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On the Entropy Rate of Pattern Processes
George M. Gemelos, Student Member, IEEE, and Tsachy Weissman, Member, IEEE

Abstract—We study the entropy rate of pattern sequences of sto-
chastic processes, and its relationship to the entropy rate of the
original process. We give a complete characterization of this re-
lationship for independent and identically distributed (i.i.d.) pro-
cesses over arbitrary alphabets, stationary ergodic processes over
discrete alphabets, and a broad family of stationary ergodic pro-
cesses over uncountable alphabets. For cases where the entropy
rate of the pattern process is infinite, we characterize the possible
growth rate of the block entropy.

Index Terms—Entropy, entropy rate, large alphabet, pattern,
unknown alphabet.

I. INTRODUCTION

I N their recent work [11], Orlitsky et al. consider the
compression of sequences with unknown alphabet size.

This work, among others, has created interest in examining
random processes with arbitrary alphabets which may a priori
be unknown. One can think of this as a problem of reading
a foreign language for the first time. As one begins to parse
characters, one’s knowledge of the alphabet grows. Since the
characters in the alphabet have initially no meaning beyond the
order in which they appear, one can relabel these characters by
the order of their first appearance. Given a string, we refer to
the relabeled string as the pattern associated with the original
string.

Example 1: Assume that the following English sentence was
being parsed into a pattern by a non-English speaker:

english is hard to learn

The associated pattern would be

regarding the space too as a character.

We abstract this as follows: given a stochastic process
, we create a pattern process .

It is the compression of the pattern process that is the
focus of both [1] and [11]. This emphasis is justified by the fact
that the bulk of the information is in the pattern. Although uni-
versal compression is an extensively studied problem, the uni-
versal compression of pattern sequences is relatively new, see
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[6]–[8], [10]–[15], [17]. The majority of these recent papers ad-
dress universality questions of how well a pattern sequence as-
sociated with an unknown source can be compressed relative to
the case where this distribution is known. Emphasis is on quan-
tifying the redundancy, i.e., the difference between what can be
achieved with and without knowledge of the source distribution.
The main question we focus on in this work is how the entropy
rate of a sequence and that of its pattern relate. More specifi-
cally, our goal is to study the relationship between the entropy
rate of the original process1 , and the entropy rate

of the associated pattern process. This relationship is not
always trivial, as the following examples illustrate.

Example 2: Let be drawn independent and identically
distributed (i.i.d.) , where is a probability mass function
(pmf) on a finite alphabet. Then we show below that

.

The intuition behind this result is that given enough time, all
the symbols with positive probability will be seen, after which
time the original process and its associated pattern sequence co-
incide, up to relabeling of the alphabet symbols.

Example 3: Let be drawn i.i.d. uniform . Then the
entropy rate of is . Since the probability of seeing the
same value twice is zero, with probability (w.p.) for
all and, consequently, .

The connection between the entropy rate of the pattern and
that of the original process was first studied for i.i.d. processes
by Shamir and Song in [17]. The results in [17] give bounds on
the block entropy of the pattern with respect to the block en-
tropy of the original process. Such bounds naturally extend to
bounds on the entropy rate. These bounds are improved upon in
[14]–[16]. The work in [14]–[17] is primarily focused on finite
block entropy. Although such results are extremely useful for
gaining insight into the finite block entropy behavior, a question
different from the one we present here, they do not completely
characterize the relationship between the entropy rate of an i.i.d.
process and that of its associated pattern. The first complete
characterization of this entropy rate relationship for the general
i.i.d. case as well as Markov, noise-corrupted and finite-alphabet
stationary ergodic processes, is given in [3]. Orlitsky et al. in
[10] independently derive the relationship for i.i.d. processes.
The results for finite alphabet stationary ergodic processes in
[3] were later extended to general finite-entropy discrete sta-
tionary ergodic processes in [4], and independently for finite
entropy discrete ergodic processes in [9]. The results for i.i.d.
sources with uncountable alphabets in [3] were also extended to

1Throughout this work,X will denote the sequenceX ;X ; . . . ; X .
If not specified, m will be assumed to be 1. Furthermore, H(XXX) will denote
entropy rate throughout this work, regardless of the discreteness of the distribu-
tions of fX g (it should thus be regarded as 1 when these are not discrete).
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a family of uncountable alphabet processes with memory in [4]
and [5]. The proof techniques used by Orlitsky et al. in [9], [10]
are significantly different than those used in [3], [4], the latter
we present here.

In this work, we characterize the relationship between
process and pattern entropy rates for general i.i.d., discrete
Markov, and discrete stationary ergodic processes. Although
the discrete Markov case falls under the more general results
for discrete stationary ergodic sources, it will be shown that
there is insight to be gained by exploring the discrete Markov
case on its own. We then move on to examine stationary ergodic
processes, with memory, over uncountable alphabets. In par-
ticular, we consider the Markov and additive noise case. These
two results are then used to show a more general result for a
broad family of stationary ergodic processes over uncountable
alphabets. Finally, for the case where the entropy rate of the
pattern process is infinite, we examine the possible growth rates
for the block entropy of pattern processes.

In Section II, we characterize the relationship between
process and pattern entropy rate for the case of a generally
distributed i.i.d. process. In Section III, we examine the discrete
Markov and the general discrete stationary ergodic process.
Furthermore, in Section IV, we extend the uncountable al-
phabet results of Section II to certain processes with memory.
In Section V, we characterize a set of achievable asymptotic
growth rates for the block entropy of a pattern process. We
conclude in Section VI with a brief summary of our results.

II. THE I.I.D. CASE

Consider the case where are generated i.i.d. , where
is an arbitrary distribution on the arbitrary source alphabet .
Let .

Theorem 1: Given i.i.d. and its associated pat-
tern process, for an arbitrary , define the process

if
otherwise.

Then

regardless of the finiteness of both sides of the equality.2

Since we will make use of Corollary 6 in the proof of The-
orem 1, we present the proof in the Appendix. It should be noted
that Theorem 1 was independently discovered by Orlitsky et al.
in [10]. As can be seen, Theorem 1 is consistent with Examples
1 and 3. Note that the process is created by keeping all the
point masses in and assigning all the remaining probability to
a new point mass. This corresponds to the result in Example 3
which suggests that the pattern of a process drawn according to
a probability density function (pdf) has no randomness, i.e., an
entropy rate of zero. Therefore, the only randomness in the pat-
tern comes from the point masses and from the event of falling
on a “non-point-mass-mode.”

2Throughout this work, we use H to denote both entropy rate, when the ar-
gument is a process, and entropy, when the argument is a random variable.

Example 4: Let be an i.i.d. process with each compo-
nent drawn, with probability , as and, with proba-
bility , as Bernoulli . In this case, is uniformly dis-
tributed on an alphabet of size . Therefore, Theorem 1 gives

.

Although in all three examples above, it should be
noted that Theorem 1 makes no such assumption.

III. DISCRETE ALPHABET PROCESSES

Having characterized the relationship between process and
pattern entropy rate for the general i.i.d. process, what can be
said about processes with memory? To begin exploring the an-
swer to this question we examine one of the most basic sta-
tionary ergodic processes with memory, the Markov process.

A. Markov Processes Over Discrete Alphabets

Although discrete Markov processes fall under the more
general Theorem 3 to follow, which deals with discrete sta-
tionary ergodic processes, there is insight gained by examining
the Markov case on its own. In particular, we will see that the
proof of the results for the general discrete stationary ergodic
source relies on a version of the Shannon–McMillan–Breiman
theorem for countably infinite alphabets, found in [2], while
no such machinery is necessary for the simpler Markov case.
This fact is due to the inherent structure of a Markov process
and makes the Markov case an interesting example on it own.
Later, in Section IV, we will also see it is this structure which
makes the Markov process the first candidate for the extension
of the uncountable alphabet results of Section II to uncountable
alphabet processes with memory.

The entropy rate of Markov processes is well known. What
can be said about the entropy rate of the associated pattern pro-
cesses? We first look at the case of a first-order Markov process
with components in a countable alphabet.

Proposition 1: Let be a stationary ergodic first-order
Markov process with a countable alphabet and let be
the associated pattern process. If then

Proof of Proposition 1: Let be the stationary distribution
of the Markov process and let

for all . The data processing inequality implies
for all . Hence,

To complete the proof it remains to show

for which we will need the following three lemmas.

Lemma 1: If is a nonnegative sequence, then
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Proof of Lemma 1: Imeediate from the definition of
.

Lemma 2: Let and be two sequences of events
such that and . Then

.
Proof of Lemma 2: . On the

other hand

Lemma 3: Given any such that

where we define the pmf

for an arbitrary .3 Here is used to denote the distri-
bution which places unit mass on .

For an arbitrary distribution on alphabet and
can be thought of as the distribution cre-

ated by keeping distribution on the set and clumping the
remaining probability on a single new point mass.

Proof of Lemma 3: Let be the set of distinct ele-
ments in . Then

3Throughout this work, given a distribution f and a setB;� [f ] will denote
the distribution defined by � [f ](x) = 1 (x)f(x) + f(B )� (x) for an
arbitrary x 62 B. When f is a distribution, H(f) will denote the entropy of
a random variable drawn according to f . Furthermore, 1 will denote the indi-
cator function on the set A, while 1l will denote the indicator random variable
on the event A.

where comes from Lemma 1, from the data processing
inequality, and from the fact that Markovity implies that

is independent of given and ,
from the fact that is a deterministic function of

, from a combination of Jensen’s inequality and
the data processing inequality, and from Lemma 2 since

.

Now let be a sequence of sets such that
for all , and

regardless of the finiteness of both sides of the equation. Note
that since the above summands are all positive, such a sequence

can always be found. Lemma 3 gives

Hence, by taking , we get

where comes from the construction of and from
the fact that is a finite entropy first-order Markov process.
Note that is not necessarily true for infinite entropy first-
order Markov processes.

One should note that the proof of Proposition 1 can easily be
extended to the case of Markov processes of any order. Hence,
without going through the proof, we state the following:

Theorem 2: Let be a stationary ergodic Markov process
of order on the countable alphabet , and let be the
associated pattern process. If then
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B. Stationary Ergodic Processes Over Discrete Alphabets

Now that we have characterized the entropy rate relationship
for the discrete Markov process, the natural next step would
be to extend the results to all stationary ergodic processes on
a countable alphabet.

Theorem 3: Let be a stationary ergodic process with
components taking values from the countable alphabet , and
assume . Let be the associated pattern process.
Then

We will see that as compared to the proof of Proposition 1, the
structure of the proof of Theorem 3 is slightly different, using a
sandwich argument, and making use of heavier machinery such
as a version of the Shannon–McMillan–Breiman theorem for
countably infinite alphabets [2].

It is also important to note that like Theorem 2, Theorem 3
also has a finite entropy constraint. The need to exclude pro-
cesses with infinite entropy from Theorem 3 is a direct result of
the requirement of finite entropy for the countably infinite ver-
sion of the Shannon–McMillan–Breiman theorem. The proof of
Theorem 3 will use the following two claims.

Claim 1: Let denote the pattern of the se-
quence

Proof of Claim 1: It is sufficient to show

(1)

(2)

From [2] we know that

almost surely (a.s.) and the sequence is uniformly integrable,
implying (1).

Moving on to (2) we see that the data processing inequality
gives us for all . Hence, it will
suffice to show

Let be the set of distinct elements in .
Then

(3)

Since , given , there exists a such
that: , if then and

(4)

where is the distribution on and is defined as
in Lemma 3. Since

(4) implies

(5)

By the ergodicity of

(6)

From (3) and the construction of we get
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where follows from (5). Taking the limit in , (6) gives

Since was arbitrary, (2) follows, completing the proof of
Claim 1.

Claim 2:

Proof of Claim 2: From [2] we know that

a.s. and the sequence is uniformly integrable. Therefore, uni-
form integrability and almost sure convergence implies conver-
gence in mean.

We are now ready for the proof of Theorem 3.

Proof of Theorem 3:

where follows from the data processing inequality,
from Lemma 1, is a result of stationarity, results from
Claim 2, and results from Claim 2. As a reminder, we
use to denote the pattern of the sequence

.

IV. UNCOUNTABLE ALPHABET PROCESSES WITH MEMORY

The i.i.d. results of Theorem 1 completely characterize the
entropy rate relationship for the general memoryless stationary
process. So far, we have only addressed the case of discrete pro-
cesses with memory. A natural question that arises is whether
the relationship between the entropy rate of the process and that
of the pattern shown in Theorem 1 can be extended to processes
with memory over an uncountable alphabet?

Besides helping to answer the question of how far we can
extend the i.i.d. results of Theorem 1, the study of the uncount-
able alphabet setting is also motivated by real-world processes
such as discrete signals which are jittered. Any discrete process
corrupted by Gaussian noise can be thought of as an example
of such jittered processes. Although the motivation of lossless
compression is not as applicable in the uncountable alphabet
setting, patterns may still be useful. In general, focusing on
the pattern allows us to map our process into a finite-alphabet
process. Although information is lost in the mapping, the pat-
tern may still capture relevant information and therefore prove
to be useful in certain applications such as lossy compression.

Furthermore, the study of continuous alphabets allows us to
look at the effect of densities on the entropy relationship. Al-
though densities are strictly a property of continuous alpha-
bets, they can be used to better understand the finite block be-
havior of the entropy relationship in the discrete setting. In par-
ticular, when looking at a finite block length , it is possible
for a discrete process to have a subset of the support which has
large measure, but whose elements each have measure much
smaller than . Taking the limit in , no such set can exist
for discrete processes, but for finite such a set acts like an
effective density and affects the entropy relationship for finite
blocks. An example of the role of such an effective density can
be found in [16] where bounds on the finite block entropy of pat-
terns generated by i.i.d. processes are developed. In [16], Shamir
concludes the paper with the observation that low-probability
symbols contribute to the pattern entropy mostly as a single
super-symbol, which is exactly how Theorem 1 describes the
contribution of the density part of a distribution to the entropy
rate of patterns generated by i.i.d. processes. Hence, the study
of the continuous alphabet setting may not only extend the limit
results of Theorem 1, but also give insight into the finite block
behavior of the entropy relation for the general discrete setting.
With this motivation in mind, we begin our examination of the
entropy rate relationship in the uncountable alphabet setting by
first looking at Markov processes.

A. Markov Processes Over Uncountable Alphabets

We observed in Section III that the inherent structure of the
Markov process simplified the proof of the results in the dis-
crete case. The hope is that by looking at this heavily structured
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family first we will develop some insight into the more gen-
eral case of a stationary ergodic process over an uncountable
alphabet.

Although we are unable to characterize the entropy rate of
the induced pattern process for a general uncountable alphabet
Markov process, the following proposition covers a fairly gen-
eral family of Markov processes. Before we state the proposi-
tion, let us generalize some of the notation used in Proposition 1.
Given an th-order Markov process on , for
let be the kernel associated with the state . We will de-
note the set of point masses of as

Proposition 2: Let be a stationary ergodic Markov
process on of order such that there exists with

for all and for all
. Let be the pattern process associated with

. Define the process as

if
otherwise

for an arbitrary . If , then

The proof of Proposition 2, as well as the remaining results of
the present section begins with the observation that Theorem 3
implies , where is the pattern process as-
sociated with . It is then left to show that is equal to

. To this end, we show that for any given , the difference
between and is either bounded or grows sublin-
early in .

Proof of Proposition 2: If , w.p. , the process
does not repeat and therefore, . Similarly, if

the process is a constant and, therefore,
. Hence, .
We now look at the case where . We observe that since

for all is a discrete
Markov process of order . Hence, Theorem 2 and the fact that

is stationary ergodic and has finite entropy gives

(7)

For , define the waiting time
. Given we know the first appearance of every point

in . Hence, we know the first appearance of every point but
those which are assigned zero probability by every kernel, i.e.,
all but those that appear at most once w.p. . Therefore, given

and we can reconstruct w.p. for all . Simi-
larly, given and , we can reconstruct for all .
Hence,

(8)

and

(9)

Claim 3:

Proof of Claim 3: Given , define

and

Note that since and for all
, and are well defined. By the defini-

tion of .
First, let us consider the case where . Then, there

exists an and such that

and . We will first look at the case where
. Since if , then where is the

vector of length . Therefore, and once the
state is reached it cannot be exited. Hence, in order for
to be irreducible, which is required for the process to be ergodic,
it must place zero or unit probability on being in state . By
the construction of and the fact that
and, therefore, . Hence, w.p. and

. Let us now examine the case where .
Since for all if
then

Noting that , we can conclude that if then
w.p. , . Hence, and .

We now consider the less trivial case, where . Since
regardless of the state

, then

Hence,
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(10)

Since (10) implies .

Claim 3 therefore gives

(11)

Combining (8), (9), (11), and noting that gives
. Equation (7) then completes the proof.

Example 5: Let be a first-order Markov process on
with the following transition kernels, represented as gen-

eralized densities on :

and for

It is readily checked that the stationary distribution given the
above kernels is

In the above case, can be thought of as a first-order Markov
process on the set (the value chosen arbitrarily)
with transition probabilities whose generalized densities are

Hence, has the following stationary distribution:

Applying Proposition 2 gives

B. Additive White Noise-Corrupted Processes

We now consider the case of a noise-corrupted process. Let
be a stationary ergodic process and be its noise-cor-

rupted version. Here we assume i.i.d. additive noise with
and taking values in . Let and denote the set

of point masses for and , respectively. We will also define
the process

if
otherwise

for an arbitrary .

Proposition 3: Let be a finite-alphabet stationary er-
godic process. Let and denote the process cor-
rupted by the additive noise and , respectively. Fur-
ther, let denote the pattern process associated with .
If , then

It is interesting to note that the result of Proposition 3 can be
rephrased to look more like those of Theorem 1 and Proposi-
tion 2. This is accomplished by observing that the process ,
used in Proposition 3, can also be constructed by

if
otherwise

for an arbitrary . This is the construction of used
in both Theorem 1 and Proposition 3.

Proof of Proposition 3: If then
and there is nothing to prove, so we will assume that

. Let denote the pattern process associated with
the process . Since is a discrete stationary ergodic
process with finite entropy, Theorem 3 gives

Hence, to complete the proof of Proposition 3, we just need to
show that

Define

if s.t.
otherwise
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for some arbitrary noninteger . Clearly, uniquely deter-
mines and vice versa, so in particular

(12)

Define

We also observe the following: if then and
if then w.p. , for all . Hence, we can
construct from and w.p. . Therefore,

and consequently

(13)

Since is the waiting time for the first appearance of an el-
ement from in the i.i.d. process , it is geometrically
distributed, and in particular has finite entropy. Therefore,

which combined with (12) and (13) gives

(14)

Defining we make the fol-

lowing observations: w.p. , if and only if
or and if and only if and

. From these observations we conclude that given
and we can reconstruct w.p. for all .

Hence, for all

(15)

where comes from (12).
Let

Then

Without loss of generality assume that

where follows from the stationarity of . Let

(16)

Therefore, we have

(17)

By ergodicity we have

and since , (16) gives us . Hence,
there exists an such that for all and (17)
implies that

(18)

where is the binary entropy function. Substituting
into (15) and noting that gives

which combined with (18) gives us

Since

(19)

Combining (14) and (19) completes the proof.

Note that in the case where is a discrete i.i.d. process,
Proposition 3 agrees with Theorem 3. In the case where has
no point masses then, as Example 3 would suggest, Proposition
3 gives . Having verified that Proposition 3 is in
agreement with previous results, let us examine a case where
previous theorems do not apply.

Example 6: Let be a first-order Markov process on
the set and let be i.i.d., independent of dis-
tributed according to the density
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where denotes a unit mass on . Further, let
and be its associated pattern process. Since is a

hidden Markov process with memory on a continuous alphabet,
previous results fail to capture the relationship between
and . However, Proposition 3 gives

(20)

where is the ternary hidden Markov process given by with
probability and an arbitrary with probability

. We can also use Proposition 3 to lower-bound in
terms of . Noting that is simply with erasures,
we let denote the event of erasure at time . Then

(21)

where follows from the fact that given we know
from the fact that given is a constant and given

from a combination of the fact that is
independent of and that conditioning decreases entropy, and
finally, follows from the fact that is an i.i.d. Bernoulli

process, independent of the process . Combining (20)
and (21) we get

(22)

Note that (22) holds with equality when is i.i.d., as is
readily seen to be implied by Theorem 1.

C. Stationary Ergodic Processes Over Uncountable Alphabets

Through the results of Propositions 2 and 3 we have seen two
separate families of processes with memory on uncountable
alphabets that share similar entropy rate properties. However,
we are not able to extend such a relationship to the general
stationary ergodic process. An interesting question that arises
is what characteristics do the Markov processes of Proposition
2 and the additive noise processes of Proposition 3 share that
allow for this characterization of the relationship between
process and pattern entropy rates? In order to help answer this
question, we examine the following Markov example which
does not satisfy the requirements of Proposition 2.

Example 7: Let be a first-order Markov process on
with a uniform stationary distribution. Furthermore, con-

ditioned on with probability and is
drawn uniformly on with probability . It is easy to see
that does not satisfy the conditions of Proposition 2. In
this case, and, there-
fore, the sequence is constant and

We also observe that at any time we either see a new
symbol with probability or we repeat with probability

. Therefore,

not as would be assumed from the relationship between
pattern and process entropy rates found in Propositions 2 and 3.
Hence, unlike the processes described in Propositions 2 and 3,
we see that

Example 7 suggests that one of the important characteristics
shared by the processes in Propositions 2 and 3, which allow for
the equality between and is the control over the
repeatability of density points. In other words, assuring that for
the most part only elements in are likely to be seen more than
once. This characteristic is also demonstrated by the i.i.d. pro-
cesses of Theorem 1, which share the equality between
and .

With this in mind we can try to extend this characteristic to
general stationary ergodic processes in hopes of developing a
similar entropy rate relation. Before we state the next theorem,
let us define some notation and make rigorous the criterion of re-
peatability described earlier. Given a stationary ergodic process

on , let

and

Let and . Without
loss of generality we will assume that the elements of are
ordered such that .

Theorem 4: Let be a stationary ergodic process on
with . Let be the associated
pattern process. Define the process

if
otherwise

for some arbitrary . If , then

Otherwise, if is infinite and there exists such that

then

It should be noted that both Propositions 2 and 3 are special
cases of Theorem 4.

The requirement is the mathe-
matical equivalent of the statement that only elements in are
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likely to be seen more than once. While the -convergence re-
quirement is a technicality needed in the proof, it may prove to
be nonessential.

Hence, we see that controlling repeatability of density points
is, essentially, a sufficient condition for establishing equality
between and . Furthermore, Example 7 suggests
that it is a necessary condition. Hence, the -convergence re-
quirement aside, there is reason to believe that Theorem 4 in
some sense describes the largest family of stationary ergodic
processes over uncountable alphabets for which the equality be-
tween and holds. In particular, the -convergence
condition aside, Theorem 4 contains as special cases the i.i.d.
results of Theorem 1, the discrete setting results of Theorem
3, the Markov results of Proposition 2, and the noise-corrupted
process results of Proposition 3.

The proof of Theorem 4 begins with the observation that
Theorem 3 can be used to show that . We
are then left to show that . This is done in a
two-step process. We first show that by making use of the infor-
mation contained in the indexes of first appearance, for a finite
set , we can bound the difference between and

. This bound is a function of , and
and is true for all and . Finally, the limit condition
on allows us to pick a sequence for which
the upper bound on the difference between and
grows sublinearly in , completing the proof of Theorem 4.

Proof of Theorem 4: We can assume that
otherwise, there is nothing to prove. If , then

. In the case where is infinite, then the fact that and

implies that . Since is a discrete stationary
ergodic process with finite entropy, Theorem 3 gives

(23)

where is the associated pattern process. To complete the
proof of Theorem 4, we need to show that

For , define and
. Hence, has an alphabet of size

and therefore,

(24)

Given such that , let

and

If , then given we know all the labels of
the elements of which appear in . Hence, for and

conditioned on given and , we can
reconstruct . Therefore,

(25)

Given , we now wish to examine the probability

(26)

where follows from the stationarity of the process and
from the fact that and

implies that .
To further bound , we now

examine . Let be the measure
on given . Therefore,

(27)
Assume that , then (27) implies
that there exists such that

This is only possible if

(28)



4004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 9, SEPTEMBER 2006

Therefore,

(29)

where follows from the fact that and from
(28). By definition of , (29) implies that . This is a
contradiction since . Hence,

and (26) gives

(30)

Therefore, w.p. , only elements in will appear more than
once. Hence, conditioned on given we
know the labels of all the elements in except those that ap-
pear at most once w.p. . Therefore, for and conditioned
on , given and , we can reconstruct
w.p. . Hence,

(31)

If , then set . Therefore,
w.p. and (25) and (31) give

The finiteness of then implies

To complete the proof of Theorem 4 we need to address
the case where is infinite. Choose such that

. Such a can be found since . Let
. Since

and is an unbounded increasing sequence, there exists
such that

Construct a sequence of sets as follows,
for all . Therefore,

(32)

where follows from the fact that and from the
fact that . Therefore,
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(33)
where follows from the fact that has an alphabet of at
most follows from (25), and from (32). Similarly using
(31) we get

(34)
Since and , (33) and (34) give

completing the proof of Theorem 4.

V. GROWTH RATES

Now that we have explored the relationship between the
entropy rate of the original process and the associated pattern
process, we turn our attention to possible growth rates for the
block entropy of a pattern sequence. In other words, having
looked at the limit, we now look at the asymptotic growth rates.

Theorem 5: For any there exists an i.i.d. process
such that its associated pattern sequence satisfies

(35)

Note that since lies in an alphabet of size at most ,
we have, for any process not even necessarily stationary

Theorem 5 then says that the growth rate is essentially,
up to a factor which is subpolynomial in , achievable by
an i.i.d. process. It should also be noted that the bounds on the
block entropy of patterns generated by i.i.d. processed found in
[14]–[17] can be used to examine possible asymptotic growth
rates for the entropy of pattern processes. An example of such
an application can be found in [14].

We dedicate the remainder of this section to the proof of The-
orem 5. Let be i.i.d. , where takes values in an ar-
bitrary space , and be the associated pattern sequence.
Define .

Claim 4: is increasing in , i.e., for any

Proof of Claim 4: This is nothing but a data-processing
inequality. Indeed, let and let

if
otherwise.

Clearly, and is a deterministic function of ,
thus the claim follows.

Proposition 4: For any

Proof of Proposition 4: Letting denote the distribution
of , for any

(36)
where the last inequality follows from the monotonicity prop-
erty in Claim 4 and defined to be the set of distinct ele-
ments in . Now, for any

(37)

The proposition now follows by combining (36) with (37).

Besides being used in the proof of Theorem 5, Proposition 4
also gives the following corollary which will be used in the proof
of Theorem 1.

Corollary 6:

regardless of the finiteness of the right side of the inequality.
Proof of Corollary 6: Take a sequence of finite sub-

sets satisfying

Proposition 4 implies, for each

(38)

completing the proof by taking on the right-hand side
of (38).

Proof of Theorem 5: Consider the case where
are generated i.i.d. , where is a distribution on and

is a nonincreasing sequence. Letting
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it follows by taking
in Proposition 4 that

implying, by the arbitrariness of

(39)

Consider now the distribution

(40)

for some , where is the normalization constant.
In this case

Observe that there exists such that

Therefore, there exists such that

(41)

Let , and
choose such that

Combining (39) and (41) we get

(42)

Since

there exists such that

From (42) we get

(43)

Finally, there exists such that and
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From (43) we get

Thus, (35) is satisfied under the distribution in (40) with any
.

VI. CONCLUSION

We have characterized the relationship between the entropy
rate of a source and that of its pattern process for i.i.d., dis-
crete Markov, discrete stationary ergodic, and a broad family
of uncountable alphabet stationary ergodic processes. Besides
determining the fundamental compression limits for a pattern
sequence, the relationship between pattern and process entropy
rate helps to quantify how much of the total information con-
tained in the original stochastic process is encompassed in its
pattern sequence. For the case where the pattern entropy rate is
infinite, we characterized achievable growth rates for the block
entropy of a pattern sequence.

APPENDIX

If , then . Therefore,
for all . This implies that which agrees

with Theorem 1. Hence, we just need to prove Theorem 1 for the
case where .

Note that Corollary 6 and the fact that regardless of the finite-
ness of , and for all
gives

(44)

For the reverse inequality, look at

(45)
where comes from the fact that given we can reconstruct

w.p. and from the fact that is an i.i.d. process.
Combining (44) and (45) and noting that is an i.i.d. process
completes the proof of Theorem 1.
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