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On Limited-Delay Lossy Coding and Filtering of
Individual Sequences
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Abstract—We continue the study of adaptive schemes for the se-
quential lossy coding of individual sequences which was recently
initiated by Linder and Lugosi. Specifically, we consider fixed-rate
lossy coding systems of fixed (or zero) delay where the encoder
(which is allowed to use randomization) and the decoder are con-
nected via a noiseless channel of a given capacity. It is shown that
for any finite set of such coding schemes of a given rate, there exists
a source code (adhering to the same structural and delay limita-
tions) with the same rate whose distortion is with high probability
almost as small as that of the best scheme in that set, uniformly
for all individual sequences. Applications of this result to reference
classes of special interest are outlined. These include the class of
scalar quantizers, trellis encoders with sliding block decoders, and
differential pulse code modulator (DPCM)-based source codes. In
particular, for the class of all scalar quantizers, a source code is ob-
tained with (normalized) distortion redundancy relative to the best
scheme in the reference class of order 1 3 log (where is the
sequence length). This improves the 1 5 log rate achieved by
Linder and Lugosi. More importantly, the decoder here is deter-
ministic and, in particular, does not assume a common randomiza-
tion sequence available at both encoder and decoder. Finally, we
consider the case where the individual sequence is corrupted by
noise prior to reaching the coding system, whose goal now is to re-
construct a sequence with small distortion relative to the clean in-
dividual sequence. It is shown that for the case of a finite alphabet
and an invertible channel transition probability matrix, for any fi-
nite set of sliding-window schemes of a given rate, there exists a
source code (allowed to use randomization yet adhering to the same
delay constraints) whose performance is, with high probability, es-
sentially as good as the best scheme in the class, for all individual
sequences.

Index Terms—Individual sequences, limited-delay coding, lossy
source coding, noisy source coding, sequential coding, universal
coding.

I. INTRODUCTION

T HE requirement for a limited decoding delay arises
naturally in an increasing variety of coding applications.

A standard model for a fixed-rate source code with limited
delay is the following. The source sequence is
transformed into channel symbols taking values in

, , which are, in turn, transformed into
a reconstruction sequence . The encoder–decoder
is said to have overall delay of no more thanif each channel
symbol depends only on and each recon-
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struction symbol depends only on such that
.

In the first part of this work, we consider such lossy source
codes of limited delay in an individual sequence setting.
Namely, the source sequence is considered de-
terministic and statements are made which hold uniformly
for all possible sequences. This setting naturally models
situations where delay is crucial (e.g., cellular telephony,
teleconferencing), yet very little is known about the source.
Given a family of source codes (a reference class) constrained
to have delay no larger than( can be any positive integer
or infinity), our goal is to construct a code, adhering to the
same delay constraint, which does essentially as well (i.e.,
has the same rate and incurs essentially the same average
distortion) as the best code in the family, uniformly over all
individual sequences. It is shown that this goal is achievable for
an arbitrary finite reference class of delay-constrained codes,
of any given delay, provided that the decoders associated with
these codes are of finite (and uniformly bounded) memory. It is
also illustrated how this result can be specialized to deal with
infinite, parametrizable reference classes of codes, by obtaining
coding schemes which compete with reference classes of
particular practical interest.

The subsequent part of this work is dedicated to the case
where the individual sequence is corrupted by a noisy memo-
ryless channel (independent and identically distributed (i.i.d.)
noise) prior to reaching the coder. Specifically, the source
sequence is fed into a memoryless channel whose
output is and only the latter sequence is available
to the encoder. This is a setting of practical interest which
naturally models audio and imaging applications in which the
underlying signal (which has no natural probabilistic model
and, hence, is considered an individual sequence) is corrupted
by noise, and delay limitations are inherent in the application.
Typical schemes involving predictive coding of noisy images,
for example, can be formulated to fall within this setting for
zero delay.

It may be intuitively expected that the two goals associated
with such a noisy scenario, namely, filtering and compression,
will be in concord. This fact is well known and has been made
precise and exploited in the probabilistic context (without delay
limitations) cf. [8], [4], [18], [6], [13], [16]. This intuition is con-
solidated for the individual sequence setting as well by (con-
structively) establishing the existence of a code for this noisy
scenario, which is guaranteed to do essentially as well as the best
in a reference class. That is, the combined filtering-compression
goal can be efficiently achieved in the individual sequence set-
ting as well. A reference class which will be explicitly treated in
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this context is one that consists of time-invariant sliding-window
encoder–decoder pairs, with the implication that other classes,
possibly of codes having somewhat different structural proper-
ties, can be handled using similar ideas and tools.

The idea behind the construction of such codes is, in essence,
quite similar to that underlying efficient prediction schemes for
individual sequences. “Tracking” or trying to “imitate” those
schemes in the reference class which have been proven effi-
cient on the past sequence by exponentially weighting the ex-
tent to which each scheme is followed, according to its past
performance. The implementation of such an approach in the
lossy coding situation of the present setting, however, is not as
straightforward as in the prediction setting. The main reason for
that, in the noise-free setting, is the fact that the decoder, which
accesses the reconstructed sequence only (and does not know
the source sequence), does not have a precise picture of the past
performance of each of the schemes in the class. In the noisy
case, an additional level of difficulty is due to the fact that even
the encoder, which accesses the noisy sequence, does not know
the losses associated with the schemes in the reference class,
as these depend on the unseen underlying clean individual se-
quence. As will be shown, however, this difficulty can be alle-
viated by employing suitable estimators for the unobserved cu-
mulative distortion associated with the schemes in the reference
class.

The idea of harnessing the exponential weighting approach
to the present setting of delay-limited coding was instigated by
Linder and Lugosi [14], where the study of zero-delay lossy
source coding in the individual sequence setting was initiated.
The main result of that work was a construction of a delay-less
sequential adaptive coding scheme, for bounded, real-valued in-
dividual sequences, which asymptotically achieves the average
distortion of the best scalar quantizer matched to the sequence.
The basic idea underlying the coding schemes that we construct
here is similar to that presented in [14] in that both are based on
the exponential weighting principle. There are, however, some
essential differences which, among other things, eliminate the
need for the availability of the common randomization sequence
assumed in [14]. This point is further elaborated on in Sec-
tion IV. The setting of the present work can be considered a gen-
eralization of that of [14] in several directions. Any finite delay
(not necessarily zero) is allowed, richer and more general refer-
ence classes (than that of scalar quantizers), arbitrary alphabets
and distortion measures (other than the squared-error distortion
measure of [14]), and the case where the original data sequence
is corrupted by noise.

The remainder of the paper is organized as follows. In Sec-
tion II, a formal description of the problem for the noise-free
setting is given. Section III is dedicated to a generic result which
constructively establishes the existence of a delay-code having
essentially the same distortion as the best in a given finite family
of delay- codes. In Section IV, the result of Section III is ap-
plied to specific reference classes of practical interest. In partic-
ular, for the class of scalar quantizers (Section IV-A), a delayless
source code is obtained which, as will be discussed, is superior
to that of [14]. Finally, Section V is devoted to the setting where
the source sequence is corrupted by noise: Section V-A formal-
izes the problem and Section V-B is dedicated to the construc-

tion and performance analysis of a delay-limited source code
(or filtering scheme) which does essentially as well as the best
sliding-window encoder–decoder pair in a given set.

II. PROBLEM FORMULATION FOR THENOISE-FREESETTING

Throughout the paper, for any integers , we let de-
note the vector and . Equalities and in-
equalities between random variables, when not explicitly speci-
fied, should be understood in the almost-sure sense. For any set

we let denote its cardinality. For any collection
of random variables defined on a common probability space we
shall let denote the smallest sigma-algebra with re-
spect to which all , , are measurable.

A delay- ( a nonnegative integer or ) sequential source
code of fixed rate with a randomized encoder is
given by a pair . The randomized encoder is given by
a sequence , where

being the source alphabet. The decoderis given by a se-
quence , where

being the reproduction alphabet. The source code operates
as follows. The encoder produces theth-channel symbol

based on and on the random sequence
according to , where is a ran-

domization sequence of i.i.d. random variables, uniformly dis-
tributed on . The decoder emits the reconstructed sequence

according to . We let denote the
class of all such source codes.1 We shall, in the sequel, assume
a given fixed rate and simply write .

The cumulative distortion of a source code is
denoted by

(1)

where is a bounded distortion measure
and the ’s on the right-hand side are generated by

feeding the sequence into as described
above. Note that, though the dependence is suppressed in the
notation, is a random variable which depends on the
realization of the randomization sequence. We similarly de-
note, for

A decoder is said to be of finite memory if for all
and all such that ,

1Note that there is no essential loss in restricting the decoder to “causality.”
This is true since any finite-delay source code with a noncausal decoder (of
delay, say,� ) can be represented by an almost-equivalent source code inF (R)
for some� by a time shift. The latter source code will be equivalent to the orig-
inal one except, possibly, on the first� symbols because the causal decoder
must emit, e.g.,̂x after receivingy while the noncausal decoder has received
y ; . . . ; y when producinĝx .
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. We let denote the class of all source codes in
with a decoder of finite-memory. Note that, similarly

to a finite-memory decoder, one can define a finite-statedecoder
(cf. [21]). While, admittedly, not every finite-state decoder is a
finite-memory decoder, one can show, using the techniques of
[7] and [15], that finite-memory machines perform asymptot-
ically as well as finite-state machines. One particularly inter-
esting subset of consists of those source codes having a
decoder which, in addition to being limited to a memory of at
most channel symbols back, is also time-invariant. This subset
is relevant for the modeling of a variety of coding schemes in ap-
plications which require a finite (or zero) delay. In many such
situations, practically any randomized encoder (situated, e.g.,
in some base station where algorithmic resources are abundant)
can be implemented, yet the decoder (situated, e.g., in some
small and low-cost handset) has no access to a randomization
sequence and is limited in memory or in algorithmic resources.

III. GENERIC RESULT

We dedicate this section to the construction of a finite-delay
coding scheme which competes with an arbitrary finite set of
limited-delay schemes in the sense of operating at the same rate,
and suffering a cumulative distortion which is, at most, negli-
gibly higher than that of the best in the set, for all individual
sequences. More precisely, we have the following:

Theorem 1: Let be a finite subset of for some
, and . For any

and sufficiently large such that

there exists a source code such that for all
we have both

(2)

and

(3)

where are positive constants which depend only on
and .

Discussion: The explicit values of the constants
appearing in the above theorem will be apparent in the proof.
We note that the coding scheme suggested in the above theorem
is a member of . In particular,its delay is no more than
those of the schemes in the reference class and it has exactly the
same rate (and not even a bit more as is sometimes the case
in related universal coding scenarios). Theorem 1 holds with no
assumptions on the source and reconstruction alphabets and the
only assumption on the distortion measure is that it is bounded.
It should also be emphasized that Theorem 1 is an individual-
sequence result and the expectation and probability appearing in

(2) and (3) are with respect only to the randomization sequence,
i.e., the encoders’ local randomness.

Note that the reference class allowed in Theorem 1 can
be any finite subset of . In particular, the encoders asso-
ciated with the schemes in may use randomization. In most
conceivable applications of Theorem 1 (and, in particular, in the
examples considered in the next section) to reference classes of
practical interest, the associated encoder would not be random-
ized. In Theorem 1, however, we allow the competing schemes
to use randomization at the encoder for two principal reasons.
The first is to maximize the generality. The second is one of
“fairness”: since we allow the universal scheme that we con-
struct to use randomization at the encoder, it is only fair that the
schemes in the reference class be given the same courtesy.

It should also be observed that the delayin Theorem 1 can
be any nonnegative integer, or infinite. The result is more in-
teresting for relatively small delay since for large or infinite
delay one can use the results from Ziv’s work [21], or the later
Yang and Kieffer codes [19], for the lossy compression of indi-
vidual sequences. The codes in [21] and [19] offer little guid-
ance regarding the problem of coding under delay limitations
(cf. discussion in [14]). Indeed, theory regarding the delay-con-
strained lossy source coding of individual sequences was virtu-
ally nonexistent prior to [14].

We also remark that, while in most probabilistic contexts it is
usually satisfactory and informative enough to make statements
regarding theexpectedperformance (distortion) of a source
code, in the individual sequence setting considered here this is
not the case. The whole point of the individual sequence setting
is to have a complete picture of what is really happening (actual
rather than expected distortion) foreverypossible sequence.
This is why a point has been made to obtain the concentration
inequality (3), which guarantees the actual performance of the
source code, in addition to (2).

The source code in the above theorem depends on
the length of the individual sequence to be encoded (this is
referred to as “horizon-dependence” in the prediction litera-
ture). While in some applications (e.g., image coding) the
length of the sequence is indeed known in advance, in others it
may be desirable to have a source code guaranteed to be doing
well at all points along the sequence (this is referred to as the
“strong sequentiality” property). We merely remark here that
it is a straightforward exercise to obtain a strongly sequential
source code, for which (2) and (3) hold forall sufficiently large

. The Borel–Cantelli lemma can then be applied to obtain
an almost sure performance guarantee for such a source code.
This is done by employing the horizon-dependent source code
of Theorem 1 on blocks of exponentially increasing lengths
(cf., e.g., [1], [17] for typical examples of such constructions).

Proof: Fix an and divide the time-axis,
, into consecutive nonoverlapping blocks

(assume divides ). We construct the source code

as follows. At the beginning of theth block , i.e., at
the th channel use, when and are available
(so that is known for all ), the encoder
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uses to generate , a -valued random variable
with distribution satisfying almost surely

(4)

where is a parameter to be chosen later. The conditioning
on on the left-hand side of (4) is necessary due to the
fact that the cumulative distortion of each of the schemes in the
reference class which, by the definition of are allowed
to use the randomization sequence, will, in general, depend on
the realization of the randomization sequence. The encoder, op-
erating at the same rate, now dedicates the first
channel symbols at the beginning of theth block, i.e., for

to convey to the decoder the identity of . At the remainder
of the block, i.e., at times

the encoder produces the channel symbols

At the same time, on the decoder’s side, at the beginning of the
block at times

the decoder outputs an arbitrary reproduction sequence of’s.
From time

up to the end of the block , the decoder, knowing the
identity of and the output of at least channel
uses back, outputs the reproduction sequence according to

(the second equality is due to the fact that ).
Note that the decoder in the source code we have con-
structed is indeed causal and that the encoder at each point
along the sequence relies on knowledge of at most so that

is abone fidemember of . Furthermore,
utilizes the randomization sequence in a rather economical way:
it only uses randomization once at the beginning of each block
(cf. Fig. 1 for a schematic description of the construction of

).
To establish (2) and (3), we use some standard ingredients

from the theory of prediction of individual sequences (cf., e.g.,
[2, Theorem 1]). Define for each the random variable

(5)

Fig. 1. Structure of coding scheme of Theorem 1.

(so that, in particular, ). We then have for

(6)

On the other hand, for each

(7)

where denotes expectation with respect to the (random)
distribution on which assigns a probability proportional
to to each . The first inequality
follows from an application of Hoeffding’s bound (cf. [3,
Lemma 8.1]). The second inequality follows from the construc-
tion of the source code described above (note that the
cumulative distortion of from the beginning of theth
block up to time can be
no more than and from that time up to the
end of the block it is exactly the loss of the pair
generated at the beginning of the block). Summing up over
we obtain almost surely

(8)
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Combining (8) and (6) gives almost surely

(9)

where the equality follows upon taking the minimizing value
. For notational convenience, we now

denote

and

so that the right-hand side of (9) becomes

Minimizing with respect to , we take
and obtain an expression upper bounded by .
Plugging in the values of , , we finally obtain

(10)

Note that our choice of the number of blocks

implies that the length of each block is

Since the above derivation assumes that the block length is
greater than the overhead of channel
uses at its beginning, we verify that this is indeed the case. We
require which is equivalent to

an inequalilty which holds by hypothesis (for a suitable constant
). Hence, taking expectation in (10) establishes (2). Turning

to establish (3), we denote

and observe that is a martingale difference
sequence with the ’s almost-surely bounded in magnitude by

. Applying Hoeffding’s bound for martingale difference se-
quences (cf., e.g., [3, Theorem 9.1]) gives for anyand

(11)

Finally, combining (10) and (11), we have for any large
enough such that the right-hand side of (10) is less than ,
namely, for

(12)

which, upon plugging in the values ofand , establishes (3)
and concludes the proof for the case where the above values
of and are integers.
Otherwise, take and let the coding
scheme behave arbitrarily on the last (incomplete)
block. It is straightforward to verify that the above derivation
carries over for this case as well with, possibly, slightly modi-
fied constants to accommodate the “edge effects.”

Note that the source code constructed in the above proof must,
effectively, run all the schemes in the reference class in parallel.
This fact renders this scheme impractical for implementation
when the reference class is excessively large (cf. discussion in
Section VI).

It might be tempting to simplify the source code constructed
in Theorem 1 in the following way. Rather than generate the
member of the reference class to be followed on theth block
according to (4), simply decide, deterministically, to follow that
member which has been proven most competent on the past se-
quence. This would eliminate the need for a randomization se-
quence altogether. Unfortunately, as is known from the theory
of prediction of individual sequences, such a scheme does not
have the necessary adaptivity properties. In fact, one can con-
struct simple cases of reference classes containing as little as
two source codes for which the normalized distortion redun-
dancy of such a deterministic scheme relative to the reference
class is lower-bounded by a nonvanishing term. As one simple
example consider the following: Let ,

, and be the Hamming distortion measure. A
scalar quantizer of rate for this case is a
map , where with . For
an individual sequence let

Each such defines a time-invariant member of in the
obvious way. Define the quantizers

(13)

and



726 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 3, MARCH 2002

(14)

Let now be any horizon-dependent scheme
which partitions the data of length into any number of blocks
and chooses, at the beginning of each block, to follow either the
scheme associated with or that associated with according
to some deterministic rule (e.g., that suggested above). It is clear
that for any such scheme we can construct a sequencewhich
is constant on each block and such that . On
the th block, if is followed we let the corresponding sub-
sequence of consist solely of ’s and if is followed it will
consist of ’s. On the other hand, forany sequence we obvi-
ously have . Evidently, we have
constructed a sequence for which

(15)

In particular, the normalized distortion redundancy is lower
bounded by .

IV. A PPLICATIONS

We dedicate this section to an application of the generic result
of Section III to a few representative cases.

A. Scalar Quantizers

Though the reference class in the above theorem is finite, it
can be straightforwardly applied to obtain delay-source codes
which compete with any reference class having a well-behaved
effective covering number. One example for such an application
is for the reference class of all scalar quantizers considered in
[14]. Specifically, consider the case with the
squared-error distortion . An -level
scalar quantizer is a measurable mapping where
is any finite subset of with cardinality . Following
[14], we let denote the class of all -level scalar
quantizers and let

We then have the following.

Corollary 2: Let and be the squared-
error distortion measure. For any and sufficiently
large such that there exists a zero-delay
source code such that for all we have
both

(16)

and

(17)

where are positive constants which depend only
on .

As can be seen by examining the constants in the proofs
(of both Corollary 2 and Theorem 1), the dependence of the
constants on the rate or, equivalently, on is according to

, , and the right side of (16)
can be replaced by

where is the constant from Theorem 1 which behaves as
. Thus, we see that better constants are at-

tained for higher rates. The intuition behind this fact is that the
higher the instantaneous rate, the less channel uses must be ded-
icated at the beginning of each block to convey to the decoder
the identity of the chosen scheme and, hence, the lesser portion
of the time is the decoder idle.

Note that Corollary 2 (inequality (16) in particular) improves
the main result of [14] in two directions. The first is in estab-
lishing the existence of a source code with a redundancy term
upper bounded by , where that associated with
the source code of [14] was shown to be upper-bounded by

. The second, perhaps more essential improve-
ment, is in the fact that the source code employed here belongs
to . In particular, it does not use randomization at the de-
coder and,a fortiori, does not need to know the realization of the
randomization sequence used by the encoder. This is in contrast
to the source code constructed in [14] which not only required
the availability of a randomization sequence at the decoder’s
side as well but required that both the encoder and the decoder
dispose of thesamerandomizing sequence (as in models where
a “subtractive dither” is assumed, cf. [22], [20]).

Proof: It is straightforward to show (cf. [14, Lemma 2])
that for any there exists a set
such that for all and

(18)

Therefore, letting be the source code of Theorem
1, tailored for the set , we obtain

(19)

where the second inequality follows from Theorem 1 (assuming
is sufficiently large, a fact we shortly verify to follow from the

hypothesis of the corollary). Taking ,
we obtain

(20)

We note that for (19), and hence for (20), to hold we need (by
Theorem 1) to require . But, by our
choice of , is, up to a multiplicative constant (depending
only on ), equivalent to and, therefore, it is enough
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to require for some which estab-
lishes (16). To arrive at (17), it is easy to verify that the hypoth-
esis implies also
(for a suitably chosen ). Hence

(21)

where the first inequality follows from (18) and the second one
follows from Theorem 1 (inequality (3)).

B. Sliding Block and Trellis Source Codes

A class to which Theorem 1 can be directly applied is that
of sliding-block codes (cf., e.g., [9]). Assume here an arbitrary
distortion measure. A finite-constraint length, time-invariant en-
coder with constraint-length, memory , and delay

is a mapping yielding
the channel symbols defined by . Simi-
larly, a sliding-block decoder with constraint lengthis a map-
ping yielding a reproduction process

. When the source and reproduction alphabets
are finite, it is easy to see that the cardinality of the class of
all such sliding-block source codes with respective constraint
lengths of and is . Therefore, Theorem 1
guarantees the existence of a source code with delaywhich
achieves the lowest distortion attainable by any sliding-block
source code with constraint lengths and delay , uniformly
for all individual sequences in the sense of (2) and (3) (with

). For the case where the alphabets are
not of finite cardinality, competing withall such sliding-block
source codes of a given order is clearly an overambitious task.
However, any sufficiently smoothly parametrizable subset of
this class can be dealt with using appropriate grids, similarly
as was done in the proof of Corollary 2.

Another important related family of source codes that are cov-
ered by Theorem 1 consists of the block trellis codes (cf., e.g.,
[9], [11]). In particular, note that a block trellis coding scheme
of constraint length and search depth, which consists of
a constraint-length sliding-block decoder and a depth-
trellis search encoder matched to, is a member of .

C. Adaptive Differential Pulse Code Modulation (DPCM)

We dedicate this subsection to specializing the approach
demonstrated in Theorem 1 for obtaining an adaptive scheme
which “tracks” the differential pulse code modulator (DPCM),
out of a given family, which does best on the data. DPCM-based
schemes are widely used in speech and image applications and
are, therefore, of considerable practical interest. In particular,
the study of such coding schemes within the individual-se-
quence framework which we consider here is especially
relevant for many image compression situations in which there
is no natural statistical model for the data.

The reader is referred, e.g., to [10], [12] and the references
therein for a comprehensive account of the theory and prac-
tice of DPCM-based coding schemes. Following is a laconic
description intended primarily to introduce notation for later
use. A DPCM delayless source code of orderis an element
of , which is fully characterized by a predictor

and an -level quantizer . The encoder produces
the th channel symbol representing the value of , where

. The decoder gives theth reconstruction
according to . For concreteness in ini-
tializing the predictor take, say, for some

. An important subset of this family is that where the
source and reconstruction alphabets are (possibly subsets of) the
real line and the predictor is a linear time-invariant predictor,
i.e., .2 We let de-
note the class of all DPCM delayless source codes of order up
to having a linear time-invariant predictor with impulse re-
sponse satisfying and oper-
ating at rate . The reason we are interested in such impulse
responses is the strong stability of the decoder (linear feedback
system) that they induce. Specifically, this property ensures that
the respective outputs of a DPCM (having such an) fed with
similar inputs will also be similar. Assume that the source and
reconstruction alphabets in what follows consist of a bounded
subset of the real line and thatis the squared-error distortion.
In particular, we can assume that the distortion measure and the
magnitude of the components of the source and reconstruction
sequences are bounded by .

Theorem 3: Let be a finite subset of for
some , , and . Then for any and

there exists a delayless source code such that
for all

(22)

and

(23)

where are positive constants which depend only on
and and for all .

Note that Theorem 3 does not follow directly from Theorem 1
since a source code belonging to will, in general
(for ), not have a finite-memory decoder (note that the
decoder’s output depends on the present channel symbol and on
pastreconstructionsymbols). The proof of Theorem 3, however,
which we outline below, is very similar to that of Theorem 1. In
particular, the construction of the source code satisfying
(22) and (23) is essentially the same as that in Theorem 1.

2Note that in this case the decoder is a simple linear time-invariant feedback
system.
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Sketch of Proof :The construction of follows that
in the proof of Theorem 1 essentially verbatim. The only differ-
ence is that now, at the decoder’s side, from time

up to the end of the block , the decoder, knowing the
identity of (equivalently, of the linear predictor and of
the quantizer ), outputs a reproduction sequence by feeding
the incoming , where

denotes the inverse transformation of the quantizer,
into the linear feedback system characterizing the decoder,
where the decoder assumes that up to this point in time the
input to the system was constant at say zero. The only thing left
to verify is that the performance of this scheme on theth block
is not too heavily deteriorated, relative to the performance of

, by the fact that the input to the decoder up
to time was in fact and not constant at zero as
the decoder is assuming. This can be done via the following
crude calculation: if is the linear filter associated with any
scheme in and is its Fourier transform then
the Fourier transform of the impulse responseof the decoder
(the linear feedback system) is given by or,
more explicitly, by

(24)

The fact that clearly implies that for arbitrary
which coincide between any time and , i.e.,

for then

Now, if and is small then

It thus follows that the differences between the (unnormalized)
cumulative distortions of and on all blocks
(of all lengths) are uniformly upper-bounded by

Hence, an inequality is obtained which is analogous to (7), with
replaced by . The remainder of the proof carries

through verbatim.

V. THE NOISY SETTING

In this section, we consider the case where the individual se-
quence is corrupted by noise. Limited-delay coding schemes
are sought, for this case, which operate on the noisy sequence
and produce a reconstruction sequence which is judged with re-
spect to the clean individual sequence. Contrary to the noise-free
case of the previous sections, we shall consider the case where

the reference class consists of time-invariant sliding-window
schemes. It is currently unknown whether the approach we will
present can be similarly applied to handle reference classes of
other types.

A. Problem Formulation

We now formalize the notion of a limited-delay sequential
source code for the case where the individual sequence to
encode is corrupted by noise. Specifically, we assume now,
as in the noise-free case, that there is an individual sequence

, to encode. The encoder–decoder pair,
however, accesses the sequence , , which
is the output of the fixed memoryless channel whose input is
the individual sequence of interest . For simplicity
of the exposition, we assume that is finite and we let

denote the channel transition probability matrix,
which we assume invertible. The approach we will present can
be applied to more general cases.

For this setting, we define a delay
sequential scheme for combined filtering and compression of
fixed rate with a randomized encoder by a pair

. The randomized encoder is given by a sequence
, where . The

decoder is given, as in the noise-free setting, by a sequence
, where . This scheme

operates as follows. The encoder produces theth channel
symbol based on and on the
random sequence according to , where

is a randomization sequence of i.i.d. random variables,
uniformly distributed on and independent of . The
decoder emits the reconstructed sequence according
to . We continue to let , where

, denote the class of all such combined filtering and
compression schemes operating at the fixed ratesince they
have exactly the same structure as in the noise-free case.

The definition of the cumulative distortion of a scheme
remains as in the noise-free setting

(25)

where is a bounded distortion measure
and here the s on the right-hand side are generated

by feeding the noisy sequence into
as described above. Note that is a random variable
which depends on the realization of the channel noise and of the
randomization sequence . As before, we similarly denote, for

B. Time-Invariant Sliding-Window Schemes

A member of is a time-invariant sliding-window
scheme if there exist ,

and such that
for all , the th-channel symbol generated by the encoder is
given by and the th reconstruction symbol by
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. We refer to as the encoder- (decoder-)
memory and to as the encoder- (decoder-) horizon.
We let denote the family of all such
time-invariant sliding-window schemes.

1) Estimating the Distortion of : Un-
fortunately, the cumulative distortion of a scheme

, which was defined in (25), depends on the individual se-
quence and, therefore, is not available when only its noisy ver-
sion is accessible. Motivated by the approach which guided
the construction of the coding schemes in the noise-free setting,
our first goal in the noisy setting is to obtain an efficient esti-
mator for the distortion suffered by a scheme in ,
which is only based on the observed noisy sequence. To this
end, let be given and denote

We can now write

(26)

(27)

(28)

where we denote , , ,
the th component of by , and

Evidently, efficient estimators for the unobserved

would lead to an efficient estimator for by plugging
these into (28).

Let denote the transition matrix characterizing the
memoryless noisy channel for vector inputs of length, in-
duced by the channel matrix . Specifically, is a

matrix whose entry at (where the rows
and columns of are arranged according to some lexico-
graphic ordering of ) is given by the probability for noisy

when . Since the channel is fixed and mem-
oryless, this means

We will further let denote the entry corresponding
to in the inverse matrix of , which exists by the
existence of which is assumed throughout (recall Sec-
tion V-A). The first observation we make toward constructing
an estimator for is the following.

Lemma 4: For all and , the observable
is an unbiased estimator for (the un-

observed) . That is,

(29)

Proof:

(30)

where the third equality follows from the fact that

and where denotes the identity matrix.

We now let

(31)

be our estimator for the unobserved . Note that
the estimation error

(32)

is, by Lemma 4, a sum of zero-mean, bounded random vari-
ables. Furthermore, these random variables have a well-behaved
dependence structure. In particular, for all , is inde-
pendent of . Hence, by standard techniques (cf., e.g.,
[5]), it can be shown that the estimation error will typically be

, that the probability of its magnitude exceeding, for
any , decays exponentially rapidly, pointwise asymptotic
bounds on its magnitude in the order of , etc. Mo-
tivated by this, we finally let our estimator for the unavailable
cumulative distortion be

(33)
2) The Coding-Filtering Scheme for the Noisy Case:Equip-

ped with an estimator for the unobserved cumulative distortion
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of a sliding-window scheme in the noisy setting, we now con-
struct an adaptive scheme which is similar, in principle, to that
of Section III. The essential difference is in the fact that the
randomization is performed with respect to a distribution as-
signing weights which are exponentially proportional to thees-
timatedpast distortion. This approach has recently lead to ef-
ficient schemes in the context of prediction of individual se-
quences corrupted by noise [17].

Theorem 5: Let be a finite subset of for
some and a given . Then there
exists a source code such that
for any , sufficiently large so that

and all

(34)

where is a positive constant (which depends only on, ,
, , and , the explicit value of

which will be apparent in the proof).

Note that here, as in the noise-free setting, the scheme which
we construct, in addition to complying with the delay limitations
of the sliding-window schemes with which it competes, operates
at the exact same rate.

We further remark, as we did in the noise-free case, that while
the source code depends on the length of the se-
quence, it is straightforward to use it to obtain a strongly se-
quential (horizon-independent) scheme for which a concentra-
tion inequality in the form of (34) holds for all sufficiently large

. One can then apply the Borel–Cantelli lemma to obtain al-
most-sure asymptotic performance guarantees. Finally, we re-
mark that in the above theorem, can be taken as the set of
all sliding-window schemes of up to a certain order (memory
and horizon), which is a finite set in the finite alphabet case.
By gradually increasing the order and employing the scheme
of Theorem 5 tailored for this order on consecutive blocks of
lengths which increase at the proper rate, a scheme can be ob-
tained which asymptotically almost surely achieves the perfor-
mance of any sliding-block scheme, no matter what the under-
lying individual sequence may be.

Proof of Theorem 5:The construction of
which follows is similar to that in the proof of Theorem 1, with
the essential difference that the past cumulative distortions of
the schemes in , which are now unavailable to the encoder,
are replaced by their respective estimates for the purpose of ran-
domization.

Fix an and divide the time axis into
consecutive nonoverlapping blocks (assumedivides

). At the beginning of the th block , i.e., at the
th channel use, after seeing and when

are available, the encoder usesto generate ,

a -valued random variable with distribution satisfying almost
surely

(35)

where is the smallest sigma-algebra with respect to (w.r.t.)
which all ’s are measurable and is taken as in The-
orem 1. For convenience, we let and denote the sliding-
window encoder and decoder, respectively, characterizing the
source code . The encoder now dedicates the first

channel symbols at the beginning of theth block,
i.e., for

to convey to the decoder the identity of . At the remainder
of the block, i.e., at channel uses

the encoder produces the channel symbols

On the decoder’s side, at the beginning of the block, at channel
uses

the decoder outputs an arbitrary reproduction sequence of’s.
From the th channel use up to
the end of the block , the decoder, knowing the identity of

and the output of at least channel uses back, outputs
the reproduction sequence according to .

To analyze the performance of the above scheme and to estab-
lish (34), we will consider a genie-aided scheme. Specifically,
let be a source code which is allowed to access the
clean sequence as well as its noisy version . This scheme
operates exactly as described above, with the only dif-
ference that the pair is generated (using the ran-
domization sequence) according almost surely to

(36)

rather than according to (35) (this is where the “genie” comes
in since the generation of from such a distribution
requires knowledge of which depends on
the clean sequence). All the stages of the proof of Theorem 1
carry over essentially verbatim for (with replaced
by ). In particular, we have, as in (9), almost surely

(37)
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According to [14, Lemma 3] for arbitrary

and

(38)

From the construction of the genie-aided and our
legitimate , it follows by an application of (38) that for
all

a.s. (39)

This leads to

a.s.

(40)

where we recall that is taken to be . To
conclude, we show that the first term on the left-hand side of
(40) is, with high probability, close to and that the last
term on the right-hand side of (40) is small with high probability.
Specifically, it is shown in the Appendix that for all

(41)

and

(42)

where

and

Choosing this time (as opposed to the ,
regime of the noise-free case), the above two upper

bounds give the same exponential speed of decay (). Com-

bining inequalities (40)–(42), taking , applying
the union bound, and noting that gives

(43)

for all sufficiently large so that

Note that the main idea in the above proof is similar to that un-
derlying proof of Theorem 1 with the added ingredient that this
time, the randomization at the beginning of each block is per-
formed according to (35), where estimators for the unobserved
distortions associated with the schemes in the reference class
are employed. Evidently, Theorem 5 can be extended to account
for reference classes other than time-invariant sliding-window
schemes, provided a way is found to efficiently (uniformly for
all individual sequences) estimate distortions associated with
more general schemes. The construction of such estimators for
general schemes has defied our efforts thus far.

VI. FUTURE DIRECTIONS

Directions for related future research include.

1) As discussed in Section III, the implementation of the
source code constructed therein is impractical for a
large reference class as the algorithm is required to
effectively run all the schemes of the reference class in
parallel. It would be of interest to find a more practical
scheme which is universal in the sense dealt with in
this work. We mention, however, that for reference
classes of a relatively small size (a few dozens at the
most), the algorithm of Section III has been implemented
and shown to be quite effective for various types of
data. Details can be found athttp://visl.tech-
nion.ac.il/projects/2001s16/ .

2) Extension of the main result of Section V to reference
classes other than those consisting of time-invariant
sliding-window schemes.

APPENDIX

TECHNICAL STAGES IN THEPROOF OFTHEOREM 5

Proof of (41): Since the randomization sequenceis inde-
pendent of the channel’s noisy output, for almost every realiza-
tion of the noisy sequence, the difference
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under is distributed as a sum ofzero-mean indepen-
dent random variables bounded in magnitude by. Applying
Hoeffding’s inequality [3, Theorem 8.1] gives

a.s. (A1)

Taking expectation over the above inequality completes the
proof.

Proof of (42): Using the union bound generously, we have
for all

(A2)

To bound each of the summands in (A2), recall that it was estab-
lished in Section V-B1 that for each and all
, is a sum of random variables

, where the ’s are almost surely bounded by

and where is independent of for all . For
a given , we can divide the set of indexes into

“intervals” of length each (except, possibly, for
the last one which may be shorter). The sum fromto can be
decomposed into a sum over those indexes that belong to the
first indexes of some interval, and a sum over the comple-
mentary set of indexes. By the aforementioned independence
property of , each of these two sums is a sum of (at the
most) independent, zero-mean random variables
bounded in magnitude by . Therefore, applying Ho-
effding’s inequality to each of these two sums and employing
the union bound gives for all , , and
all

(A3)

Consequently, each of the summands in the right-hand side of
(A2) is upper-bounded by

(A4)

which finally gives

(A5)

Inequality (42) is exactly (A5) with the assignment
.
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