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On Limited-Delay Lossy Coding and Filtering of
Individual Sequences

Tsachy WeissmarStudent Member, IEEEBNd Neri MerhayFellow, IEEE

Abstract—We continue the study of adaptive schemes for the se- struction symbok:,, depends only omy, ..., y,4+4, Such that
quential lossy coding of individual sequences which was recently ¢, 4+ 4, < 6.
initiated by Linder and Lugosi. Specifically, we consider fixed-rate In the ﬁrst part of this work, we consider such lossy source

lossy coding systems of fixed (or zero) delay where the encoder d f limited del . individual i
(which is allowed to use randomization) and the decoder are con- COCEs ol limite elay in an individual sequence setung.

nected via a noiseless channel of a given capacity. It is shown thatNamely, the source sequeneg, z», ... is considered de-

for any finite set of such coding schemes of a given rate, there existsterministic and statements are made which hold uniformly
a source code (adhering to the same structural and delay limita- for all possible sequences. This setting naturally models
tions) with the same rate whose distortion is with high probability situations where delay is crucial (e.g., cellular telephony.

almost as small as that of the best scheme in that set, uniformly tel f . t little is k bout th
for all individual sequences. Applications of this result to reference eleconferencing), yet very little is known about the source.

classes of special interest are outlined. These include the class ofciven a family of source codes (a reference class) constrained
scalar quantizers, trellis encoders with sliding block decoders, and to have delay no larger thah(é can be any positive integer
differential pulse code modulator (DPCM)-based source codes. In or infinity), our goal is to construct a code, adhering to the
particular, for the class of all scalar quantizers, a source code is ob- same delay constraint, which does essentially as well (i.e.

tained with (normalized) distortion redundancy relative to the best . .
scheme in the reference class of order—/3 log n (wheren is the has the same rate and incurs essentially the same average

sequence |ength) This improves tha—l/s logn rate achieved by distortion) as the beSt COde in the fa.m"y, Uniformly over a“
Linder and Lugosi. More importantly, the decoder here is deter- individual sequences. It is shown that this goal is achievable for
ministic and, in particular, does not assume a common randomiza- an arbitrary finite reference class of delay-constrained codes,
tion sequence available at both encoder and decoder. Finally, we ¢ oy given delay, provided that the decoders associated with
consider the case where the individual sequence is corrupted by th d  finit d unif Vb ded Iti
noise prior to reaching the coding system, whose goal now is to re- ese_ codes are o |n|_e (and uniformly our_l _e ) memory. _'5
construct a sequence with small distortion relative to the clean in- @lso illustrated how this result can be specialized to deal with
dividual sequence. It is shown that for the case of a finite alphabet infinite, parametrizable reference classes of codes, by obtaining

and an invertible channel transition probability matrix, forany fi- ~ coding schemes which compete with reference classes of
nite set of sliding-window schemes of a given rate, there exists aparticular practical interest.

source code (allowed to use randomization yet adhering to the same . . .
delay constraints) whose performance is, with high probability, es- The subsequent part of this work is dedicated to the case

sentially as good as the best scheme in the class, for all individual Where the individual sequence is corrupted by a noisy memo-

sequences. ryless channel (independent and identically distributed (i.i.d.)

Index Terms—individual sequences, limited-delay coding, lossy noise) prior to rea(?h'ng t.he coder. Specifically, the source
source coding, noisy source coding, sequential coding, universalSequencery, z», ... is fed into a memoryless channel whose
coding. output isZy, Zs, ..., and only the latter sequence is available

to the encoder. This is a setting of practical interest which
naturally models audio and imaging applications in which the
underlying signal (which has no natural probabilistic model
HE requirement for a limited decoding delay ariseand, hence, is considered an individual sequence) is corrupted
naturally in an increasing variety of coding applicationsyy noise, and delay limitations are inherent in the application.
A standard model for a fixed-ratgt) source code with limited Typical schemes involving predictive coding of noisy images,
delay is the following. The source sequeneg x2, ... IS for example, can be formulated to fall within this setting for
transformed into channel symbals, -, ... taking values in zero delay.
{1,2, ..., M}, M = 28 which are, in turn, transformed into It may be intuitively expected that the two goals associated
a reconstruction sequendg, ., .... The encoder—decoderwith such a noisy scenario, namely, filtering and compression,
is said to have overall delay of no more thaif each channel will be in concord. This fact is well known and has been made
symbol y, depends only omy, ..., 44, @and each recon- precise and exploited in the probabilistic context (without delay
limitations) cf. [8], [4], [18], [6], [13], [16]. This intuition is con-
. . _ solidated for the individual sequence setting as well by (con-
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this context is one that consists of time-invariant sliding-windotion and performance analysis of a delay-limited source code
encoder—decoder pairs, with the implication that other classés, filtering scheme) which does essentially as well as the best
possibly of codes having somewhat different structural propestiding-window encoder—decoder pair in a given set.
ties, can be handled using similar ideas and tools.

The idea behind the construction of such codes is, in essencld, PROBLEM FORMULATION FOR THE NOISE-FREE SETTING

quite similar to that underlying efficient prediction schemes for Throughout the paper, for any integens< n, we leta”, de-
individual sequences. “Tracking” or trying to “imitate thosqm_te the vectotay,, . .., a,) anda”™ = o7. Equalities and in-

schemes in the reference class which have been proven &ljii 5 jities between random variables, when not explicitly speci-

cient on the past sequence by exponentially weighting the %4 shoyid be understood in the almost-sure sense. For any set
tent to which each scheme is followed, according to its p?ﬁ;

" he impl X ¢ such hi we let|S| denote its cardinality. For any collectidi¥; };cr
performance. The implementation of such an approach in € ,40m variables defined on a common probability space we

Ioss_y coding situation of the present setting, howeyer, isnotgs, leto({Z; }:c1) denote the smallest sigma-algebra with re-
straightforward as in the prediction setting. The main reason f; ect to which allZ;. i € 7. are measurable
(2 1 .

that, in the noise-free setting, is the fact that the decoder, wh|chA delay (§ a nonnegative integer ao) sequential source
accesses the reconstructed sequence only (and does not Wb of fixed rateR — log M with a randomized encoder is

the source sequence), does not have a precise picture of the Rl by a pai(E, D). The randomized encodétis given by
performance of each of the schemes in the class. In the no ¥equenc¢E<}9’<§1 where

case, an additional level of difficulty is due to the fact that even
the encoder, which accesses the noisy sequence, does not know E;: X7 x [0, 1]i —{1,2,..., M}

the losses associated with the schemes in the reference class,

as these depend on the unseen underlying clean individual &ebeing the source alphabet. The decofleis given by a se-
quence. As will be shown, however, this difficulty can be allequence{D;}:2,, where

viated by employing suitable estimators for the unobserved cu-
mulative distortion associated with the schemes in the reference

class. X being the reproduction alphabet. The source code operates

The idea of harnessing the exponential weighting approagh ¢oiiows. The encoder produces thie-channel symboy; €
to the present setting of delay-limited coding was instigated t{g 2, ..., M} based on*+® and on the random sequence

Linder and Lugosi [14], where the study of zero-delay lossy according toy; = E;(«'+°, U), where{U;}s°, is a ran-
source coding in the individual sequence setting was initiatgghmization sequence of i.i.d. random variables, uniformly dis-

The main result of that work was a construction of a delay-legg, ted orfo, 1]. The decoder emits the reconstructed sequence
sequential adaptive coding scheme, for bounded, real-valued%rf- By according taé; = D;(y'). We letF* (R) denote the
- . = Di(y).

dividual sequences, which asymptotically achieves the averqgéss of all such source codesVe shall, in the sequel, assume
distortion of the best scalar quantizer matched to the sequenggiyen fixed ratek and simply write?.

The basic idea underlying the coding schemes that we construGfne cumulative distortion of a source cods, D) € 7’ is
here is similar to that presented in [14] in that both are based g8noted by

the exponential weighting principle. There are, however, some

essential differences which, among other things, eliminate the ™ )

need for the availability of the common randomization sequence d(, D)(‘T) = Z d(wi, ;) @)
assumed in [14]. This point is further elaborated on in Sec- =1

tion IV. The setting of the present work can be considered a g&fnered: X x X — [0, B] is a bounded distortion measure
eralization of that of [14] in several directions. Any finite delay 3 < o) and the,’s on the right-hand side are generated by
(not necessarily zero) is allowed, richer and more general refefaging the sequenae= r1, z», ... into (E, D) as described
ence classes (than that of scalar quantizers), arbitrary alphak@ive. Note that, though the dependence is suppressed in the
and distortion measures (other than the squared-error diStormation,dE’E () is arandom variable which depends on the
measure of [14]), and the case where the original data sequepggization of the randomization sequeriée. We similarly de-

Di:{1,2, ..., M}y = X

is corrupted by noise. note, forn; < o

The remainder of the paper is organized as follows. In Sec-
tion 1l, a formal description of the problem for the noise-free 472 () = i d(zs, 30)
setting is given. Section lll is dedicated to a generic result which (B, D)\ — B

T=n1

constructively establishes the existence of a délagde having
essentially the same distortion as the best in a given finite familyA decoderD is said to be of finite memory > 0 if for all
of delay# codes. In Section IV, the result of Section Il is api > s and ally?, ' € X% such thaty!__ = 2¢__, D;(y') =
plied to specific reference classes of practical interest. In partic-

lar for the cl f | ti Section [V-A delav INote that there is no essential loss in restricting the decoder to “causality.”
ular, for the class of scalar quantizers (Section IV-A), a delaylesss s true since any finite-delay source code with a noncausal decoder (of

source code is obtained which, as will be discussed, is superelay, says-) can be represented by an almost-equivalent source cdd&(iR)

to that of [14]_ Finally Section V is devoted to the setting wheri@r someé by a time shift. The latter source code will be equivalent to the orig-
’ inal one except, possibly, on the fir§t symbols because the causal decoder

. . , in
the source sequence is corrupted by noise: Section V-A form@\Gst emit, e.g.3, after receivingy, while the noncausal decoder has received
izes the problem and Section V-B is dedicated to the construg: .. ., ys, when producing:,.
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D;(#"). We let F°(R) denote the class of all source codes i2) and (3) are with respect only to the randomization sequence,
F?(R) with a decoder of finite-memory. Note that, similarly i.e., the encoders’ local randomness.
to a finite-memory decoder, one can define afirstatedecoder ~ Note that the reference class allowed in Theorem 1 can
(cf. [21]). While, admittedly, not every finite-state decoder is he any finite subset of?(R). In particular, the encoders asso-
finite-memory decoder, one can show, using the techniquescidited with the schemes id may use randomization. In most
[7] and [15], that finite-memory machines perform asymptotonceivable applications of Theorem 1 (and, in particular, in the
ically as well as finite-state machines. One particularly inteexamples considered in the next section) to reference classes of
esting subset of? (R) consists of those source codes having aractical interest, the associated encoder would not be random-
decoder which, in addition to being limited to a memory of azed. In Theorem 1, however, we allow the competing schemes
mosts channel symbols back, is also time-invariant. This subset use randomization at the encoder for two principal reasons.
is relevant for the modeling of a variety of coding schemes in aphe first is to maximize the generality. The second is one of
plications which require a finite (or zero) delay. In many sucHtairness”: since we allow the universal scheme that we con-
situations, practically any randomized encoder (situated, e gfruct to use randomization at the encoder, it is only fair that the
in some base station where algorithmic resources are abundaobjemes in the reference class be given the same courtesy.
can be implemented, yet the decoder (situated, e.g., in somé should also be observed that the defay Theorem 1 can
small and low-cost handset) has no access to a randomizatienany nonnegative integer, or infinite. The result is more in-
sequence and is limited in memory or in algorithmic resourcdsresting for relatively small delay since for large or infinite
delay one can use the results from Ziv’'s work [21], or the later
IIl. GENERIC RESULT Yang and Kieffer codes [19], for the lossy compression of indi-
vidual sequences. The codes in [21] and [19] offer little guid-
ce regarding the problem of coding under delay limitations
. discussion in [14]). Indeed, theory regarding the delay-con-
fiined lossy source coding of individual sequences was virtu-
lly nonexistent prior to [14].

We also remark that, while in most probabilistic contexts it is
usually satisfactory and informative enough to make statements
Theorem 1:Let A be a finite subset ofF°(R) for some regarding theexpectedperformance (distortion) of a source
$>0,0< 6§ < ocandR = logM. Forany0 < ¢ < 1 code, in the individual sequence setting considered here this is

We dedicate this section to the construction of a finite-del
coding scheme which competes with an arbitrary finite set £¢
limited-delay schemes in the sense of operating at the same rg{
and suffering a cumulative distortion which is, at most, negl|-
gibly higher than that of the best in the set, for all individua?
sequences. More precisely, we have the following:

and NV sufficiently large such that not the case. The whole point of the individual sequence setting
is to have a complete picture of what is really happening (actual
N > C1[(log | A])(log(| Ale*®))] /e rather than expected distortion) fewery possible sequence.

) This is why a point has been made to obtain the concentration
there exists a source cod®, D) € F°(R) such that for all inequality (3), which guarantees the actual performance of the

x € X we have both source code, in addition to (2).
1 [ _ N The source codéF, D) in the above theorem depends on
E {N |:d(E, py(®) — BB d(E’,D’)(x):| } the length/NV of the individual sequence to be encoded (this is

referred to as “horizon-dependence” in the prediction litera-

<G [(108‘ |A|)(10g(|A|CSR))] Ve NTE(2) ture). While in some applications (e.g., image coding) the
and length of the sequence is indeed known in advance, in others it
1 . . may be desirable to have a source code guaranteed to be doing
Pr {N [dé\E y(Z) — (F,n})i})leA dé\p, D/)(x)} > 6} well atall points along the sequence (this is referred to as the

18 “strong sequentiality” property). We merely remark here that
log |A]| 2772/3 it is a straightforward exercise to obtain a strongly sequential
<expq —C3| ——=——+ e“N 3) . .
log(|.Ale*®) source code, for which (2) and (3) hold falt sufficiently large
- ) N. The Borel-Cantelli lemma can then be applied to obtain
whereC}, Cy, C5 are positive constants which depend only 08, 5most sure performance guarantee for such a source code.
BandR. This is done by employing the horizon-dependent source code

Discussion: The explicit values of the constardg, C,, C; ©of Theorem 1 on block_s of exponentially increasing Igngths
appearing in the above theorem will be apparent in the pro®f., €.9., [1], [17] for typical examples of such constructions).
We note that the;:oding scheme suggested i_n the above theorem p,qt- Fix ani < N and divide the time-axig, = 1,
is a member ofF°(R). In particular,its delay is no more than ,, .., N,inton = N/I consecutive nonoverlapping blocks

those of the schemes in the reference cIa;s and it_has exactly(gg%umé divides V). We construct the source code

same rateR? (and not even a bit more as is sometimes the case

in related universal coding scenarios). Theorem 1 holds with no (E, D) € F*(R)

assumptions on the source and reconstruction alphabets and the

only assumption on the distortion measure is that it is boundé$. follows. At the beginning of theth block1 <k <n, i.e., at
It should also be emphasized that Theorem 1 is an individuite? = (k—1)i+1th channel use, wheri** andl/* are available

sequence result and the expectation and probability appearin(ﬁmthafdggzl,)jl,)(x) isknownforall(£”, D') € A), the encoder
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usesl/; to generaté E®), D*)), a A-valued random variable N
with distribution satisfying almost surel . D
fying y | C___y e -
Pr { (E(k), D(k)) =(E, D) U(k_l)l} thh block
!
k—1)1
exp {—77 dEE’,D)’)(‘T)} a S

V(E,D)e A (4 ™=T blocks

~ Z exp {—77 d%é))l(w)}
(E,D)cA

wherer > 0is a parameter to be chosen later. The conditionini, [
on U*=1 on the left-hand side of (4) is necessary due to the
fact that the cumulative distortion of each of the schemes in the *
reference class which, by the definition &f (R) are allowed
to use the randomization sequence, will, in general, depend(8@ that, in particula¥; = |.A[). We then have fon = N/!
the realization of the randomization sequence. The encoder, op- Wit
erating at the same rafe, now dedicates the firgt log | A|]  log V;;I’ = log Z exp {—77 d?é D)(:z:)} —log | A|

d operate as (Ey, Dy)

l_gw]'/, ; \i \:

Structure of coding scheme of Theorem 1.

channel symbols at the beginning of thi block, i.e.y; for (E, D)cA
1
i=(k— s (k= ~log > log [ ma —ndl - —log
i=k-DI+1,..., (k-Dl+ [R log |A|—‘ > log <(£7r11§1))éA exp{ nd(Ey D)(a:)}> log |A|
to convey to the decoder the identity Bf*). At the remainder =-n (El%i)n B g py(®) —log |A]. (6)
Dye :

of the block, i.e., at times

1 On the other hand, for eadh< k < n
i=(k—1)1+ [E10g|u4|—‘ +1,..., Kkl

log —Wk+1
the encoder produces the channel symbols Wi
_pd®EOE LR L [ gDt
i = Ei(k)(gci+(s7 U, - %EAexp{ nd(E,D) (:l‘)} exp{ nd(E,D) (:1:)}
=log —
At the same time, on the decoder’s side, at the beginning of the D> exp{—n d%—é))l (m)}
block at times (E.D)eA ’
1 - .
i= (k=141 ..., (k= Di+ [E log Vﬂ rs—1 = logEq, exp {—77 d ,13))1“’“(:1;-)}
272 2
the decoder outputs an arbitrary reproduction sequenggof < _U[EdeUS*{)“rl: “(:1:) i I°B
From time (%, ) 8
) 1 _ (k=1)141, Kl (k—1)1| _ i )
i=(k—Dl+ [E10g|A|—‘ +s S 77{"5 [d(E,D) (-T)‘U } B<R108|A|+3>}
) ; 212B?
up to the end of the block = ki, the decoder, knowing the . n @)
identity of D*) and the output oEE®) at leasts — 1 channel 8

uses back, outputs the reproduction sequence according to whereE, denotes expectation with respect to the (random)

5= D(k)(yi) _ D(k)(y?‘ ) distribution);. on A which assigns a probability proportional

' ¢ Lo to exp{—nd(’;;é)l(x)} to each(E, D) € A. The first inequality
(the second equality is due to the fact th&t*) | D*)) ¢ F%). follows from an application of Hoeffding’s bound (cf. [3,
Note that the decoder in the source c¢de D) we have con- Lemma 8.1]). The second inequality follows from the construc-
structed is indeed causal and that the encoder at eachpoitibn of the source codéE, D) described above (note that the
along the sequence relies on knowledge of at mbost so that cumulative distortion of £, D) from the beginning of théth
(E, D) is abone fidemember ofF*(R). Furthermore(E, D) block up to timei = (k — 1)l + [ log|A|] + s — 1 can be
utilizes the randomization sequence in a rather economical wag: more thanB(% log|A| 4+ s) and from that time up to the
it only uses randomization once at the beginning of each bloekd of the block it is exactly the loss of the paE®), D*))
(cf. Fig. 1 for a schematic description of the construction @jenerated at the beginning of the block). Summing up éver
(E, D)). we obtain almost surely
To establish (2) and (3), we use some standard ingredients .
from the theory of prediction of individual sequences (cf., e.q., Wn+1 (b—1)1+1, ki k—1)1
[2, Theorem 1]). Define for each > 1 the random variable Hog W, = _nkz_:l E [d(E: D) ('T)‘ ey }
(k—1)1

_ o g1 272 32
Wi = Z eXp{ ”dmm(‘"’)} ©) tnBn [ Elos A +5) + LB (g
(E,D)CA R 8
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Combining (8) and (6) gives almost surely Finally, combining (10) and (11), we have for a@y large
enough such that the right-hand side of (10) is less a2,

> E[al B @0 - i 43 () namely. o 2 258 (g AN los( Al (e
P ’ E,D)C ’

1 T . ;
Pr {N [d(E, py(®) — min dé\E',D')(“’)} > E}

S 10g |A| + 77[23271 (E’,D,)C.A

+ Bn <% log |A| + s)

7 8 1 n
<Pr{— |d¥ (z) —
1 = E, D
= B (\/los A/2) In"? + Bn <E10g|A| —|—s) ©) {N [ Rt
where the equality follows upon taking the minimizing value ‘E [dggjg)“’l’kl(w)‘ U("‘_l)l} ] > 5/2}
n = /8log|A|/(I?B2n). For notational convenience, we now
denote < { ”(5/2)2}
S eXps — 2B2
_ . _oprl
a=Bylog|A|/2 and 3= B(log|A|+s) B (o) (28))2/3 N2/ b
so that the right-hand side of (9) becomes =P 8B2 (12)
aln’? + Bn = a(N/n)n*'? + fn = aNn ™2 + . which, upon plugging in the values ofand3, establishes (3)

Minimizi ith ‘'t taken — 0 5Y\2/3 N 2/3 and concludes the proof for the case where the above values
ar:glgé)zt:iﬂ V;’:q e;esrzesgior?lﬂWeerabsﬁnae((g{a(%/é/)})l/3N2/3 of n=(a/(28))**N*?* andl = (2/a)*/*N/* are integers.
P PP * Otherwise, takel = [(23/)¥3N*/3] and let the coding

Plugging in the values af, 3, we finally obtain scheme(E, D) behave arbitrarily on the last (incomplete)

n (1)1, M Y _ N block. It is straightforward to verify that the above derivation
Z E |:d(E, Dy (-’1’)‘ yt=n } - ﬁl%lllf d@ D)(fl‘?) carries over for this case as well with, possibly, slightly modi-
k=1 (7 D)eA fied constant€’; , C5, C5 to accommodate the “edge effects.”

O
Note that the source code constructed in the above proof must,
effectively, run all the schemes in the reference class in parallel.
This fact renders this scheme impractical for implementation

= % [(log | A]) (log(|Ale>*)] ° N?2. (10)

Note that our choice of the number of blocks

o (a/(2/3))2/3N2/3 when the reference class is excessively large (cf. discussion in
Section VI).
implies that the length of each block is It might be tempting to simplify the source code constructed

in Theorem 1 in the following way. Rather than generate the
member of the reference class to be followed onittieblock
Since the above derivation assumes that the block lengthageording to (4), simply decide, deterministically, to follow that
greater than the overhead @% log |A| + 3) = (3/B channel member which has been proven most competent on the past se-
uses at its beginning, we verify that this is indeed the case. \Wéence. This would eliminate the need for a randomization se-

I =N/n=(23/a)?/3N/3,

requirel = (28/a)¥3NY3 > 3/B which is equivalent to guence altogether. Unfortunately, as is known from the theory
1 of prediction of individual sequences, such a scheme does not
N > (?p)/(4B®) = @(bg |A|) (log(].Ale*F)) have the necessary adaptivity properties. In fact, one can con-

_ _ _ _ _ struct simple cases of reference classes containing as little as
an inequalilty which holds by hypothesis (for a suitable constafo source codes for which the normalized distortion redun-
C1). Hence, taking expectation in (10) establishes (2). Turnirgancy of such a deterministic scheme relative to the reference
to establish (3), we denote class is lower-bounded by a nonvanishing term. As one simple
k=LKL (k—1)i+1, ki (k—1)1 example consider the following: L_e’( = X = {0, 1, 2},
Vi = d(E, D) (#) -E [d(E, D) (m)‘ 4 } M = 2, anddy(-, -) be the Hamming distortion measure. A

and observe thatVy, o(U*)},>1 is a martingale difference f;}::lacgi%aqtlz;}rf éatih:réggcj\{{oz 1105}2 V]:,?trhtTCIT fagep'zra
sequence with th&}’s almost-surely bounded in magnitude by P&t ’ B o

BI. Applying Hoeffding’s bound for martingale difference se?" individual sequence € A™ let

quences (cf., e.g., [3, Theorem 9.1]) gives for argnde > 0

N
1 - dgy(x) = Z dr(zi, Q(x;)).
Pr { N |f%t?, D)(‘T)_Z E [dégjg;—'—l M(m)‘ U(k—l)l}] > 5} P

k=1 Each suchy defines a time-invariant member g%°=) in the
1 & obvious way. Define the quantizers
=Pr { ~ > Vi 5} Y :
g 2, x=2

and

ne? Qolx) = { 17 z=0,1 (13)
Sexp{——}. (1D ’ ’
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_J2  z=2 K; x 1/(logM), K3  (log M)?/?, and the right side of (16)
) =u, L can be replaced by
Let now (E, D) € F°=Y be any horizon-dependent scheme 1
which partitions the data of lengfl into any number of blocks (MCoN-1/3)-1 —1
and chooses, at the beginning of each block, to follow either thg,are O, is the constant from Theorem 1 which behaves as
scheme associa_t(_ad yvi@b or that associated witf; accordir)g Cy o (log M)—l/g_ Thus, we see that better constants are at-
to some deterministic rule (e.g., that suggested above). Itis cleghed for higher rates. The intuition behind this fact is that the
that for any such scheme we can construct a sequemdech igher the instantaneous rate, the less channel uses must be ded-
is constant on each block and such thgh ) (x) = N.On icated at the beginning of each block to convey to the decoder
the kth block, if Qo is followed we let the corresponding subyhe jdentity of the chosen scheme and, hence, the lesser portion
sequence at consist solely ofi’s and if @ is followed it will ¢ the time is the decoder idle.
consist ofl’s. On the other hand, faany sequence we obvi-  Note that Corollary 2 (inequality (16) in particular) improves
ously havemin{dg, (z), d3;, (z)} < N/2. Evidently, we have he main result of [14] in two directions. The first is in estab-
constructed a sequence for which lishing the existence of a source code with a redundancy term
dé\E () — min {d}, (z), dY (z)} > N/2.  (15) upper bounded bg'(log N)N /3, where that associated with
ethe source code of [14] was shown to be upper-bounded by
é’(log N)N—1/5. The second, perhaps more essential improve-
ment, is in the fact that the source code employed here belongs
to F4=0, In particular, it does not use randomization at the de-
coder anda fortiori, does not need to know the realization of the
We dedicate this section to an application of the generic restdhdomization sequence used by the encoder. This is in contrast

Cy[—M log(MCyN~Y3H|NL/3 4

In particular, the normalized distortion redundancy is low
bounded byl /2.

IV. APPLICATIONS

of Section Il to a few representative cases. to the source code constructed in [14] which not only required
_ the availability of a randomization sequence at the decoder’s
A. Scalar Quantizers side as well but required that both the encoder and the decoder

Though the reference class in the above theorem is finitedispose of thsamerandomizing sequence (as in models where
can be straightforwardly applied to obtain delagource codes a “subtractive dither” is assumed, cf. [22], [20]).
WhiCh. competg with any reference class having awell-bghayed Proof: It is straightforward to show (cf. [14, Lemma 2])
_effectlve covering number. One examplefors_uch an appllcatl [htfor anyA > 2there exists as@s — {Q1, ..., Qu} C Q
is for the reference class of all scalar quantizers considere 'Lh that for allV andz € 4>
[14]. Specifically, consider the case = X = [0, 1] with the ) ) 1
squared-errqr d|§tortlod(xi, ) = (x - #;)2. An M-level Jain dg (z) < glféfg dg (x)+ N T
scalar quantizef) is a measurable mappif@ 1] — C whereC A
is any finite subset df, 1] with cardinality|C| = M. Following Therefore, lettind £, D) € #° be the source code of Theorem
[14], we letQ denote the class of all/-level (M = 27) scalar 1, tailored for the se@ 4 ¢ F?={, we obtain

(18)

guantizers and let 1 ) 1
N E N dé\E, py(®) - éfclfg N djq\) (z)
dy(x) =Y (zi — Qz:)). . 1y 1
=1 S By de o) - auin 5 do(@) + gy
We then have the following. B
N _ 1
Corollary 2: LetX = X = [0, 1] andd(-, -) be the squared- < Ch(log )N 12 4 AUM _ 1 (19)

error distortion measure. For afi £ < 1 and N sufficiently
large such thatv/(log N)? > K /e* there exists a zero-delay
source codéE, D) € F° such that for alle € X we have

where the second inequality follows from Theorem 1 (assuming
N is sufficiently large, a fact we shortly verify to follow from the
hypothesis of the corollary). Taking = [(MCyN—1/3)=M7,

both ;
1y 1 Nz ( N2 we obtain
E—dY o (2)— inf — d(z) < Ko(log N)N~Y3 (16) 1 . oy
N “E D) Qeg N @ F+ dip, py (@) — erelfg ¥ dyy ()
and
I . ; < Oy | =M log(MCyN~Y3)| N~Y/3
Pr {N [dé\p my(®) — q1)I€1fQ dg (m)} > 5} S Ca [ Bi 2 )}
< exp {—K352N2/3} (17) + (MCyN-1/3)-1 _1
where K, K», K3 are positive constants which depend only < Ky(log NYN—Y/3, (20)
onR.

We note that for (19), and hence for (20), to hold we need (by
As can be seen by examining the constants in the prodfeeorem 1) to requirev > (Ci(log A4)?)/(¢®). But, by our
(of both Corollary 2 and Theorem 1), the dependence of tlloice of4, log A is, up to a multiplicative constant (depending
constants on the ratg or, equivalently, onM/ is according to only on M), equivalent talog NV and, therefore, it is enough
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to requireN > (K;(log N)?)/(e®) for someK; which estab-  The reader is referred, e.g., to [10], [12] and the references
lishes (16). To arrive at (17), it is easy to verify that the hypothherein for a comprehensive account of the theory and prac-
esisN > (K (log N)?)/(¢)implies alsal /(AY/M —1) < e/2 tice of DPCM-based coding schemes. Following is a laconic

(for a suitably choset;). Hence description intended primarily to introduce notation for later
use. A DPCM delayless source code of ordés an element
1 N . 1 N of F°, which is fully characterized by a predictd?: > —
Pr{ —db — inf —di(z) > ' ;
r{N =, p)(®) gco N Q@) 2 E} R and anM-level quantizer) € Q. The encoder produces
1 1 theith channel symbol representing the valuegt; ), where
<Pr {N . py(®) — aniQn ¥ doy(x) > 5/2} e; = r; — P(&!”1). The decoder gives thith reconstruction
? CQa

according taz; = Q(e;) 4+ P(&:_1). For concreteness in ini-
< exp {—K352N2/3} 1) tializing the predictor take, sag’, , = (a, ..., a) for some
a € &. An important subset of this family is that where the

mpurce and reconstruction alphabets are (possibly subsets of) the
real line and the predictdP is a linear time-invariant predictor,
ie., P(Ji’;:i) = Zj’:l hj.f}i_j.z We |etf‘DpCM($, 7, R) de-
note the class of all DPCM delayless source codes of order up
to s having a linear time-invariant predictor with impulse re-

A class to which Theorem 1 can be directly applied is thaponseh satisfying||ill, = >27_, |h;| < 1 —» and oper-
of sliding-block codes (cf., e.g., [9]). Assume here an arbitragting at rateR. The reason we are interested in such impulse
distortion measure. A finite-constraint length, time-invariant emesponses is the strong stability of the decoder (linear feedback
coder with constraint-length, memoryl,;, and delayl, = system)thattheyinduce. Specifically, this property ensures that
I — Iy — 1is a mappingf: &' — {1,2,..., M} yielding the respective outputs of a DPCM (having suchhjufied with
the channel symbol$y;} defined byy; = f(a:jﬂjl). Simi-  similar inputs will also be similar. Assume that the source and
larly, a sliding-block decoder with constraint lendtlis a map- reconstruction alphabets in what follows consist of a bounded
pingg:{1, 2, ..., M}* — X yielding a reproduction processsubset of the real line and thais the squared-error distortion.
Ty = g(y§7k+1). When the source and reproduction alphabels particular, we can assume that the distortion measure and the
are finite, it is easy to see that the cardinality of the class ofagnitude of the components of the source and reconstruction
all such sliding-block source codes with respective constrasgquences are bounded By> 0.
lengths ofl and k is MI!*I" . |X|M". Therefore, Theorem 1
guarantees the existence of a source code with dglashich
achieves the lowest distortion attainable by any sliding-blo
source co_d_e with constraint Ie_ngmsk and delayy, uniformly _ N > C1[(log | A])(log |A| 4 Cy(s, n)R)]/(E?’)
for all individual sequences in the sense of (2) and (3) (with )
4] = Alxl |X|M"). For the case where the alphabets aifere exists a delayless source céfle D) € F°(R) such that
not of finite cardinality, competing witill such sliding-block for all z € A=
source codes of a given order is clearly an overambitious task. [ 1 N
However, any sufficiently smoothly parametrizable subset {N [d(E, p)(®) = i d(E’,D’)("’:)}}
this class can be dealt with using appropriate grids, similarly ) ) 1/3 ar—1/3
as was done in the proof of Corollary 2. < Col(log |4 (log Al + Ca(s, mR/? - N2 (22)

Anotherimportant related family of source codes that are codnd
ered by Theorem 1 consists of the block trellis codes (cf., e.q., [ 1 aN ~ oin g S
[9], [11]). In particular, note that a block trellis coding scheme ' | v [ 2, 0)(2) e (E“D')(“T)} =
of constraint lengthi’ and search depth, which consists of log | A| 1/3
a constraint-length sliding-block decoder and a depth: < exp {—Cg( & ) 52N2/3} (23)
trellis search encoder matchedgds a member ofF L !, log | A + Ca(s, )

where the first inequality follows from (18) and the second o
follows from Theorem 1 (inequality (3)).

B. Sliding Block and Trellis Source Codes

Theorem 3: Let .4 be a finite subset afppan(s, 7, R) for
a?mes >0, R,and0 < n < 1. Thenforanyd < e < B and

whereC;, Cs, Cs are positive constants which depend only on
C. Adaptive Differential Pulse Code Modulation (DPCM) B andR andCy(s, ) > 0for all s, n > 0.

We dedicate this subsection to specializing the approac_hNOte that Theorem 3 does_ not follow directly_frqm Theorem 1
demonstrated in Theorem 1 for obtaining an adaptive schefi{ace a source code belonging&rc (s, 1) will, in general
which “tracks” the differential pulse code modulator (DPCM)(for s = 1), not have a finite-memory decoder (note that the
out of a given family, which does best on the data. DPCM-bas€@coder’s output depends on the present channel symbol and on
schemes are widely used in speech and image applications BAgreconstructiorsymbols). The proof of Theorem 3, however,
are, therefore, of considerable practical interest. In particulfnich we outline below, is very similar to that of Theorem 1. In
the study of such coding schemes within the individual-s@articular, the construction of the source c¢éle D) satisfying
quence framework which we consider here is especiaﬁ?z) and (23) is essentially the same as that in Theorem 1.
relevant for many image compression situations in which therQNote that in this case the decoder is a simple linear time-invariant feedback
is no natural statistical model for the data. system.
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Sketch of Proof : The construction of £, D) follows that the reference class consists of time-invariant sliding-window
in the proof of Theorem 1 essentially verbatim. The only diffeischemes. It is currently unknown whether the approach we will
ence is that now, at the decoder’s side, from time present can be similarly applied to handle reference classes of

1 other types.

i=(k—-1Il+ [—10g|.z4|—‘ +1

R A. Problem Formulation
up to the end of the block = &, the decoder, knowing the  \ne now formalize the notion of a limited-delay sequential
identity of D™ (equivalently, of the linear predicté®) and of gource code for the case where the individual sequence to
the quantizeQ("‘)),_(l)utputsareprodu_cltion sequence by feedinghcode is corrupted by noise. Specifically, we assume now,
the incoming@™ ™" (y;), whereQ®™"(-): ,{1,..., M} — as in the noise-free case, that there is an individual sequence
[0, 1] denotes the inverse transformation of the quantiyér, z1, 2, ..., z; € X to encode. The encoder—decoder pair,
into the linear feedback system characterizing the decbéfer however, accesses the sequetfge Zs, ..., Z; € Z, which
where the decodeb assumes that up to this point in time thgs the output of the fixed memoryless channel whose input is
input to the system was constant at say zero. The only thing lgfe individual sequence of interest, ., . ... For simplicity
to verify is that the performance of this scheme onktteblock  of the exposition, we assume th&t = Z is finite and we let
is not too heavily deteriorated, relative to the performance af denote thet x X channel transition probability matrix,
(E®, D), by the fact that the input to the decodef*) up  which we assume invertible. The approach we will present can
to time¢ was in fac{ Q™" (y;)} ;< and not constant at zero ashe applied to more general cases.
the decodeD is assuming. This can be done via the following For this setting, we define a deldy= d. + dg (d., dg > 0)
crude calculation: ifh is the linear filter associated with anysequential scheme for combined filtering and compression of
scheme iFppem(s, 7, R) andH is its Fourier transform then fixed rate R = log M with a randomized encoder by a pair
the Fourier transform of the impulse resporfsef the decoder (E, D). The randomized encodéf is given by a sequence
(the linear feedback system) is given by= 1/(1 — H) or, {E;}s2 , whereE;: Xt x [0, 1] — {1, 2, ..., M}. The

more explicitly, by decoderD is given, as in the noise-free setting, by a sequence
oo T s l {D;}e2,, whereD;: {1, 2, ..., M}Yitd — X This scheme
F(ei®) = Z Z hpe—ik| (24) oOperates as follows. The encoder produces ithechannel
=0 L=t symbolY; € {1,2,..., M} based onz‘*? and on the

L _ random sequendg’ according toY; = E;(Z‘t4-, U*), where
Th? factAthat|_|h||1 < l-m clearly |mpllgs that for arbl_trary {U;}$2, is arandomization sequence of i.i.d. random variables,
Y, y_EW XfWh'Ch f:(:n(f'df berzltween any time— r andt, i.e., uniformly distributed on0, 1] and independent ofZ;}. The
yr = yp fort —r < < tthen decoder emits the reconstructed sequénce:,, ...according

} ad to 2; = D;(Y"td4). We continue to letF?(R) (F?), where
*fe—@x el <B- > Q-p™ R = log M, denote the class of all such combined filtering and
m=|r/s] compression schemes operating at the fixed fatnce they
< B(l —n)r/? — (B/m)(1 — )"’ have exactly the same structure as in the noise-free case.
— T on(l—-n) n e The definition of the cumulative distortion of a scheme

Now, if a, b, ¢ € [~ B, B] and|b — ¢ is small then (E, D) € F® remains as in the noise-free setting

(a—0)% < (a—c)?+3Blb—d A py(@®) = d(x, &) (25)
=1
It thus follows that the differences between the (unnormalized
cumulative distortions ofE, D) and(E®*), D®)) on all blocks
(of all lengths) are uniformly upper-bounded by

oo

ered: X x X — [0, B] is a bounded distortion measure

(B < o0) and here thé;s on the right-hand side are generated

by feeding the noisy sequenét = 2, Z,, ... into (£, D)

. /s as described above. Note t () is a random variable
Z(B/”)(l =) = C(s, m) < oc. which depends on the realization of the channel noise and of the
r=0 randomization sequenég&®. As before, we similarly denote, for

Hence, an inequality is obtained which is analogous to (7), with) < n,

s replaced bys + C(s, n). The remainder of the proof carries -

through verbatim. U dis ' (@) = Z d(x;, ).

1=n1
V. THE NOISY SETTING

In this section, we consider the case where the individual & Time-Invariant Sliding-Window Schemes
quence is corrupted by noise. Limited-delay coding schemesA member(E, D) of F¢ is a time-invariant sliding-window
are sought, for this case, which operate on the noisy sequeackeme if there exist;, do, d3, dy > 0, f: Zh+dtl
and produce a reconstruction sequence which is judged with f&; 2, ..., M} andg: {1, 2, ..., M}dsFdatl X such that
spectto the clean individual sequence. Contrary to the noise-ffee all ¢, the ith-channel symbol generated by the encoder is
case of the previous sections, we shall consider the case wtgven byY; = f (Z;fjf) and theith reconstruction symbol by
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Ty = g(Y;fd‘i“). We refer tod; (ds) as the encoder- (decoder-) Proof:

memory and tod, (d4) as the encoder- (decoder-) horizon. o

We let Fdisdz;dsds « rdatds denote the family of all such & {M(m)a,b : M(m)ZZ_'+I_v7a}

time-invariant sliding-window schemes. ’
1) Estimating the Distortion of E, D) € Fd1:dz:ds.ds: Un-

— . .. -1
fortunately, the cumulative distortion of a schet#g, D) ¢ =B M(mas Z 1{Z§f§="'}M(m)"':“

F?, which was defined in (25), depends on the individual se- velxm
quencee and, therefore, is not available when only its noisy ver-
sion Z is accessible. Motivated by the approach which guided = EQ M(m)q,s - Z
the construction of the coding schemes in the noise-free setting, belxpm
our first goal in the noisy setting is to obtain an efficient esti-
mator for the distortion suffered by a schemefifit 2: ds- 4 DD Larthia gty | M(m),,
which is only based on the observed noisy sequéhcko this aelxm o
dy,dz,ds, da i
end, let(E, D) € F be given and denote = M(m)as- Z
~ i i i _ 1+(ds+d. ; .
b= (Vi) = (LA (ZLTEV ) = MZEET ). vkl
We can now write -
e D Lty My | Mm),
m i+(dz+da) a’c|x|™
(e, p)(&) = Z d (a:i, h (Zi—(d +4 ))) (26) -
P LT = M(m)m(, . Z M(m)xz:tl;?b/M(m)b/}a
n ) blel‘Ylm
_ i+k
= d(w MZE) @7) = M(m)a,p - L+ ,
i=1 =37
= Y dajs1, hB)N(=, Z, a, b) (28) = M(m)ap 1)
(a,b)cxymxzm =FEl (zitr=a, ZTh=p) (30)

where we denote; +ds = j,ds +dys = k,m = j+ k+ 1, where the third equality follows from the fact that

the ;7 + 1th component o& by a;_{, and
J + p y aj+1 El{w:t};:a,,zjti:b,} = 1{$:t§:a’} . M(m)a/J’/

N™(z, Z,a,b) = [{1 <i<maith =a, ZHF = b}, and wherel denotes the identity matrix. O
Evidently, efficient estimators for the unobserved We now let
{N"(2, Z, a, b)}(a,pycxmxzm N2 o272 3" M(m)a, - M(m)Jh, . (31)
i=1 i

would lead to an efficient estimator fdf‘E D)(a:) by plugging )
; i be our estimator for the unobservad (z, Z, a, b). Note that
these into (28). ==t
Let M(m) denote the transition matrix characterizing thée estimation error
memoryless noisy channel for vector inputs of lengthin-  N"(z, Z, a, b) — N,:,,(Z"*’“)
duced by the channel matri{ . Specifically,M (m) is a|X'|™ x n
|X'|™ matrix whose entry g, b) € X™ x X™ (where the rows => <1[wg+k;=a zith gy — M(m)ay - M(m) i a)
and columns of\/ (m) are arranged according to some lexico- i=1 o =
graphic ordering ofX'|™) is given by the probability for noisy A w—
ZT¥ = bwhenz{T* = a. Since the channel is fixed and mem- = Z bi, (32)
oryless, this means _ =t .
is, by Lemma 4, a sum of zero-mean, bounded random vari-

M(m)a = ﬁ M, .. ables. Furthermore, these rand_om variables have a_we_ll-behaved

’ bt ok dependence structure. In particular, foralk 1, §; is inde-

pendent of 6, },-;+m. Hence, by standard techniques (cf., e.g.,

We will further let M(m), }, denote the entry correspondings]), it can be shown that the estimation error will typically be
to (a, ) in the inverse matrix of\/(m), which exists by the ((,/n), that the probability of its magnitude exceeding for

existence ofM —! which is assumed throughout (recall SeCanyg > 0, decays exponentia”y rapid|y, pointwise asymptotic
tion V-A). The first observation we make toward constructingounds on its magnitude in the ordergf. loglog n, etc. Mo-

an estimator foiV"(z, Z, a, b) is the following. tivated by this, we finally let our estimator for the unavailable

Lemma 4: For alli > 1 andzit* € a™, the observable cumulative distortion/';, ,)(z) be

=

71 . . . ~ ~ .
M(m)a,s - M(m)z?jgs,a is an unbiased estimator for (the un- Ay py(Z) = E: d(aj41, h(b)) - sz(Zn+k).
observed)l i+ _, zi+i_y,- Thatis, (@, L)EX™ x X

(33)
_ 2) The Coding-Filtering Scheme for the Noisy Cag&quip-
1 _ . .
E {M(m)“:" “M(m) a} = El{m§i§=a7 7zt =b}- (29) ped with an estimator for the unobserved cumulative distortion

i—j?
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of a sliding-window scheme in the noisy setting, we now cora.4-valued random variable with distribution satisfying almost
struct an adaptive scheme which is similar, in principle, to thatirely
of Section Ill. The essential difference is in the fact that t OO\
randomization is performed with respect to a distribution ::f—r{(E » D ) =&, D )|gZ}
signing weights which are exponentially proportional toése exp {_77 JE’;TB%(Z)}
timatedpast distortion. This approach has recently lead to ef- ’A ,
ficient schemes in the context of prediction of individual se- > exp<—n d(’f_})l(Z)
X . (E,D)

guences corrupted by noise [17]. (E,D)eA

Theorem 5: Let A be a finite subset af s 4. s (R) for whereGz is the smallest sigma-algebra with respect to (w.r.t.)
somedy, ds C.lg dy > 0 and a givenk = log M. Then there which all Z;’s are measurable ang > 0 is taken as in The-

exists a source code, D) € F(R) (6  da + da) such that M 1. For convenience, we [ andg*) denote the sliding-
foranye > 0, N sufficjiently large éo th;t 2T window encoder and decoder, respectively, characterizing the

source cod¢E™), D)), The encoder now dedicates the first
+ log|A[] channel symbols at the beginning of tktia block,

By/log|A|/2- N~Y/* 4 BN~Y/? <% log |.A| +6) <e/3 ie.,Y; for
i=(k—-1I+1, ... (k= 1+ Ebgwﬂ

V(E',D)e A (35)

and allz € A
. to convey to the decoder the identity ¢f). At the remainder
Pr {N [d(;:,p)(-"?) _ (E’I,%i’r)le/l da;:f,pf)(-’ﬂ)} > 5} of the block, i.e., at channizl uses
i=(k—-1l+ |=loglAl| +1, ..., K
< 5V N|A||X[>™ exp {—\/N52o} (34) i=(k-1) [R og| ﬂ
the encoder produces the channel symbols
whereC is a positive constant (which depends only Bn R, Y, = f(’“)(Z?sz).
A, m, andmax g pye vmx v M(m)}, the explicit value of .

which will be apparent in the proof). On the decoder’s side, at the beginning of the block, at channel

uses
Note that here, as in the noise-free setting, the scheme which ) ) 1,
we construct, in addition to complying with the delay limitations ~ * = (B=1I+1, ..., (k= 1)+ R log|-A]| +ds

of the sliding-window schemes with which it competes, operat@s, jecoder outputs an arbitrary reproduction sequenggwf
at the exact same rate. . ) f i = (k—1)I+[ % log | A[] +ds+1th channel use up to
We further remark, as we did in the noise-free case, that whﬂ@e end of the block = kI, the decoder, knowing the identity of

the source cod¢L, D) depends on the lengthy of the se- () 4 the output of ® at leastds channel uses back, outputs
quence, it is straightforward to use it to obtain a strongly sg; reproduction sequence accordingfo= ¢ (¥;i+%)
1—ds /°

q_“er_‘“a' (ho_riz_on-independent) scheme for Whic_h_ a concentra-r,, analyze the performance of the above scheme and to estab-
tion inequality in the form of (34) holds for all sufficiently Iargelish (34), we will consider a genie-aided scheme. Specifically,

N . One can then apply the Borel-Cantelli lemma to obtain gl (. 1) be a source code which is allowed to access the
most-sure asymptotic performance guarantees. Finally, we Lsan sequence as well as its noisy versiof. This scheme

mark that in the above theoremd, can be taken as the set ofy ;o ateg exactly a#2, D) described above, with the only dif-
all sliding-window schemes of up to a certain order (MeMOR, o« that the paifE®, D®) is generated (using the ran-
and horizon), which is a finite set in the finite alphabet Cas§umization sequence) according almost surely to

By gradually increasing the order and employing the scheme

of Theorem 5 tailored for this order on consecutive blocks &fr { (E(k), D(k)) = (F, D/)|QZ}

lengths which increase at the proper rate, a scheme can be ob- S
tained which asymptotically almost surely achieves the perfor- ~ “*P {_77 (E’,D’)("”)} V. D) eA (36)
mance of any sliding-block scheme, no matter what the under- T ex {_ d(k_l)l(:l‘) ’ ?
ina indivi 2 P17 %E b
lying individual sequence may be. (B, DyeA

Proof of Theorem 5:The construction of £, D) € F¢=+4+  rather than according to (35) (this is where the “genie” comes
which follows is similar to that in the proof of Theorem 1, within since the generation ¢&£*), D)) from such a distribution
the essential difference that the past cumulative distortionsrefjuires knowledge o[fd(%_gl(z)}@ pye.a Which depends on
the schemes i, which are now unavailable to the encodethe clean sequenag. All the stages of the proof of Theorem 1
are replaced by their respective estimates for the purpose of rearry over essentially verbatim foE, D¢) (with s replaced
domization. by 6). In particular, we have, as in (9), almost surely

Fixan! « N and divide thetime axis=1,2, ..., Ninto =
n =N/l conse_cut_ive nonoverlapping blocks (ass_Urdiyides Z E [dé'&;l);l)“(m)‘ Qz} — min dé\F f))(“')
N). At the beginning of thésth block1 < k < n, i.e., atthe =1 (E,D)cA
i = (k — 1)l + 1th channel use, after seei#f*° and when

1
. : LI l/2 il PO
U’ are available, the encoder udésto generaté E(*), D)), < By/log|A|/2-in"/" + Bn <R log | A] + d) - @3N
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According to [14, Lemma 3] for arbitrary

731

bining inequalities (40)—(42), taking = I = /N, applying
the union bound, and noting th@t < 1/(2B?) gives

(al, ey CLN), (bl, e bN) e RY
. )
andC > 0 Pr d> — min d¥ - (z)| >
N N {N [ = D)( ? (E,DyeA (% D)( |2
e~ %oy e Y 1
wup J; T El ! < exp {_\/_(5/ 3)* 232}
(ay,...,an)€E0,C]Y N —as N, iy L12m 2
> e et + 4V AL | exp { ~ VN (2/3)C1 }
j= j=

(38)

<SVN AP exp (VN (e/3)°C1 ) (49)

<2C max |a; — byl
1<EN

. L for all vV sufficiently large so that
From the construction of the genie-aidéB, D¢) and our
log|A|/2- N~Y* + BN=Y?(Llog|A] + 6) < /3.

legitimate(E, D), it follows by an application of (38) that for B O

all < k<n

k { ki k { ki
‘[E[dEEB)H (z)‘gz} [E[dEE D (x)‘gzﬂ

Note that the main idea in the above proofis similar to that un-
derlying proof of Theorem 1 with the added ingredient that this
time, the randomization at the beginning of each block is per-

< 2Bl max ‘dE’;; (Z) — dE’fEf,l,E’,)(w)\ a.s. (39) formed according to (35), where estimators for the unobserved
’ distortions associated with the schemes in the reference class
This leads to are employed. Evidently, Theorem 5 can be extended to account
" for reference classes other than time-invariant sliding-window
Z E [dg’; 11)>)l+1 “( )‘ gz} _  min dj\é (@) schemes, provided a way is found to efficiently (uniformly for
=1 (B,D)ca D) all individual sequences) estimate distortions associated with

more general schemes. The construction of such estimators for

1
< B\/log|A|/2-In'/? + Bn <§ log | A| + d) general schemes has defied our efforts thus far.

+ 2Bln z":

k—1)1
dEF ,)),)(a:)‘ a.s.

(40)

(2)-

max

(E’ D’)EA VI

Directions for related future research include.

d(k 0l
FUTURE DIRECTIONS

(Fr, D)

1) As discussed in Section lll, the implementation of the
source code constructed therein is impractical for a
large reference class as the algorithm is required to
effectively run all the schemes of the reference class in
parallel. It would be of interest to find a more practical
scheme which is universal in the sense dealt with in
this work. We mention, however, that for reference
classes of a relatively small size (a few dozens at the
most), the algorithm of Section IIl has been implemented
and shown to be quite effective for various types of

where we recall thay is taken to bey/8log |.A|/(12B?n). To
conclude, we show that the first term on the left-hand side of
(40) is, with high probability, close t@é\E D)( ) and that the last
term on the right-hand side of (40) is small with high probability.
Specifically, it is shown in the Appendix that for all> 0

™

< exp {— (41)

E—1)I4+1, ki
Aoy (“)‘gz}

}

2N2g2

n(21B)? data. Details can be found http://visl.tech-
and nion.ac.il/projects/2001s16/
(k—1)1 (k—1)1 2) Extension of the main result of Section V to reference
_2 ZWZ(F}T})EP)(&A‘CZ(E' D’)(Z) dig, D’)('T)‘>E classes other than those consisting of time-invariant

N sliding-window schemes.

< 4n|A| |X|2m exp {—— 0152} (42)
n APPENDIX

TECHNICAL STAGES IN THE PROOF OFTHEOREM 5

where
5 a1 s 1 Proof of (41): Since the randomization sequerléas inde-
Cy = (32log |[AlmB~B~|X|™™") pendent of the channel’s noisy output, for almost every realiza-
and tion of the noisy sequencs, the difference
B= max M(m); 5 n

(a,b)cx™xx™ ’

-2 E[d D @) o]

k=1
k—1)I4+1, kl - k—1)I4+1, kl

=3l D) - Y E [ B )|

k=1 k=1

(F n)(Z
Choosing this time: = I = /N (as opposed to the < N2/3,
I = N'/3 regime of the noise-free case), the above two upper
bounds give the same exponential speed of degay) Com-
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underPr{-|G~} is distributed as a sum afzero-mean indepen- Consequently, each of the summands in the right-hand side of

dent random variables bounded in magnitudé 4. Applying
Hoeffding’s inequality [3, Theorem 8.1] gives

(A2) is upper-bounded by

_ 2 _ 2
(i) | (i)

1 r - k—1)I+1, ki de - de ~
Pr {N <dé\E, D)(w)_ZE[dEE, P (w)‘ gz}) >e gz} Y 2k (= ONmB?
k=1
2.2 A4
< exp{—LEQ} as. (Al (A4)
n(21B) which finally gives
Taking expectation over the above inequality completes the ¢ ,,
F(k—1)1 k—1)1
proof. | | U pr {Z (E}PDEP)%A dEEz,%,)(Z) - dEE,j,)j,)(:r)‘ > 5}
Proof of (42): Using the union bound generously, we have ‘*=1 )
for all e > 0 < 4n|A||X]*™ e {— < } A5
- (=11 (k—1)1 = A e Nn?mB?B2| x| o)
Pr{;w}fg%‘w degr, pn(Z) = d(E’,D’)(:t)‘ > 5} Inequality (42) is exactly (A5) with the assignmeat —

_ gk

pe{|d 5,2 - a3y @] > i}

>

(a,b)ex™ xxm™

d(a;11, h(b))

(1]

SDIEDS

k=1 (E/, D')EA (a,b)eX™ x X'

-Pr{ ‘stcgl)l (Z(k—l)l-i—d) _ N(k—l)l(w’ Z. a, b)‘

(2]

(3]

€ [4]
To bound each of the summands in (A2), recall that it was estab+5]
lished in Section V-B1 that for gac(h, beamxam and all (6]
t, Nji’b(Z“fd) —N'(z, Z, a, b) is a sum oft random variables
22:1 6;, where theb;’s are almost surely bounded by

(71

> —1

B = (a,b)elg’a*} x X M(m)a,s
and where{6;},<; is independent ofé; } i+, for all 4. For
a givent, we can divide the set of indexdd, ..., ¢t} into
[t/(2m)] “intervals” of length2m each (except, possibly, for
the last one which may be shorter). The sum frbto ¢ can be
decomposed into a sum over those indexes that belong to thmo)
first m indexes of some interval, and a sum over the comple-
mentary set of indexes. By the aforementioned independenélel]
property of{é;}, each of these two sums is a sum of (at the[12]
most) [t/(2m)] independent, zero-mean random variables
bounded in magnitude by: - B. Therefore, applying Ho- [13]
effding’s inequality to each of these two sums and employing
the union bound gives for all > 0, (a, b) € &™ x A™, and  [14]
all ¢

Pr {‘N;b (Z(’“_l)”'d) _ N'(z, Z, a, b)‘ > 5}
2(e/2)?
= de {_ [t/ (2m)](mB)? }

2
4exp{ ° }

a 2tm B2

(8]

9]

(15]

(16]

(17]
<

(A3)

eN/(2Bln).
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