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Abstract—We study the problem of gambling in horse races optimal gambler's wealth with and without side information
with causal side information and show that Massey's directé Yy Thus, Kelly’s result gives an interpretation that mutual

information characterizes the increment in the maximum achev- —intormation 7(X; Y) is the value of side informatio” for
able capital growth rate due to the availability of side infa- the horse raced

mation. This result gives a natural interpretation of directed o ]
information I(Y™ — X™) as the amount of information that Y In order to tackle problems arising in information systems

causally provides about X™. Extensions to stock market portfolio  with causally dependent components, Massey [5] introduced
strategies and data compression with causal side informaih are  the notion of directed information as
also discussed.

n

I. INTRODUCTION (X" —Ym) 2 ZI(Xi;}/in/ifl)’
Mutual information arises as the canonical answer to a va- i=1
riety of problems. Most notably, Shannon [1] showed that the ] . ) ]
capacityC, the maximum data rate for reliable communicatiof"d Showed that the maximum directed information upper
over a discrete memoryless chanpéy|z) with input X and bounds the capacity of channels with feedback. Subseguentl

outputY’, is given by it was shown that Massey's directed information and its
variants indeed characterize the capacity of feedbackwod t
C= TZ?(%))(I(X;Y), (1) way channels [6]-[13] and the rate distortion function with

. . . _ feedforward [14].
Whlc.h leads _naturally o the operational interpretationmaf- The main contribution of this paper is showing that directed
tual information! (X Y) = H(X) — H(X[Y) as the amount ntormation 7(Y™ — X™) has a natural interpretation in

of uncertainty aboutX' that can be reduced by observation,mpjing as the difference in growth rates dueaosal side
Y, or equivalently, the amount of informatidfi can provide jnformation. As a special case, if the horse race outcome and
aboutX. Indeed, mutual informatiod(X;Y’) plays the cen- the corresponding side information sequences are i.hen t

tral role in Shannon’s random codingn argumt;:;nt, because @ (normalized) directed information becomes a singlerlet
probability that independently drawi™ and Y™ sequences ma| information/(X;Y), and it coincides with Kelly's
“look” as if they were drawn jointly decays exponentiallygqit.

with exponent/(X;Y’). Shannon also proved a dual result
[2] showing that the minimum compression rateto satisfy
a certain fidelity criterionD between the sourc& and its
reconstructionX is given by R(D) = ming, |, I(X;X). In
another duality result (Lagrange duality this time)[id &gal-
lager [3] proved the minimax redundancy theorem, conngcti
the redundancy of the universal lossless source code to
capacity of the channel with conditional distribution ditsed
by the set of possible source distributions.

Later on, it was shown that mutual information has also an
important role in problems that are not necessarily relaed 1l. DIRECTED INFORMATION AND CAUSAL CONDITIONING
describing sources or transferring information througarch
nels. Perhaps the most lucrative example is the use of mutual hroughout this paper, we use tbausal conditioning nota-
information in gambling. tion (-||-) developed by Kramer [6]. We denotezas:™[[y" %)

Kelly showed in [4] that if each horse race outcome cafi€ probability mass function (pmf) oK™ = (X3,..., X,)
be represented as an independent and identically distdbugausally conditioned onY”~¢, for some integet > 0, which
(i.i.d.) copy of a random variabl& and the gambler has some's defined as
side informationY” relevant to the outcome of the race, then n
under some conditions on the odds, the mutual information p(a"[jy"— ) 2 Hp(a?ila?ifl,yifd)-
I(X;Y) captures the difference between growth rates of the el

The paper is organized as follows. We describe the notation

of directed information and causal conditioning in Secfibn

In Sectior1ll, we formulate the horse-race gambling prable

in which side information is revealed causally to the gamble

We present the main result in Sectionl IV and an analytically
olved example in Sectignl V. Finally, Sectlod VI concludess t
E\per and states two possible extensions of this work tdk stoc

market and data compression with causal side information.
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(By convention, ifi —d < 0 thenz~? is set to null.) In Finally the growth rate LW (X"||Y™) is defined as the nor-

particular, we use extensively the caskes 0, 1: malized growth.
n Here is a summary of the notation:
p(z"||y™) £ Hp(xiw—l’yi), ¢ X, is the outcome of the horse race at time
i—1 ¢ Y] is the the side information at time
n , , o o(X;|X71) is the payoffs at time for horse X; given
pa"ly" ") & [ pala'ty ). that in the previous race the hors&$—! won.
i=1 o b(X;|Y? X?~1) the fractions of the gambler's wealth
Using the chain rule, we can easily verify that invested in horseX; at time i given that the outcome
of the previous races ar¥*~! and the side information
p(a”,y") = p(a"[ly")p(y"||lz" ). available at timei is Y.

o S(X™|Y™) the gambler’s wealth after races when the

The causally conditional entropy H (X"||Y™) is defined as o .
y py H(X™|[Y™) outcomes of the races af€™ and the side information

H(X"|Y™) £ E[logp(X"||Y™)] Y™ is causally available.
n o LW(X"||Y™) is the growth rate.
=Y H(X;| XYY, Without loss of generality, we assume that the gambler’s
i=1 capital is 1 initially; therefore5, = 1.
Under this notation, directed information can be written as IV. MAIN RESULTS

- In Subsectiof IV-A, we assume that the gambler invests all

his money in the horse race while in Subsecfion 1V-B, we
=1 n nlon allow the gambler to invest only part of the money. Using
= H(X") - H(X"[]Y™), Kelly’s result, it is shown in Subsectidn IV}B that if the agld

which hints, in a rough analogy to mutual information, a po&'e fair_ with resp_ect to some distribution then the gambler
sible interpretation of directed informatial(y™ — X™) as Should invest all his money in the race.

the amount of information causally available side inforioat A |nvesting all the money in the horse race

Y™ can provide abouk ™.

Note that the channel capacity results involve the ter
I(X™ — Y™), which measure the information in the forwar
link X™ — Y™. In contrast, in gambling the gain in growthS(X"||Y™)=b(X,| X" 1Y™)o(X,| X"~ 1)S(X" H|y™ ).
rate is due to the side information (backward link), an
therefore the expressioY™ — X™) appears.

I(Y" = X") = I(X; Y X"

We assume that at any time the gambler invests all his
pital and therefore

ﬁ{his also implies that

n
— -
[1l. GAMBLING IN HORSE RACES WITH CAUSAL SIDE SXMY™) = [ b(X X1 Y o(X; | X,
INFORMATION i=1
The following proposition characterizes the optimal et

Suppose that there are: racing horses in an infinite strategy and the corresponding growth of wealth,

sequence of horse races and [t € X £ [1,2,....m],

i = 1,2,..., denote the horse that wins at timie Before = Theorem 1. For any finite horizom, the maximum growth

betting in thei-th horse race, the gambler knows some sid@te is achieved when the gambler invests the money propor-

informationY; € ). We assume that the gambler invests all higonal to the causal conditioning distribution, i.e.,

Eapltal in the h’or.se race as afuncuon of the mformatlot)h]?a b*(zi|iL, ) = p(xi|ri~L o), Valyli<n, (3)
nows at timei, i.e., the previous horse race outcon’és

and side informatioy™® up to timei. Letb(z;|z*~', ") be the and the growth is

proportion of wealth that the gambler bets on harsegiven W*(X™|[Y™) = E[log o(X™)] — H(X"||Y™).

X1 =2~ andY? = y’. The betting scheme should satisfy

b(wilz'~t,y*) > 0 (no short) andy>, b(wilz'~",y') = 1for  Note that the sequenchy(z:|zi~',y")}7, uniquely de-

any historyz'~", y’. Leto(x;|'~") denote the odds of a horsetermines p(a||y"). Also for all pairs (z",y") such that

a; given the previous outcomes™*, which is the amount of ,, 2"|ly") > 0, the sequencedp(z;|zi~1,y))}", is deter-

capital that the gambler gets for each unit capital investeged uniquely byp(z"||y") simply by the ideﬁtity

in the horse. We denote h§(z"||y™) the gambler’s wealth P

after n races where the race outcomes wefeand the side p(as)zi ™y = p(xi”y)

information that was causally available was. The growth, p(x=H|yi=1)

denoted byW (X™"|[Y™"), is defined as the expected logarithnn similar argument applies for{b*(z;|2*~*,4")}", and

(base 2) of the gambler's wealth, i.e., b*(z"||y™), and thereforel{3) is equivalent to

W(X"[[Y™") £ Ellog S(X™[[Y™)]. @) b (a"[ly") = p(a”[ly"™), Va" e X" y" e Y.



Proof of Theorem[lt We have B. Investing only part of the money

W*(X™|Y™) = max Ellogb(X"|[Y™)o(X™)] In this subsection we consider the case where the gambler
z"|ly™) does not necessarily invest all his money in the gambling. Le
= max E[logh(X"||[Y™)] + E[logo(X™)]  bo(y’,2'~') be the portion of money that the gambler does
bl lly™) not invest in gambling at time given that the previous races
= —H(X"|[Y") + E[log o(X™)], results were:'~! and the side information ig. In this setting,

where the last equality is achieved by chooshig”||y") = the wealth is given by

p(z™||y™), and it is justified by the following upper bound S(X™MIY™)

E[logb(X™|[Y™)] = [T (b0 Y") + (b(Xi X1, Yo, | X 1)),
— n ,n n|,,n b(xn”yn) i=1
= Y p(a"y") [logp(x"|ly") +log ———=—~ o .
Zrgn p(a™|ly™) and the growthV (X"||Y™) is defined as before ifl(2).
b(z"||y™) The termW (X™||Y™) obeys a chain rule similar to the
=—HX"|Y") + Y pla",y") 1OgW causal conditioning entropy definitioh (X™||Y™), i.e
wn7y7l
b(z"||y") W(X"|[Y™) = ZW X XL vy,
—H(X"||Y"™) + log p(a”, y") ——=
(X"[Y™) sz: ( )p(x"||y") gt
(b . where
(X"Y™) + ng;;np(y (=" 5)b(" ||y"™) WX X Y
— —H(X"[|Y™), @ = E[log(bo(X", Yi)+b(X’|Xl"1 Y9o(X,| X))
where (a) follows from Jensen’s inequality and (b) from thijote that for any given historyz"~",y’) € X'~ x )", the

fact thaty",. . p(y"|lz"~1)b(z"||y") = 1. All summations Detting schleme{bo( =y, ($z|~”€ ,y")} influences only
in @) are over the arguments”, y") for which p(z", y") > W (Xi|X*"1,Y"), so that we have

0. ThIS ensures thap(z"||y") > 0, anc_i therefore, we can Comax W(X"|[Y™)

multiply and divide byp(z™||y™) in the first step of[(4). ®m  {bo(='=1,y%),b(ws|o =1y},

In the case that the odds are fair and uniform, i.e.EZ max W (X, XL Y
O(Xi|Xi_l) = ‘% then bo(zi—1,y),b(x; |zi—1,yi)

lW*(X"||Y"):10g|X|—lH(X"HY"). —Z 2. ol Comax WGy,
i=1 gi—1 yi 0(1 i), bzl %)
Thus the sum of the growth ratelV’(X"|[Y™) and the en- The optimization problem in the last equation is equivalent
tropy rate;- H(X"|[Y™) of the horse race process conditionegh the problem of finding the optimal betting strategy in
causally on the side information is constant, and one can $88 memoryless case where the winning horse distribution
a duality betweenH (X"[[Y™) and W*(X"[[Y™"); cf. [15, p(x) is p(z) = Pr(X; = z|zi~1,y%), the oddso(z) are

th. 6.1.3] o(z) = o(X; = x|z'~"), and the betting strategibo, b(x))
Let us denote byAW the increase in the growth rate dugs (b, (2%, 4'~1),b(X; = =z|2*~1,y%)), respectively. Hence,
to causal side information, i.e., the optimization,max W (X;|z~1,y), is equivalent to the
1 1 following convex problem:
AW = =W*(X"||Y") — =W*(X™). (5)
" " maximize Zp(x) log(bo + b(z)o(x))
Thus AW characterizes the value of side informatidm. -
Theoren{ 1l leads to the following proposition, which gives a subject to by + Zb(x) -1
new operational meaning of Massey’s directed information. - ’
Corollary 1: The increase in growth rate due to causal side bo >0, b(z) >0, Ve X.

informationY ™ for horse races(" is
The solution to this optimization problem was given by

1
AW = EI(YH — X"). (6) Kelly [4]. If the odds aresuper-fair, namely,>" ﬁ <1,
_ then the gambler will invest all his wealth in the race rather
Proof: From Theorenill, we have than leave some as cash, since by bettihg = —<~, where
W*(X™|Y™) = W*(X™) = —H(X"||[Y™) + H(X™) c=1/3, -5 - the gambler's money will be muItipIied by
—I(Y" = X™). m ¢=1 regar Iess of the race outcome. Therefore, for this case,

the solution is given by Theorelh 1, where the gambler invests
proportional to the causal conditioning distributipfx™||y™).



- . , Horse 1 wi P Horse 2 wi
If the odds are sub-fair, i.e},_ ﬁ > 1, then it is optimal oo orse < e

to bet only some of the money, namély > 0. The solution
. o . ) : 1-p 1-p
to this problem is given in terms of an algorithm in [4, p. 925]
p
V. AN EXAMPLE

Here we consider betting in a horse race, where the wining f( l—q 11
horse can be represented as a Markov process, and causal side
information is available. p 2 2

Example 1. Consider the horse race process depicted in l—q

Figure[1 where two horses are racing and the Winning_ hor_ﬁ@. 1. The setting of Example 1. The winning hote is represented as
X, behaves as a Markov process. A horse that won will wimMarkov process with two states. In state 1, horse numberns,veind in
again with probabilityl — p and lose with probability. At state 2, horse number 2 wins. The side informatij,is noisy observation
. . of the wining horse X;.
time zero, we assume that both horses have proba@lmj
wining. The side informatiofy; at time: is a noisy observation
of the horse race outcom;. It has probabilityl — ¢ of being
equal toX;, and probabilityg of being different fromX;.

For this example, the increase in growth rate due to si
information asn goes to infinity is

If the side information is known with some lookahelag
0,1,...}, that is, if the gambler know¥*** at time1, then
increase in growth rate is given by

1
AW = lim —I(Y""* - X™)
AW = h(p*q) — h(qg), neeon
. . . = H(Y41|Y", Xo) — H(Y1]X1), 9)
where the functionh(-) denotes the binary entropy, "€where the last equality is due to the same arguments &$ in (8).
h(w) = —wlogz — (1 — z)log(l — ), andp + ¢ denotes "y ure[2 shows the increase in growth rét&/” due to side
the parameter of a Bernoulli distribution that results from 9 9

. o . information as a function of the side information parameter
convolving two Bernoulli distributions with parametersaand :

. (¢,k). The left plot showsAW as a function ofg, where
¢ ie,pxqg=(1-p)g+(1-qp.

. . . p = 0.2 and no lookahead; = 0. The right plot showsAW
beT:t?t;?rTégaj:ir:g ;S; %rrci)r\:\giglcraastzzvf:)cl)lrc)wslé example can as a function ofk, wherep = 0.2 andq = 0.25. If the entire
) side information sequencg,, Ys, ... is known to the gambler
AW ahead of time, then we should have mutual information rather
1 then directed information, i.e.,
= lim —I(Y" — X"™) 1
n—oo AW = lim —I(Y"™; X"

lim =Y HYHX"Y - HYY X! H(Y"
nggon; (VX - H(Y'|X) (y)

= lim — HW|Xy), (10)
n— oo n
IS ; T and this coincides with the fact that for a stationary hidden
= lim — H(Y*'X;—1) — H(Y5|X5) — HY|X
e ; [H (Y"1 Xi1) (Y21X2) (¥1X1)] Markov procesgY;, Ys, ...} the sequencél (Y, 1|Y*~1, Xo)
" 1 n converges to the entropy rate of the process.
(@) + iy . i—1)yi—1y _
—JEI;O n 2} [H(Y [ Xim1) = HY" [ X H(Y1|X1)] VI. CONCLUSION AND FURTHER EXTENSIONS
1171 ‘ We have shown that directed information arises naturally
= lim — Z [H(Yi|Yl‘1,Xi_1) — H(Y1|X1ﬂ in gambling as the gain in the maximum achievable capital
nmee i growth due to the availability of causal side informatione W
X ) S . .
® H(Y:|Xo) — H(YA|X1) = h(p * q) — h(q), (7) nhow outline two extensions: stock market portfolio strégsg

and data compression in the presence of causal side informa-
where steps (a) and (b) are due to the stationarity of thesgsoction. Details are given in [16].
(X;,Y:). Alternatively, the sequence of equalities up to SteR gk market

(b) in () can be derived directly using Using notation similar to that in [15, ch. 16], a stock

1 @ 1 it il market at timei is represented as a vector of stocKs =
EI(Y — X") = EZI(Y;;Xi XY (Xi1, Xi2, ..., Xim ), Wherem is the number of stocks, and the
i=1 price relative X, is the ratio of the price of stock-at the end
®) H(Y1|Xo) — H(Y1|X1), (8) of day: to the price of stocke at the beginning of day. We

assume that at timethere is side informatiolr that is known
where (a) is the identity given in [11, eq. (9)] and (b) is duto the investor. Aportfolio is an allocation of wealth across
to the stationarity of the process. the stocks. A nonparticipating or causal portfolio strgtegth
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Fig. 2. Increase in the growth rate, in Example 1, as a funatibthe side information parametegs, k). The left plot of the figure shows the increase of
the growth rateAW as a function ofy = Pr(X; # Y;) and no lookahead. The right plot shows the increase of thetgroate as function of lookahede
whereq = 0.25. The horse race outcome is assumed to be a first-order bigamnstric Markov process with parameter= 0.2.

causal side information at times denoted ab(x*~!,4%), and a decoder that can losslessly recoxérbased ony’ and the
it satisfies) )" | br(x""1,y") =1, andb,(X*~1,Y") > 0 for bit streamM;(z1,y1)Ma(2?,y?)--- just as soon as it sees
all possiblex~! y¢. We defineS(x"||y") as the wealth at M;(x1,y1)Ma(a?,y?)--- M;(z,y"), for all sequence pairs
the end of dayn for a stock sequence™ and causal side (x1,41), (22,92)... and alli > 1. Using natural extensions
informationy™. We can write of standard arguments we show in [16] tHgt™™ — X™) is
il m nel n 11l m— essentially (up to terms that are sublinean)rthe rate savings
S(x"[ly") = (bt(x Ly )X") Se Iy in optima?/s(eguential lossless compressi())n)@f due to th%
where ()t denotes the transpose of a vector. The goal is eausal availability of the side information.
maximize the growti? (X"||Y") = E[log S(X"||Y™)]. We
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