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Abstract—We study the problem of gambling in horse races
with causal side information and show that Massey’s directed
information characterizes the increment in the maximum achiev-
able capital growth rate due to the availability of side infor-
mation. This result gives a natural interpretation of directed
information I(Y n

→ X
n) as the amount of information that Y

n

causally provides aboutXn. Extensions to stock market portfolio
strategies and data compression with causal side information are
also discussed.

I. I NTRODUCTION

Mutual information arises as the canonical answer to a va-
riety of problems. Most notably, Shannon [1] showed that the
capacityC, the maximum data rate for reliable communication
over a discrete memoryless channelp(y|x) with input X and
outputY , is given by

C = max
p(x)

I(X ; Y ), (1)

which leads naturally to the operational interpretation ofmu-
tual informationI(X ; Y ) = H(X)−H(X |Y ) as the amount
of uncertainty aboutX that can be reduced by observation
Y , or equivalently, the amount of informationY can provide
aboutX . Indeed, mutual informationI(X ; Y ) plays the cen-
tral role in Shannon’s random coding argument, because the
probability that independently drawnXn and Y n sequences
“look” as if they were drawn jointly decays exponentially
with exponentI(X ; Y ). Shannon also proved a dual result
[2] showing that the minimum compression rateR to satisfy
a certain fidelity criterionD between the sourceX and its
reconstructionX̂ is given byR(D) = minp(x̂|x) I(X ; X̂). In
another duality result (Lagrange duality this time) to (1),Gal-
lager [3] proved the minimax redundancy theorem, connecting
the redundancy of the universal lossless source code to the
capacity of the channel with conditional distribution described
by the set of possible source distributions.

Later on, it was shown that mutual information has also an
important role in problems that are not necessarily relatedto
describing sources or transferring information through chan-
nels. Perhaps the most lucrative example is the use of mutual
information in gambling.

Kelly showed in [4] that if each horse race outcome can
be represented as an independent and identically distributed
(i.i.d.) copy of a random variableX and the gambler has some
side informationY relevant to the outcome of the race, then
under some conditions on the odds, the mutual information
I(X ; Y ) captures the difference between growth rates of the

optimal gambler’s wealth with and without side information
Y . Thus, Kelly’s result gives an interpretation that mutual
information I(X ; Y ) is the value of side informationY for
the horse raceX .

In order to tackle problems arising in information systems
with causally dependent components, Massey [5] introduced
the notion of directed information as

I(Xn → Y n) ,

n
∑

i=1

I(X i; Yi|Y
i−1),

and showed that the maximum directed information upper
bounds the capacity of channels with feedback. Subsequently,
it was shown that Massey’s directed information and its
variants indeed characterize the capacity of feedback and two-
way channels [6]–[13] and the rate distortion function with
feedforward [14].

The main contribution of this paper is showing that directed
information I(Y n → Xn) has a natural interpretation in
gambling as the difference in growth rates due tocausal side
information. As a special case, if the horse race outcome and
the corresponding side information sequences are i.i.d., then
the (normalized) directed information becomes a single letter
mutual informationI(X ; Y ), and it coincides with Kelly’s
result.

The paper is organized as follows. We describe the notation
of directed information and causal conditioning in SectionII.
In Section III, we formulate the horse-race gambling problem,
in which side information is revealed causally to the gambler.
We present the main result in Section IV and an analytically
solved example in Section V. Finally, Section VI concludes the
paper and states two possible extensions of this work to stock
market and data compression with causal side information.

II. D IRECTED INFORMATION AND CAUSAL CONDITIONING

Throughout this paper, we use thecausal conditioning nota-
tion (·||·) developed by Kramer [6]. We denote asp(xn||yn−d)
the probability mass function (pmf) ofXn = (X1, . . . , Xn)
causally conditioned on Y n−d, for some integerd ≥ 0, which
is defined as

p(xn||yn−d) ,

n
∏

i=1

p(xi|x
i−1, yi−d).
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(By convention, if i − d ≤ 0 then xi−d is set to null.) In
particular, we use extensively the casesd = 0, 1:

p(xn||yn) ,

n
∏

i=1

p(xi|x
i−1, yi),

p(xn||yn−1) ,

n
∏

i=1

p(xi|x
i−1, yi−1).

Using the chain rule, we can easily verify that

p(xn, yn) = p(xn||yn)p(yn||xn−1).

The causally conditional entropy H(Xn||Y n) is defined as

H(Xn||Y n) , E[log p(Xn||Y n)]

=

n
∑

i=1

H(Xi|X
i−1, Y i).

Under this notation, directed information can be written as

I(Y n → Xn) =
n

∑

i=1

I(Xi; Y
i|X i−1)

= H(Xn)−H(Xn||Y n),

which hints, in a rough analogy to mutual information, a pos-
sible interpretation of directed informationI(Y n → Xn) as
the amount of information causally available side information
Y n can provide aboutXn.

Note that the channel capacity results involve the term
I(Xn → Y n), which measure the information in the forward
link Xn → Y n. In contrast, in gambling the gain in growth
rate is due to the side information (backward link), and
therefore the expressionI(Y n → Xn) appears.

III. G AMBLING IN HORSE RACES WITH CAUSAL SIDE

INFORMATION

Suppose that there arem racing horses in an infinite
sequence of horse races and letXi ∈ X , [1, 2, ..., m],
i = 1, 2, . . . , denote the horse that wins at timei. Before
betting in thei-th horse race, the gambler knows some side
informationYi ∈ Y. We assume that the gambler invests all his
capital in the horse race as a function of the information that he
knows at timei, i.e., the previous horse race outcomesX i−1

and side informationY i up to timei. Let b(xi|x
i−1, yi) be the

proportion of wealth that the gambler bets on horsexi given
X i−1 = xi−1 andY i = yi. The betting scheme should satisfy
b(xi|x

i−1, yi) ≥ 0 (no short) and
∑

xi
b(xi|x

i−1, yi) = 1 for
any historyxi−1, yi. Let o(xi|x

i−1) denote the odds of a horse
xi given the previous outcomesxi−1, which is the amount of
capital that the gambler gets for each unit capital invested
in the horse. We denote byS(xn||yn) the gambler’s wealth
after n races where the race outcomes werexn and the side
information that was causally available wasyn. The growth,
denoted byW (Xn||Y n), is defined as the expected logarithm
(base 2) of the gambler’s wealth, i.e.,

W (Xn||Y n) , E[log S(Xn||Y n)]. (2)

Finally the growth rate 1
n
W (Xn||Y n) is defined as the nor-

malized growth.
Here is a summary of the notation:
• Xi is the outcome of the horse race at timei.
• Yi is the the side information at timei.
• o(Xi|X

i−1) is the payoffs at timei for horseXi given
that in the previous race the horsesX i−1 won.

• b(Xi|Y
i, X i−1) the fractions of the gambler’s wealth

invested in horseXi at time i given that the outcome
of the previous races areX i−1 and the side information
available at timei is Y i.

• S(Xn||Y n) the gambler’s wealth aftern races when the
outcomes of the races areXn and the side information
Y n is causally available.

•
1
n
W (Xn||Y n) is the growth rate.

Without loss of generality, we assume that the gambler’s
capital is 1 initially; thereforeS0 = 1.

IV. M AIN RESULTS

In Subsection IV-A, we assume that the gambler invests all
his money in the horse race while in Subsection IV-B, we
allow the gambler to invest only part of the money. Using
Kelly’s result, it is shown in Subsection IV-B that if the odds
are fair with respect to some distribution then the gambler
should invest all his money in the race.

A. Investing all the money in the horse race

We assume that at any timen the gambler invests all his
capital and therefore

S(Xn||Y n)=b(Xn|X
n−1, Y n)o(Xn|X

n−1)S(Xn−1||Y n−1).

This also implies that

S(Xn||Y n) =

n
∏

i=1

b(Xi|X
i−1, Y i)o(Xi|X

i−1).

The following proposition characterizes the optimal betting
strategy and the corresponding growth of wealth.

Theorem 1: For any finite horizonn, the maximum growth
rate is achieved when the gambler invests the money propor-
tional to the causal conditioning distribution, i.e.,

b∗(xi|x
i−1, yi) = p(xi|x

i−1, yi), ∀xi, yi, i ≤ n, (3)

and the growth is

W ∗(Xn||Y n) = E[log o(Xn)]−H(Xn||Y n).

Note that the sequence{p(xi|x
i−1, yi)}ni=1 uniquely de-

termines p(xn||yn). Also for all pairs (xn, yn) such that
p(xn||yn) > 0, the sequence{p(xi|x

i−1, yi)}ni=1 is deter-
mined uniquely byp(xn||yn) simply by the identity

p(xi|x
i−1, yi) =

p(xi||yi)

p(xi−1||yi−1)
.

A similar argument applies for{b∗(xi|x
i−1, yi)}ni=1 and

b∗(xn||yn), and therefore (3) is equivalent to

b∗(xn||yn) = p(xn||yn), ∀xn ∈ Xn, yn ∈ Yn.



Proof of Theorem 1: We have

W ∗(Xn||Y n) = max
b(xn||yn)

E[log b(Xn||Y n)o(Xn)]

= max
b(xn||yn)

E[log b(Xn||Y n)] + E[log o(Xn)]

= −H(Xn||Y n) + E[log o(Xn)],

where the last equality is achieved by choosingb(xn||yn) =
p(xn||yn), and it is justified by the following upper bound

E[ log b(Xn||Y n)]

=
∑

xn,yn

p(xn, yn)

[

log p(xn||yn) + log
b(xn||yn)

p(xn||yn)

]

= −H(Xn||Y n) +
∑

xn,yn

p(xn, yn) log
b(xn||yn)

p(xn||yn)

(a)

≤ −H(Xn||Y n) + log
∑

xn,yn

p(xn, yn)
b(xn||yn)

p(xn||yn)

(b)

≤ −H(Xn||Y n) + log
∑

xn,yn

p(yn||xn−1)b(xn||yn)

= −H(Xn||Y n), (4)

where (a) follows from Jensen’s inequality and (b) from the
fact that

∑

xn,yn p(yn||xn−1)b(xn||yn) = 1. All summations
in (4) are over the arguments(xn, yn) for which p(xn, yn) >
0. This ensures thatp(xn||yn) > 0, and therefore, we can
multiply and divide byp(xn||yn) in the first step of (4).

In the case that the odds are fair and uniform, i.e.,
o(Xi|X

i−1) = 1
|X | , then

1

n
W ∗(Xn||Y n) = log |X | −

1

n
H(Xn||Y n).

Thus the sum of the growth rate1
n
W (Xn||Y n) and the en-

tropy rate1
n
H(Xn||Y n) of the horse race process conditioned

causally on the side information is constant, and one can see
a duality betweenH(Xn||Y n) and W ∗(Xn||Y n); cf. [15,
th. 6.1.3]

Let us denote by∆W the increase in the growth rate due
to causal side information, i.e.,

∆W =
1

n
W ∗(Xn||Y n)−

1

n
W ∗(Xn). (5)

Thus ∆W characterizes the value of side informationY n.
Theorem 1 leads to the following proposition, which gives a
new operational meaning of Massey’s directed information.

Corollary 1: The increase in growth rate due to causal side
informationY n for horse racesXn is

∆W =
1

n
I(Y n → Xn). (6)

Proof: From Theorem 1, we have

W ∗(Xn||Y n)−W ∗(Xn) = −H(Xn||Y n) + H(Xn)

= I(Y n → Xn).

B. Investing only part of the money

In this subsection we consider the case where the gambler
does not necessarily invest all his money in the gambling. Let
b0(y

i, xi−1) be the portion of money that the gambler does
not invest in gambling at timei given that the previous races
results werexi−1 and the side information isyi. In this setting,
the wealth is given by

S(Xn||Y n)

=

n
∏

i=1

(

b0(X
i−1, Y i) + (b(Xi|X

i−1, Y i)o(Xi|X
i−1)

)

,

and the growthW (Xn||Y n) is defined as before in (2).
The termW (Xn||Y n) obeys a chain rule similar to the

causal conditioning entropy definitionH(Xn||Y n), i.e.,

W (Xn||Y n) =

n
∑

i=1

W (Xi|X
i−1, Y i),

where

W (Xi|X
i−1, Y i−1)

, E
[

log(b0(X
i−1, Y i) + b(Xi|X

i−1, Y i)o(Xi|X
i−1))

]

.

Note that for any given history(xi−1, yi) ∈ X i−1 × Yi, the
betting scheme{b0(x

i−1, yi), b(xi|x
i−1, yi)} influences only

W (Xi|X
i−1, Y i), so that we have

max
{b0(xi−1,yi),b(xi|xi−1,yi)}n

i=1

W (Xn||Y n)

=

n
∑

i=1

max
b0(xi−1,yi),b(xi|xi−1,yi)

W (Xi|X
i−1, Y i)

=
n

∑

i=1

∑

xi−1,yi

p(xi−1, yi) max
b0(xi−1,yi),b(xi|xi−1,yi)

W (Xi|x
i−1, yi).

The optimization problem in the last equation is equivalent
to the problem of finding the optimal betting strategy in
the memoryless case where the winning horse distribution
p(x) is p(x) = Pr(Xi = x|xi−1, yi), the oddso(x) are
o(x) = o(Xi = x|xi−1), and the betting strategy(b0, b(x))
is (b0(x

i, yi−1), b(Xi = x|xi−1, yi)), respectively. Hence,
the optimization,maxW (Xi|x

i−1, yi), is equivalent to the
following convex problem:

maximize
∑

x

p(x) log(b0 + b(x)o(x))

subject to b0 +
∑

x

b(x) = 1,

b0 ≥ 0, b(x) ≥ 0, ∀x ∈ X .

The solution to this optimization problem was given by
Kelly [4]. If the odds aresuper-fair, namely,

∑

x
1

o(x) ≤ 1,
then the gambler will invest all his wealth in the race rather
than leave some as cash, since by bettingb(x) = c

o(x) , where
c = 1/

∑

x
1

o(x) , the gambler’s money will be multiplied by
c ≥ 1, regardless of the race outcome. Therefore, for this case,
the solution is given by Theorem 1, where the gambler invests
proportional to the causal conditioning distributionp(xn||yn).



If the odds are sub-fair, i.e.,
∑

x
1

o(x) > 1, then it is optimal
to bet only some of the money, namelyb0 > 0. The solution
to this problem is given in terms of an algorithm in [4, p. 925].

V. A N EXAMPLE

Here we consider betting in a horse race, where the wining
horse can be represented as a Markov process, and causal side
information is available.

Example 1: Consider the horse race process depicted in
Figure 1 where two horses are racing and the winning horse
Xi behaves as a Markov process. A horse that won will win
again with probability1 − p and lose with probabilityp. At
time zero, we assume that both horses have probability1

2 of
wining. The side informationYi at timei is a noisy observation
of the horse race outcomeXi. It has probability1−q of being
equal toXi, and probabilityq of being different fromXi.

For this example, the increase in growth rate due to side
information asn goes to infinity is

∆W = h(p ∗ q)− h(q),

where the functionh(·) denotes the binary entropy, i.e.,
h(x) = −x log x − (1 − x) log(1 − x), and p ∗ q denotes
the parameter of a Bernoulli distribution that results from
convolving two Bernoulli distributions with parametersp and
q, i.e., p ∗ q = (1− p)q + (1− q)p.

The increase in the growth rate∆W for this example can
be obtained using first principles as follows:

∆W

= lim
n→∞

1

n
I(Y n → Xn)

= lim
n→∞

1

n

n
∑

i=1

H(Y i|X i−1)−H(Y i|X i)

= lim
n→∞

1

n

n
∑

i=1

[

H(Y i|Xi−1)−H(Y i
2 |X

i
2)−H(Y1|X1)

]

(a)
= lim

n→∞

1

n

n
∑

i=1

[

H(Y i|Xi−1)−H(Y i−1|X i−1)−H(Y1|X1)
]

= lim
n→∞

1

n

n
∑

i=1

[

H(Yi|Y
i−1, Xi−1)−H(Y1|X1)

]

(b)
= H(Y1|X0)−H(Y1|X1) = h(p ∗ q)− h(q), (7)

where steps (a) and (b) are due to the stationarity of the process
(Xi, Yi). Alternatively, the sequence of equalities up to step
(b) in (7) can be derived directly using

1

n
I(Y n → Xn)

(a)
=

1

n

n
∑

i=1

I(Yi; X
n
i |X

i−1, Y i−1)

(b)
= H(Y1|X0)−H(Y1|X1), (8)

where (a) is the identity given in [11, eq. (9)] and (b) is due
to the stationarity of the process.

p

p

1−p 1−pX =1

Horse 1 wins

X =2

Horse 2 wins

11

22

X Y

q
q

1 − q

1 − q

Fig. 1. The setting of Example 1. The winning horseXi is represented as
a Markov process with two states. In state 1, horse number 1 wins, and in
state 2, horse number 2 wins. The side information,Yi, is noisy observation
of the wining horse,Xi.

If the side information is known with some lookaheadk ∈
{0, 1, ...}, that is, if the gambler knowsY i+k at time i, then
the increase in growth rate is given by

∆W = lim
n→∞

1

n
I(Y n+k → Xn)

= H(Yk+1|Y
k, X0)−H(Y1|X1), (9)

where the last equality is due to the same arguments as in (8).
Figure 2 shows the increase in growth rate∆W due to side

information as a function of the side information parameters
(q, k). The left plot shows∆W as a function ofq, where
p = 0.2 and no lookahead,k = 0. The right plot shows∆W
as a function ofk, wherep = 0.2 andq = 0.25. If the entire
side information sequenceY1, Y2, ... is known to the gambler
ahead of time, then we should have mutual information rather
then directed information, i.e.,

∆W = lim
n→∞

1

n
I(Y n; Xn)

= lim
n→∞

H(Y n)

n
−H(Y1|X1), (10)

and this coincides with the fact that for a stationary hidden
Markov process{Y1, Y2, ...} the sequenceH(Yk+1|Y

k−1, X0)
converges to the entropy rate of the process.

VI. CONCLUSION AND FURTHER EXTENSIONS

We have shown that directed information arises naturally
in gambling as the gain in the maximum achievable capital
growth due to the availability of causal side information. We
now outline two extensions: stock market portfolio strategies
and data compression in the presence of causal side informa-
tion. Details are given in [16].

A. Stock market

Using notation similar to that in [15, ch. 16], a stock
market at timei is represented as a vector of stocksXi =
(Xi1, Xi2, ..., Xim), wherem is the number of stocks, and the
price relative Xik is the ratio of the price of stock-k at the end
of day i to the price of stock-k at the beginning of dayi. We
assume that at timei there is side informationY i that is known
to the investor. Aportfolio is an allocation of wealth across
the stocks. A nonparticipating or causal portfolio strategy with
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Fig. 2. Increase in the growth rate, in Example 1, as a function of the side information parameters(q, k). The left plot of the figure shows the increase of
the growth rate∆W as a function ofq = Pr(Xi 6= Yi) and no lookahead. The right plot shows the increase of the growth rate as function of lookaheadk,
whereq = 0.25. The horse race outcome is assumed to be a first-order binary symmetric Markov process with parameterp = 0.2.

causal side information at timei is denoted asb(xi−1, yi), and
it satisfies

∑m

k=1 bk(xi−1, yi) = 1, andbk(Xi−1, Y i) ≥ 0 for
all possiblex

i−1, yi. We defineS(xn||yn) as the wealth at
the end of dayn for a stock sequencexn and causal side
informationyn. We can write

S(xn||yn) =
(

b
t(xn−1, yn)xn

)

S(xn−1||yn−1)

where (·)t denotes the transpose of a vector. The goal is to
maximize the growthW (Xn||Y n) = E[log S(Xn||Y n)]. We
also defineW (Xn|X

n−1, Y n) = E[log(bt(Xn−1, Y n)Xn)].
From this definition, we can write the chain rule

W (Xn||Y n) =

n
∑

i=1

W (Xi|X
i−1, Y i).

The gambling in horse races withm horses studied in the
previous section is a special case of investing the stock market
with m + 1 stocks. The firstm stocks correspond to them
horses and at the end of the day one of the stocks, sayk ∈
{1, ..., m}, gets the valueo(k) with probability p(k) and all
other stocks become zero. Them + 1-st stock is always one,
and it allows the gambler to invest only part of the wealth in
the horse race.

The developments in the previous section can be expanded
to characterize the increase in growth rate due to side infor-
mation, where again directed information emerges as the key
quantity, upper-bounding the value of causal side information;
cf. [17]. Details will be given in [16].

B. Instantaneous compression with causal side information

Let X1, X2, . . . be a source andY1, Y2, . . . its side in-
formation sequence. The source is to be losslessly encoded
instantaneously, with causal available side information.More
precisely, an instantaneous lossless source encoder with causal
side information consists of a sequence of mappings{Mi}i≥1

such that eachMi : X i × Yi → {0, 1}∗ has the property
that for everyxi−1 andyi Mi(x

i−1 · , yi) is an instantaneous
(prefix) code forXi.

An instantaneous lossless source encoder with causal side
information operates sequentially, emitting the concatenated
bit streamM1(X1, Y1)M2(X

2, Y 2) · · · . The defining property
thatMi(x

i−1·, yi) is an instantaneous code for everyxi−1 and
yi is a necessary and sufficient condition for the existence of

a decoder that can losslessly recoverxi based onyi and the
bit streamM1(x1, y1)M2(x

2, y2) · · · just as soon as it sees
M1(x1, y1)M2(x

2, y2) · · ·Mi(x
i, yi), for all sequence pairs

(x1, y1), (x2, y2) . . . and all i ≥ 1. Using natural extensions
of standard arguments we show in [16] thatI(Y n → Xn) is
essentially (up to terms that are sublinear inn) the rate savings
in optimal sequential lossless compression ofXn due to the
causal availability of the side information.
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