)and alld € ©

Pg{L,(X™, D) > nR}

< B U Tp p < Py Ip
P:u(P)>0 P: [D(P]|Po)=A(8)]20
< (n+ D) exp{—nA(6)}. (67)

We now have a sequence of compression schebie®r any
e > 0. We construct our schem&*, as follows. Let now, for
eachm > 1,¢,, = |X|%. Sinceé,,(e) — 0 for every
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dependence oD" on R explicit. We begin by assessing the
performance o). In what follows, we letX”(-) denote the
mapping fromX™ into B,, associated witlD}.

Theorem 3:
a) D* satisfies, for alln

DY e () ALR, A(B) — em,.)- (73)
)
b) For eacl € ©
eq(D™|6) 2 lilriinf—l log PR{p(X™, X7) > nd}
> IZ(RC.)Td —no, 6) (74)
and
limsup—% log Py {p(X", X7) > nd}
T < I(R,d+0,6) (75)
where
LR d.6)2 i DP|P) (76)

and we define
B(R, d, \(*))
2{PeMX):u(P)<0, D(P, R)>d}. (77)
Remark: Note the dependence of,(R, d, 8) on the
threshold functionA(-). This dependence is suppressed in
order to avoid cumbersome notation. Note also that, since
L.(R, d, 6) is a nondecreasing function @f it can only be
discontinuous at a countable number of valuesdofThus,
Theorem 3 gives
, 1 .\
eq(D*|0) = lim - log Pg{p(X", X)) > nd}
except, possibly, for a countable number of valueg.of

(78)

Proof of Theorem 3:ltem a) follows from the construction

e > 0 (recall the second item in the construction of the cod® D* and, in particular, (72). Turning to the proof of b), we
book for the definition of,, (<)), we can readily construct a (notnote that, by our construction &1*, we have for any > 0 and

necessarily strictly) increasing sequence of inteqets },>1
satisfying

My 222 00 (68)
yet sufficiently slowly such that both
Sp(em, ) —=0 (69)
and
my < n, Vn>1 (70)
Note that, in particular, this construction satisfies
2 Dy

By the uniformity of (67) in®, we have
PR{Ln (X", D™ ) > R} < exp{—n[A(#) — em, [},
Ve (72)

for all sufficiently large n. Finally, we define D*
{D77 }n>1. We shall writeD*®) when we want to make the

sufficiently largen
PR{p(X™, X7) > nd}

<Py

U

{P:u(P)<0,D(P,R—2m,, )+6n(Em,, ) >d}NM,,
T
(P:u(P)<0,D(P,R)>d—£}NM,,
11
{P:u(P)<0,D(P,R)>d—}

<(n+ 1) exp {—n

Tp

<Py

D(P||P9)}.
(79)

Inequality (74) now follows by considering the normalized log-
arithm of the two ends of the above chain, letting» ~, and
then¢& X\ 0.

For (75), we fix¢ > 0 and note that, by construction &f*,
we have for all sufficiently large:

Py{p(X", X7) > nd}

> PP{p(X", X7) 2 n(d+ &)} (80)
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and that P satisfiesu(P) < 0. This is because, by the con-
> Py U Tp struction of D*, the only types on which this (sequence of)
{P:u(P)<0,D(P,R)>d+2£}NM,, scheme(s) suffers distortionud are those for whicl(P) < 0

Y and D(P, R) > d. Now sinceR(P, d) > R and sinceD suf-
>(n+1)"exp —n

{p:u(p)@pglayiﬁ)zdwg}ﬂj\,ln fers distortion< nd on Tp, essentially all” € Tp have
L,(z", D,) > nR. Furthermore, the fact that(F) < 0im-
><D(PIIPe)}- (81) plies the existence of & € © for which D(P||P;) < A(6).

_— . Consequently, for large

Furthermore, the definition of,(R, d, #), the continuity of . i
D(-||Py) and of A(-) (which together imply the continuity of exp{—ner(D|0)} = F{Ln (X", D) > nR}
u(P)), and the continuity oD(P, R) in P (cf. [6, Lemma 2.2]) z Pi{Tp} = exp{—nD(P|F;)}
imply that > exp{-nA(0)} (88)
D(P||P0)> which contradicts (84) fof. )

Turning to the formal proof, the fact thét € C(R, d, ©)

=1I,(R, d, 68). (82) implies that (87) holds fo# = 6. It thus follows from (87) that

Thus, considering the normalized logarithm of the two ends ¥€ ¢an find am = ;(6#) > 0 such that for all sufficiently large
the chain of inequalities (80) and (81) and combining with (82%

lim min
n—oo \ {P: uw(P)<0,D(P,R)>d}NM.,

gives —= log P} {p(X", X1) > nd} +n
3 1 n TN on " ~
hrILrLSolip_g log P{p(X", X)) > nd} < I(R, d+2¢, 6). < _% log PJ{p(X", X™) > nd} (89)
(83) N . ; : : :
Finally, we take \, 0 and establish (75). O WhereX™ = X™(X"), X"(-) being the mapping associated

with the scheme,,. Therefore, for all sufficiently large
PH{p(X™, X7) > nd} <P{p(X", X7) > nd} -

< exp{—n[l.(R, d, #) +n/2]} (90)
where the first inequality is a rewriting of (89) and the second

inequality follows from a reuse of the fact that (87) holds for
¢ = 6. The continuity of (-, d, #) at R (recall thatf €

Theorem 3 assessed the performanc®bf The following
theorem tells us that no scheme can do better.

Theorem 4: Let C(R, d, ©) denote the set of all € O for
which L,(R, -, 8) is continuous atl, andl,(-, d, #) is contin-
uous atR. For any sequence of schem@ssatisfying

cr(D|0) > A(#), VOeO (84) ¢(R, d, ©)) guarantees the existence of some= a(f) > 0

we have such that for all sufficiently large
ca(D]0) < eq(D*|0) = I(R, d, ), VYOecC(R,d,0). LTi{p(X", X")>nd} <exp{-n[l.(R+a,d 0)+n/3]}
(85) (91)

Now, by the definition of/,, ( R+«, d, §) (recall (76)), there exists

Remark: Theorem 4 establishes the universal optimality QIQ € M(X) and a sequencg?, }, whereP, € M(X)NM,,
the schemeD* with respect to the class of all schemes comy .y thatu(P,) < 0, D(P, RJr’a) > d, P, — Q, and

plying with the codeword overflow probability constraint diC'D(QHPé) — I.(R + a, d, 6). Hence, by the continuity of

tated byA(-). Note that item a) of Theorem 3 implies, in partic-D(.HPé)’ we must have for all sufficiently large

ular, thatD* satisfies (65uniformlyin ©. That is, D(PA|IP)) < L(R+ o, d é) _— 92)
n g) = du &, G, n/4a.

liminf inf |- log P {L,,(X", D)) > nR} = A0)| 20 Also, the fact that(P,,) < 0 (recall the continuity of? in 6,
(86) the continuity ofA(-), and the compactness 6f) implies the
Theorem 4 tells us that if a scheme has an excess-code-lerfjtistence ob,, € © with
exponent which is better than that &f“, it will necessarily D(P,||P; ) < B,) (93)
%ave gfn exlcefss-distor'f[i.olrll?@l(lponlent u?![oher—boundetd by thai,Qkh tha 6, — 6 and
* uniformly for essentially all values of the parameter space.
D(Q||Ps) < A(6). (94)

Proof of Theorem 4:Let D = {D,} be any sequence of o, the other hand, sincg, satisfies (92), there must exist a
schemes satisfying (84) and assume, conversely, that there e>%s<tls, ) C Ty, with, say,|B(P,)| > L|Tp, | such that
af € C(R, d, ©) for which n) =40 » >aY, n)l 2 314p,

ea(D|6) > eqg(D"|6) = I(R, d, ). (87) pla”, X"(z") Snd,  Va"€B(PB)  (95)

Before plunging into formalities, let us outline the idea. Insince, otherwise, (91) would be violated. By the converse to
equality (87) essentially implies, for large the existence of a lossy coding (or type covering), (95) necessarily implies that, for
type 7> on which D gives distortion< nd while D* gives dis- all sufficiently larger. (dependent on yet not on the particular
tortion> nd. The latter fact essentially implies th&{ P, d) > R sequence P, } chosen),

8t is tedious but straightforward to show, using the continuityZaf:, -) {U.(z™): 2™ € B(P,)}| > 2nR T, d—a/z]
in M(X) x [0, co0), that when© and X(-) are sufficiently well-behaved, .
C(R,d, ©) = 0. "Throughout this proof, the “sufficiently large” may be dependent o
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which, sinceD(P,,, R + «/2) > d, leads to Note first that wher® is a singleton we have
ny. .n n(R+a/2) - — 1
{Un(z™): 2™ € B(P,)}| > 2 . (96) I.(R, d, 8) P ér;{e)’R(m)ZR} D(P||Ps)
Inequality (96) inevitably implies, for sufficiently large _[FI(R), ifA6) 2 Fj(R) (105)
(again, independent of the particular sequefigg} chosen), o 0, otherwise

the existence oB(P,) C B(FP,) with, say

B 2 5B 2

where thexo branch on the right-hand side of (105) follows from
the fact that when\(6) < F¢(R), the set

{P: D(P||Py) < M6), R(P, d) = R}

such that ) ) ) )
is empty. Hence, as required, wh@ns a singleton/,,(R, d, )

Lp(2™, Dyp) > n(R+ «/4), Va" € B(Py,) (97) coincides with the exponent function derived in Section 11I-C2.
The next simple observation we make is that whé@) >
(this is established easily like in the proof of Theorem 1, c¢(R) then theP achieving the minimum in (104) satisfies

(A36) in particular). Consequently, for sufficiently large D(P||P) < A\(#) and,a fortiori, satisfiesu(P) < 0 so that
PU {Ly(e", D) >nR} 2 P2 {Lo(a”, D) 2n(Ra/a)y Ve Nave
’ J 7 , = F¢ L A0) > F(R).
l(n +1)” |X| exp{— nD(pHp )} Equation (106) can be given both an optimistic and a pessimistic
‘11 interpretation. On the one hand, as we have seen in Corollary 2,
> Z(n—i—l)"“' exp{—nA(f,)} (98) even in the nonuniversal setting, the best achievable exponent

for the distortion when subject to an overflow exponent larger

where the last inequality follows from (93). Therefore, thanF,(R)is Fy(R) itself. Hence, (106) tells us that at all points
6 € © in which A\(§) > Fj(R) we are not paying any price

liminf —— log P" {L (z™, D) > nR} for universality, or, more explicitly, for the fact that our scheme

nee has to comply with the overflow exponent constraint dictated

< 1¥r_l>i£f A(0n) = A(8)  (99) by A(-) for all & € ©. For a pessimistic view, note that, in par-

ticular, the regime of (106) holds fox(-) given by A(f) = oo
Y68 € O. In this case, we are back to Marton’s setting [17],
Where the codeword length is restricteditt bits with proba-
bility one. In this context, it is worthwhile to note that the op-

where the equality follows from the continuity af-) and the
fact thatd,, — 6. To conclude, it is shown in the Appendix that
for any sequencéA,, }, where4,, C X™ andA,, # 0, we have

p~ {A } timal (sequence of) scheme(s) in Marton’s setting for achieving
Jim - log —2——~ P" AT =0 (100) the best exponent, which essentially covers each type to within
the lowest distortion achievable withR bits, is universal. Equa-
which implies tion (106) tells us that any relaxation of the overflow exponent
constraint to a valua(é) greater thari’§ (R) will not lead to a
hminf_l log Py! {L (z", D) > nR} better distortion exponent.
A more significant divergence from the nonuniversal setting
= hmmf—— log P3'{ L, (=", D) > nR} is observed for values df for which A(8) < F{(R). While
noee in the source-dependent setting, Corollary 2 gave a rate,of
= @R(D|9)- (101) ' 1,(R, d, 6) canwell be finite. Technically, this follows from the

fact that in the source-dependent setting, whgre- {6}, the
minimizing set in (103), namely,

cr(DIf) < A(8), (102) {P € M(X): D(P||Py) — \#) < 0, R(P, d) > R}

contradicting (84). 0 is empty wheneveh(6) < FJ(R) (cf. Section 1l-C2). In the
universal setting, however, even when the set

. . . . . . : — . >R
Working with the rate-distortion rather than the distortion- {P € M(X): D(P[Ps) = A(0) < 0, R(P, d) = R}
rate function, (76) implies that is empty, the set

I(R, d, §) = inf D(P||Py).  (103) {P e M(X):w(P) <0, R(P, d) > R}
{(P: w(P)<0, R(P,d)>R}

Consequently, we have established

B. Discussion

. may not be empty and, hence, the expor€®, d, £) may be
Let further Fjj(R) deneote Marton’s exponent [17] corre-finite. The rationale behind this phenomenon is the following.
sponding to the source The fact that\(d) < FS(R) implies that all typesP with
. R(P, d) > R are such thaD(P||Ps) > A(#). Therefore, in
4 _ ’
Fa(R) = (P R%}l»fd)ZR} D(P[|Fy). (104) the nonuniversal setting, one could allot to each typ¢he
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~nR(P, d) bits necessary to cover it with distortion no moreninyz,qy D(P||Ps) > 0 for all ¢ € © or, in other words,
thannd, thereby essentially annihilating the probability for disthat
tortion exceedingd, while complying with the requirement on
the exponent associated with the codeword length. In the uni- U(R, d)N Ps =0. (109)
versal setting, on the other hand, the fact thd@t) < F¢(R)
doesnotimply that all typesP with R(P, d) > R can be cov- This condition can be qualitatively explained as follows. Since
ered with distortion less thatd. It only means, as in the nonuni-(109) implies thatR(Fs, d) < R for everyé € ©, no more
versal case, that all type8 with R(P, d) > R are such that thann R bits are needed to represent sequences of types suffi-
D(P||Ps) > M(6). There might exist some othéf € © for ciently close tal% with distortion less thand. Hence, one can
which D(P||Ps) < A(#') and, if this is the case, complyingafford to cover all types with a sufficient rate to guarantee that
with the requirement on the codeword exponent forces onette distortion does not exceed for all sequences and, at the
allot no more tham R bits to the typeP and, hence, to suffer same time, guarantee that the probability of the event that more
distortion greater thand on this type. thann R bits would be needed will decay exponentially. Con-
Thus, unlike the nonuniversal settin() < F9(R) does Vversely, when (109) is not satisfied, there exists @ © with
not automatically imply.,, (R, d, #) = co. What it does imply, R(Fy, d) > R. Since, in order to maintain exponential decay of
however, is that if allP;’s achieving F§(R) are such that the probability of codeword length overflow, sequences whose
uw(Py) > 0thenl,(R, d, §) is strictly greater tha¥{(R). types are close t&, cannot be allotted more tharz bits, the
The situation in these cases is similar to that in the nonumlistortion on essentially all such sequences will have to exceed
versal setting in the dichotomy exhibited between the reginel, and, consequently, undé’, the probability of exceeding
A(6) > F{(R), where the best achievable exponenff{ ), distortionnd cannot be exponentially negligible.
and the regime\(d) > FJ(R), where a better exponent is We note the dichotomy established in the above discus-
achievable. sion between the regimg,(R, d, §) = oo and that where
Notably, the discussion above tells us thax(f) is such that 1.(R, d, #) < oc. Specifically, note that the condition (109)
the set{ P € M(X): u(P) < 0, R(P, d) > R} is notempty is independent ot/ € ©. In other words, we have either
then, at all§ € © for which A(6) < Fj(R), the exponential [.(R, d, 0) = oo forall § € © or I, (R, d, §) < oo for all
price of universality is infinite. This is because, in this case arfie ©. The qualitative reason for this is that, as was discussed
for such & € ©, thed-dependent scheme complying only witrabove, the regimé, (R, d, §) = oo is reached when a scheme
the codeword overflow exponent constraint for the soufge whose distortion orall sequences does not exceed is em-
is infinite, while the universal one is finite. A natural questioployed. In such a case, the probability of exceeding distortion
arising in this context is whether there exista@) > 0 such nd is annihilated under any sourcg. In the case where
that thel,, (R, d, #) = oc regime is attained. For this we would/. (R, d, #) < oc, on the other hand, the scheme employed is
need the sefP € M(X): w(P) < 0, R(P, d) > R} to be suchthatthe distortion suffered on some types exceddshe
empty or, in other words, we needP) > 0 for all P with probability of these types cannot be exponentially negligible
R(P, d) > R. Thisimplies thaf ,(R, d, #) = oo ifand only if under any sourc&;' and, thus, we will havé,(R, d, ) < oo

forall § € ©.
o w(P) = ok Jul [D(P[[Fe) = A(9)] From the above discussion it follows that when condition
’ T ID(P|[Py) — N8)] > 0 (109) does hold, a logical choice of the functiafr) should
T W) 6o v be based on the left-hand side of (108). One example for such a
choice is given by
where
/ A@)=(1—¢)- min D(P| Py
(R, d)2 (P € M(X):R(P, d) 2 R) O= 0= g, PR

and the equality holds by our compactness assumptiod,onfor some smalk > 0, which clearly satisfies (108) whenever
the continuity ofA(-), and the compactness iR, d) (which ~condition (109) holds, while also satisfyingé)/\'(6) > (1)
follows from the continuity ofR(-, -) in M(X) x [0, 00)). The forall ¢ € © and any othen’(-) satisfying (108).

fact that A discussion of the analogy between the optimal decision
rule in [16] and that of the present work now seems in order.
‘P%%fd) w(P) = \1}3%1(11) ;pcig [D(P||Psr) — MN6)] The setting in [16] is one of composite hypothesis testing. The
' R y problem is that of deciding, based on observing an indepen-
= oes [\I}{}ﬁ) D(P[|Fe) =AM#)]  (107)  gent and identically distributed (i.i.d.) sampjé of marginal

o - N Py whetherf € ©; or 8 € ©,. The goal is to find a decision
implies that a necessary and sufficient condition fqgyje which will maximize the misdetection exponent, subject to

I.(R, d,0) = ools a constraint on the false-alarm exponent, which ma+tepen-
min  D(P||Py) > A(#), Ve co. (108) dent_. More specifically, th_e goalistofind a deci_sion rule which
W(R,d maximizes the second kind error exponent uniformly diger

Finally, (108) (again, by the compactness®fR, d) and@) Subject to the condition that
implies that a necessary and sufficient condition for the exis- 1 .
tence of a strictly positive\(-) which will satisfy (108) is that ~ liminf ——log 7%, (2"|61) = A(61), ~ V61 € ©1 (110)
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whereP,, (€216, ) is the first kind of error probability associated The Case® = {6, 6>}

with the decision rul&€2”, when the active source t§ € ©;. Consider the case where there are only two possible sources,
The optimal decision rul&™ for this setting was shown to be P;, and Py, . In this case, we have

one which decides on the first hypothesis when (R, d, 6,),

ol [D(Fy||Fo) — A(B1)] < 0 (111) = D(P||Ps)  (112)
A 01> 1) or
and on the second hypothesis otherwise. Note the similarity be- e D(P||Pay )SA(62) R A)Z R

tween this optimal decision rule and the optimal coding scheme P—y : 0,

constructed for the setting of the present work in Section IV-A. £y (B), ifA(0L) = Iy (f)

The dichotomy between the sequences on which the first hy- ¢ A0 <1y (R) and
A62) < Fy*(R)

00,

pothesis will be chosen and those on which the second hypoth-

esis will be chosen, in the former case, and that between the —

sequences that will be allotted just abeut bits and those that <{P: D(P||P92)gir}leez),R(P,d)ZR} D(P||Pal)) ;

will be allotted an unlimited number of bits, in the latter case, is 5

essentially identical. This similarity is not due to mere chance. i { A(61) < Fy*(R) and }
The reasons for this dichotomy, in both settings, are analogous. x A62) > F*(R)

In the setting of [16], assuming that sequences of equal types (113)

receive equal treatment (an assumption which is justified by tRl%t
X - o . e that, by symmetry,
fact thatF,- is a sufficient statistic for this problem, cf., e.g. y sy Yoo

[23, Lemma 1]), the fact that (111) holds implies the existen%%vel (R, d, 0,) = I(R, d, 85) = oo or bothL,(R, d, 6,)

of 61 € Oy for which D(Fy.[|Py,) < A(f). Consequently, o, L,(R, d, 6) finite. These two regimes are reached, respec-
the first hypothesis must be chosen whenever (111) is SatISfl[ ly, according to whether botk(6, ) < o (R) andA(6s) <
: 1R

since, otherwise, (110) would be violated. Analogously, in thﬁ"z (R) or not. Itis also evident from (113) that if we have both
setting of the present work, as discussed in the previous subsgt; ) < Jad (R) andA(6,) > i (R), then
d 2) = L'y ’

tion, assuming that sequences of equal types are allotted cod 2
words of approximately equal lengths (an assumption which is Fj‘ (R) < I,(R, d, 0;) < oc.

justified by Theorem 4), the fact that the source sequence t]% see why the inequality®: (R) < I(R, d, ;) is strict
d w s M

longs to a typeP satisfyingu(P) < 0 implies the existence note that in this case, where we assuMé:) < FU(R),

Cequences mustbe allatec no more (s s, theruise, | 17, SCTIEVESIL () then, by the defton ofy(A),
9 ’ " D(P*||Ps,) > A(61) and, henceP* cannot belong to the

the excess-code-length requirement (65) would be violated. An-

. o A . minimizing set in (112). Thus, we see that in the case where
other analogy with [16] is in the motivation for takingfade- B, 4, .
pendent\(-) and in the considerations guiding the search of)‘(el) < Iy (R) yetA(6s) > F;* (R), as in the source-depen-

sensible)(-). In [16], a judicious choice oA(-) can make the §ent case (cf. Section 111-D), a better exponent t#gn(R) is

difference between the existence of a decision rule with eXp:'%\)ghlevable. Unfortunately, unlike the source-dependent case, it

nential decay o, (£2"*|6) for all 8> € ©;, and the nonexis- S finite.
tence of such a rule. In the present setting, as discussed above,

a sensible choice of(-) could mean the difference between not
having to pay a price for universality and having to pay such aThe study of error exponents for lossy coding under a con-
price. Furthermore, when there is an inevitable price to be pagirained probability of codeword overflow has been initiated in
the right choice of(-) will mean the difference between payinghis work. A single-letter expression was obtained first for the
essentially this price and paying significantly more in the exase of lossy coding of noise-corrupted memoryless sources,

(R, d, 0>) looks the same with —
2 and2 — 1. Hence, we see that, as discussed above, we either

V. CONCLUSION AND FUTURE DIRECTIONS

cess-code-length exponent. and then generalized for the case where side information is
1) Special Cases: available at both encoder and decoder. Finally, the case of
The Case WherePy = M(X) a clean (uncorrupted) sequence, generated by an unknown
As an extreme example, note that whey, = M(X), we member of a family of memoryless sources, was considered.

trivially have, for anyA(-), w(P) < 0 for all P € M(X). It would be interesting to study the natural extension of the

Therefore, in this casd, (R, d, §) = F(R). Qualitatively, universal setting of Section IV to the noisy case. This is not a
the reason is that, in this case, one can clearly not afford to aliovial extension of the noise-free universal setting. For this case,
sequences of any type more thaR bits. Under this restriction, one can show that the discrimination between the types on which
the best scheme is that of Marton’s, which is already universai will be allotted no more than 2 bits and those on which it
for the case\(-) = oo. Hence, for this case, the fact thet) < will not be limited in codeword length is quite similar to that
oo does not result in a better exponent. Let us now examinarade in the noise-free case. The difficulty comes in at the stage
slightly less trivial case, which concretely illustrates some of thvehere one needs to find the best scheme within each type. While
points discussed above. in the noise-free case, the optimal scheme within each type was
s _ , independent of the particular active sou#ég in the noisy set-
Note that, formally, this case does not conform to our standing assumption . . ..
thatPo C M_(X'). We will not be pedantic about that as the discussion oﬁng' as was seen in Section lll, this is n_o anger t_he Case_' There
this trivial case is only a qualitative one. would, therefore, no longer be hope of finding a single universal



412 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002

scheme which would be optimal for all sources in the class, &mnd

contrast to what was shown to be the case in the noise-free set-
ting. Furthermore, in universal coding of noisy sources, under

lim
e—0t, 6§01

I(R—¢,d, \+6) (A9)

the expected distortion criterion, generally, schemes which are

optimal for all sources in the reference class do not exist. Th
in that setting, one is led to consider somewhat less ambiti
optimality criteria, such as the minimax criterion (cf. [15], [7]
This will probably also be the case in the study of error exp&z

exist. To establish the existence of the first limit, let

(;ﬁS’R:(L"), A" and {(RYY, AU)) be two arbitrary se-
)quences of pairs converging to the péit, \) and satisfying

.5"’) >R and)\gn) < Aforall n andi = 1, 2. We will be done

nents for the noisy universal setting, which is under current iHPon showing that the limits

vestigation.

APPENDIX

A. Proof of (100)
Note that by our assumption @&, P; € M, (X) so that

a(f) 2 min F;(z) > 0.

Lete, = ||F; — P |l and recall that, by our choice 4, },
e, — 0. Now, for eachn

priay 2 TR
Wil e (A1)
Pg){An} 2 Pg){x’}
T CAp
I I ()
— z"cA, Z:L (A2)
> I Py(i)
znEA, 1=1
S I [Fs(e) + el
< TEIE (A3)
II Pé(xz)
znEA, 1=1
2. 11 Py(wi) [1 + 560
" CA,, 1=1 o
= i — (A4)
[T Py(wi)
T EA, 1=1
< [1 4 E_n} " (AS)
- a(@)]
Consequently,
1. P {An [ &n }
limsup — log —2—— < limsup log |1+ —| = 0.
(A6)
Analogously to (A5), we can show that
P {An} "
o T {1 _ } (A7)
Pr{An} a(f)

which, upon takindim inf £ log’s, completes the proof. [

B. Other Proofs

1) Proof That/(R—0, d, A+0) andI(R+0, d, A—0) are
Well-Defined: We need to prove that the limits
lim I(R+e,d, A—96)
e—0t,6—01

(A8)

lim I(R](Ln), d, Ai"))

n—oo

and

lim I(RSY, d, ASY)
exist and are equal. The existence of these limits is guaranteed
by the monotonicity off (R, d, A) in both R (increasing) and
A (decreasing). More specifically, this implies that foe 1, 2
and anyng there existsn;(no) (namely, one for whicIRE") <
R§"°) and)\E") > )\E"O) for all n > m;(no)) such that

IR, d, Ay > IR, d, A™)

for all » > m,;(no), which clearly implies the existence of the
limits lim,,_ oo I(RE"), d, )\E")). To establish the equality be-
tween the limits it suffices to show that

lim I(R™, d, AM) > lim 1(RSY, d, A0Y)  (A10)

n—0o00

(since the arbitrary labeling of the indexes- 1, 2 will imply

the reverse inequality as well). Inequality (A10), however, fol-
lows easily from the monotonicity df( R, d, A) as well by ob-
serving that for anyn, there existsmno) (namely, one for
which B < R and A > A for all n > m(ng))
such that

IR, d, Ay > I(RYY, d, AY)

for all n > m(ne). Thus, the existence of the limit in (A8)
is established. The existence of the limit in (A9) is proven
similarly. O

2) Proof That Equation (9) Holds Outside a Set of Pairs
(R, \) of Zero Lebesgue MeasureSince the monotonicity of
I(R, d, A) implies, for all pairs(R, A)

I(R—0,d, A+0) < I(Rd, \) < I(R+0, d, A — 0)

it follows from Theorem 1 that it will suffice to show that the
setS C R? defined by

S={(R, )\ €0, )%
I(R—0,d,\+0)<I(R+0,d, A—0)} (All)

has zero Lebesgue measure. To this end we note first that the fact

that/(R—0, d, A+0)and{(R+0, d, A\—0) are well-defined,
i.e., that the limits which define these respective quantities exist
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(cf. part B1) of the Appendix), implies that for each p@it, \)
we have both

I(R—0,d, A+0)= lim [(R—¢,d, A+¢)

e—0

(A12)

and
I(R+0,d, A—0)= lim I{(R+e¢,d, A—¢). (Al3)

e—0t

Consider now the family of univariate monotone functions

{fe}e>0, wheref,: [0, ¢] — [0, ] is defined by

fc(R) = I(R7 d, c— R)7 0<R<ec (A14)

We note that, by the definition ¢f.(-) and (A12) and (A13), for

eachc > 0 and0 < R < cwe have

fo(R+0)=I(R+0,d,c—R—0)
and

fA{R—-0)=I(R-0,d, c— R+0). (A15)
Letting

Sc={R €0, c]: fo(R+0)> f(R-0)} (A16)

denote the set of discontinuity points £, it follows from the
definitions of S andS,. and from (A15) that

S=|J{R c-R;:ReS}
>0

(A17)

Letting 5(P) 2 {z" € Tp: I(Pgu(ony .n) > R}, we have
exp {—nFn (PXH(Zn)? . d)}
ZneTp
exp {—nFn (P)”(n(z”), e d)}

= >
+ Z exp {—nFn (Pj@(zn)7yu d)} (A24)

(A23)

z"€Tp\3(1)

zn€5(P)
> Z exp {—n [ ) max
TN (P) {W: I(P;W)<RINC,(P)
X F (P x W, d)} } (A25)
= [TPAS(P)] exp {_n |:{VV: HPI)ERYAC, (P)
XFpo(P x W, d)} } . (A26)
Combining (A26) with (A22) gives
e "N Tp| > |Tp\s(P)| (A27)
or
|5(P)| > (1= e ™) [Tp| 2 5|Tp| (A28)

where the right inequality holds for all sufficiently large(de-

where the union on the right-hand side of (A17) is clearly fendent om yetindependent P ¢ M(Z)NM,,). Combining
disjoint one. Letting:; andu.» denote the Lebesgue Measureg »g) with the fact that

onR! andR?, respectively, (A17) gives

() = [ () din(o). (A1)

Finally, we note that for alt > 0, f.(-) is @ monotone (non- R such that the set P) 2 {7 P

IC(Z2 — X)NCu(P)] < (n+ D)I¥IZITI

implies the existence 8% € C(Z — XY C,.(P) with I(PxV) >
n fn(ony = Px W} (which

decreasing) function which, therefore, has, at most, a coupfg subset of( P)) satisfies

able number of points of discontinuity. In particular, we have
u1(S.) = 0for all ¢ > 0 which annihilates the right-hand side

of (A18) and completes the proof. O

C. Proof of Inequality (28)

Assume, conversely, the existencebE M(Z)NM,, such
that D(P||Pz) < A — ¢ for which

Z exp{—n [D(P||PZ)+H(P)+FN (P)A(”(Z”):Z’” d)}}

=" €Tp

(A19)
<> exp{—n [D(PHPZ) + H(P)
znCTp
max L (PxW, d)+ 77} } (A20)
{W: I(P;W)<R}NC, ()
or, equivalently,
Y e {—nFn (Pj(n . d)} (A21)
zneTp
Tp| - — a
< | P| exp{ n [{W: I(P;‘gl)rlﬁxR}ﬂCn(P)
XF, (P xW,d)+ 77} } . (A22)

S(P)] 2 5(n + 1) WIZH |
1 . v
> 5+ 1) ~UXNZNYIHED exp In H(P)}. (A29)

On the other hand, letting( P) 2 {X7(2™): 2" € s(P)}, we
have

(P = > " es(P):X"(=z")=3"} (A30)
aneq(P)
< Y explnHp.aw(Z|X)} (A31)
aneq(P)
= |q(P)| exp{nHpxw (%] X)}, (A32)
which, combined with (A29), implies
lg(P)] = %(n + 1)—(|X||z||li’|+|z|)
x exp{n[H(P) — Hpww (Z|X)]} (A33)

_ %(n 1)~ (XIZIXIHZD oy In[1(P x W]} (A34)

. %(n + 1)~ IRNZIXIHZD e f R) (A35)

Now, since the number of members@f) that will be mapped
into a binary vector of length not exceedingRk — ¢) is upper-
bounded byexp{n(R — ¢ + 1/n)}, and since there can be

413
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no more tharexp{nHpw (Z|X)} members ofs(P) that are and

mapped into one member gfP), we have
lim min D(P||Pz)
n—oo PCM(Z)NMy:
{z" € s(P): L,(z", D) < n(R —¢)}| D(P||Pz)>A
<e R—e+1/n+ Hpew(Z|X A36
Sep{n(R—c+1/n+ Hpar(ZIX)}  (A30) s we BT
<exp{n(I(P x W) —e+1/n+ Hpyxw(Z|X))} (A37) WeC(Z—X)NCn (P)
= exp{n(H(P) — e+ 1/n)}. (A38)
= inf  |DP|P2)+ sup F(PxW, d)]
Consequently, D’;,Eﬁ‘;‘,gg WeC(Z—A)
(A47)
Py z{Ln(2", Dy) > n(R—e)} (A39)

> Py z{2" €s(P), Lo(2", Dn) > n(R—¢)} (A40) whereF, (-, -) andF(-, -) are defined by (18) and (8), respec-

= (|s(P)| — {z" € s(P): L, (2", D) <n(R—¢ tively.
it (1 Ll ) ( D Proof: We start by recalling that

x exp{—n(D(P||Pz) + H(P))} (A41)
1 2 F(Q, d)= inf D (V|P A48
> <§(7’L + 1)—(|A||Z||A|+|Z|) exp{nH(P)} (Q ) VCC(‘%gz—nY): ( || X|Z|Q) ( )
Egxvp(X,X)>d
—exp{n(H(P) —e+ 1/71)}) and that
x exp{—n(D(P||Pz) + H(P))} (A42) L.(Q. d) = ~ min D (V]|Pxz]Q) . (A49)
1 N VEC(XXZ—)X)AQCH(Q):
— <§(n + 1)—(|X||Z||X|+IZI) — exp{—n(e — 1/n)}> Egxyv p(X,X)>d
x exp{—nD(P|/Py)} (A43) Since Py z € M4 (X x 2), it follows that, in particular,

1 ’ Pxiz(xz|z) > Oforallz € & andz € Z. It therefore
> <_(n+1)—(|AYIIZIIAYI+IZI) — exp{—n(e — 1/n)}> follows that D(V||Px|~|Q), which is ultimately given
2 by a finite convex combination of functions (of the form
x exp{—n(A - 6)} (A44)  v(z|2, 2)log(V (2|2, 2)/Px|z(x|z))) that are all uniformly
> exp{—nA} (A45) continuous inV when Py z € My(X x Z) is uniformly
continuous in the paifV, ?). This, combined with the fact that
where the last (strict) inequality holds for all sufficiently large ) 1P =P =0
n (dependent om, ¢, 6, yet independent of the € M(Z) N VEC(;‘iI;HX): VEC(‘»X-,X;L“‘},)QCH(Q):
M, assumed to satisfy (A20)). Hence, forall> no(n, €, 6), Egrvp(X,5)5d  Baxvp(X,X)>d
the assumption of the existence Bf € M(Z) N M,, such o )
that D(P||Pz) < A — 6 and for which (A20) holds leads to a@S" — oo, implies thatF'(Q, d) and £7,(Q, d) are uniformly
contradiction, as (A45) clearly violates the fact that, } were Ccontinuous in and, further, that
taken such thab,, € A,,(R—e, A\). Thus, we have established IF(Q, d) — F\o(Q, d)| — 0 (A50)
the fact that whenevet > ng(n, €, 6), foranyP € M(Z) N )
M,, such thatD(P||Pz) < X — &, (28) holds for allD,, € uniformlyin@ € M(X x Z). The proof of (A46) is completed
Ap(R—g \). O by combining (A50) with the easily verifiable fact that

. /
D. Technical Claim in Proof of Theorem 1 oo Qe lQ"-@l -0, asn—oco (AS1)

In this subsection, we aim to prove the following. where

Claim 2: For anyPx z € M4 (X x Z) we have 0, = {Q — PXxW:Pe M(Z)NM,, D(P||Fs) <\,

W e C(Z — X)NCu(P), I(P;W) < R}

lim b Ml(ngi;lM D(P||Pz) and
n—od S N nt
P(PlIPz)<A Q= {Q:Px W: P e M(2), D(P||Pz) < A,
N i FA(P X W, d) W e (2 — X), I(P;W) gR}.
s ) Equality (A47) is established similarly. O
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