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Abstract- This paper addresses the problem of bounding the
rate-distortion function of a binary symmetric Markov source.
We derive a sequence of upper and lower bounds on the rate-
distortion function of such sources. The bounds are indexed by k,
which corresponds to the dimension of the optimization problem
involved. We obtain an explicit bound on the difference between
the derived upper and lower bounds as a function of k. This
allows to identify the value of k that suffices to compute the rate
distortion function to a given desired accuracy. In addition to
these bounds, a tighter lower bound which is also a function of
k is derived. Our numerical results show that the new bounds
improve on the Berger's upper and lower bounds even with small
values of k.

I. INTRODUCTION

Shannon's well-known rate-distortion theory for
i.i.d. sources answers the following question [1]: what
is the minimum number of bits required per source symbol
for describing the source within average distortion D to
the decoder. The answer can be numerically found within
desired precision by solving an optimization problem [2]. A
natural extension of this theorem would be to the case where
the source is no longer memoryless, e.g. a general, not
necessarily i.i.d., stationary ergodic source. Although it may
seem surprising, this problem has not been solved yet. Even
for the simple case when the source is binary symmetric
Markov with state transition probability of q, BSMS(q), the
rate-distortion function can only be explicitly computed on
a small-distortion region [4]. Beyond this region, even for
this simple case, currently there only exist lower and upper
bounds on R(D).

In this paper, we first review the known results on the com-
putation of rate-distortion function of sources with memory,
and then present the derivation of the new upper and lower
bounds on R(D) of a BSMS(q) which are found applying the
methods used in [7]. Finally, we consider some examples of
the computation of the new bounds.

II. THE RATE-DISTORTION PROBLEM

Consider the well-known rate-distortion problem where one
is interested in finding the minimum number of bits per source
symbol required for describing the source to the decoder
within a given fidelity constraint. Assume that given is a
discrete memoryless source whose output, {Xn}n 1 is an
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i.i.d. process. Xn's take values in a finite set X, with X N
and for every n, X - p, where p C RN. p, > 0 for
1 < i < N, and (1, p) = 1. Furthermore, assume that the
symbols of the decoded sequence {Xf }=I' take values in
X, with X M. The distortion between an n-block source
and reconstructed sequence is defined to be

n

where d(x, x) is a bounded function that measures the distor-
tion between the symbols of the source and reconstruction
alphabets. Shannon's rate distortion theory states that the
minimum rate R such that (R, D) is achievable is given by,

R(D) = min I(X;X).
p(xIx): E p(x)p(xIx)d(x,x)<D

(x7x~)

(1)

Consequently, computing the rate-distortion function of a
given discrete memoryless i.i.d. source at any point D is
equivalent to finding the optimal test channel that optimizes
the convex optimization problem described in (1). In [3], by
forming the Lagrange dual of (1), and using strong duality
theorem, it is shown that for finding R(D), instead of (1),
one can solve the following geometric program (in convex
form):

maximize pao-yD
N

subject to log E exp(logpi + aj
j=1

ydjj) < 0,

j 1,2,...

-y > O, (2)

where the optimization variables are a C RN and 'y. In (2), dij
is defined to represent the distortion between the i-th symbol
in X and the j-th symbol in X. The geometric program in
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(2), can be reformulated in standard form as follows
N

maximize w -D zPi
i=l

N

subject to Epiziw-di < ,j=1 ,...,M
i=l

w > 1,zi > O,i= 1,2,...,~N. (3)

For going from (2) to (3), one needs to do the following
change of variables: zi = eai, and w = e. These character-
izations would be helpful in computing the k-th order rate-
distortion functions which will be defined in the next section,
and are required for finding the lower and upper bounds on
R(D) of BSMS(q).

III. RATE-DISTORTION FUNCTION OF BSMS(q): KNOWN
RESULTS

Consider a discrete stationary ergodic source with source
alphabet X and reconstruction alphabet X. The rate-distortion
function of such source is given by [9]

R(D)= lim Rn(D), (5)
n-oo

where Rn(D) is the n-th order rate-distortion function of the
source defined as

Rn(D) min I(x(;xt) (6)
p(xnlx-):E[d(x-,xx)]<D n

Although it might not be clear at first glance, the above
equation does not yield the rate-distortion function of a given
stationary ergodic source explicitly . The problem is that
the computational complexity required for solving the convex
optimization problem given in (6) grows exponentially with n.
Moreover, the convergence rate of Rn (D) to R(D) is typically
slow, and at each step it is not clear how far we are from the
optimal solution.
One of the simplest models for a source with memory is

the pre-described BSMS(q). Computation of the rate-distortion
function of this source has been investigated by Gray in [4],
where it was shown that for 0 < D < DC,

R(D)= Hb(q) - Hb(D), (7)
where p = 1-q, and for q < 1/2,

DC= 2 (i 1 - (q/p)2)
and Hb(x) x log 2 - (1 - x log(I - x)). Beyond Dc, even
for this simple case, currently only lower and upper bounds
bounds on R(D) are known.

In 1977, Berger found explicit lower and upper bounds on
R(D), Rf (D) and R, (D) respectively, which do not depend
on n [6]. Eq. (4) gives the lower bound, where,

D2 = 0.5( 1- )

r = q/p,
po = Iq (1+r-) 1,

and 0 and a are related as follows

ru a
p(l + r0)2(1 + r0) (1+a)2

It can be observed that for small distortion region, (4) coin-
cides with Gray's result, but as distortion increases it deviates
from his result and can be proven to be a strictly better lower
bound. The upper bound, R, (D), is given by

R (D)= Da log a - log(I + a) - p logp, - q log q,

where,

q= 2 Va(1+ 2a)2
ra = q,l/p, = 2 Va(1+ )-1
1=( _ ) [(pr + qra ) a].

The advantage of these bounds is that they can be easily
computed with little computational effort.

IV. RATE-DISTORTION FUNCTION OF BSMS(q): NEW
RESULTS

In this section, based on the ideas presented in [7], new
upper and lower bounds on the rate-distortion of a BSMS(q)
will be derived.

Let {X}_°n be the output sequence of a BSMS(q)
source . Consider every k + 1 source output symbols

Xi(k+ ) } . Define A- Xi(k+1), and super-symbol
y A xji(7k (+l±l)l,k.

Y-i(k++l)++l = (Xi(k+l)+1, .. ,Xi(k+l)+k):
., 2,X_1, XO, X1, . . Xk, Xk+1..

so Yo S1

Given the {Si},°° sequence, from the Markovity of the
source, Yi's would be independent random variables which
are not identically distributed, and

P(Yi {SiM _) = P (YiIi,i+)-
Since the source is binary, (Si, Si+) can take on only

2x2 = 4 different values. As a result, given {Si}cD , Yi's
would consist of four types of i.i.d. processes. Now given
all these, a simple scheme for describing the source within
average distortion D, would be as follows:

1) describe the side information sequence {Si}c%D loss-
lessly,

2) describe the {Yi}c%D sequence within distortion D
1 D, where rk = k+1'r rkk±

The total expected per symbol distortion of this scheme would
be

1 k
k1 + Dk+1 = D (8)

which satisfies the desired average distortion constraint. There-
fore, the rate required for this scheme gives an upper bound
on R(D) of a BSMS(q).
The average number of bits per source symbol required

for the first step is equal to H(Xk XO). The reason is thatk±1
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Hb (q) - Hb(D)
max [Dloga -log(l+a)- plogpo

q/2<a<1
q logqo]

Si is a first-order Markov process with a different transition
probability than the original sequence, and consequently its
lossless description requires H(Xk Xo) bits per Si symbol,
which in turn is divided by k + 1 to give the cost per

source symbol. For the second step, where we should describe
a mixture of four types of i.i.d. processes within average

distortion D, the average required number of bits per source

symbol would be

rkRk(D) =rk E P(So
(i,j) {0, 1}2

i, S1 j R(')(D), (9)

or,

E E[d(Yi, Yj)]< k' 'D
n ~~k
t=O

D.

Thus, the given scheme describes the {Yi} sequence within
an average distortion less than D. As a result, from the
converse in the rate-distortion coding theorem for mixed
i.i.d. sources with known state at both encoder and decoder,
since Rk (D) is the infimum of the rates required for describing
the Yi sequence with average distortion D at the decoder, one

gets the following lower bound on R(D),
where, R("j)(D) is the k-th order rate-distortion when Xk
is distributed according to P (Xk 7o =i, Xi1 = j). Each
of the k-th order rate-distortion functions in (9) is multiplied
by the corresponding P (So i, 51 j) which denotes the
proportion of the Yi sequence that is allocated to the (i, j)-
th mode. For each Yi, the two source symbols that embrace
it, namely Xi(k+±) and X(i+l)(k+1), determine its mode.
Note that for the Markov source considered here, R1 (D)
coincides with the erasure rate distortion function of Verdu
and Weissman [8].

Combining the rates required for the first and second steps,
one gets the following upper bound on the rate-distortion
function of a BSMS(q),

R(D)<rkR(D)+ H(Xk XO) (10)

For proving the lower bound, consider the following prob-
lem where the decoder desires to describe the {Yi} sequence

within a given fidelity constraint, while the {Si} sequence

is known by both the encoder and the decoder losslessly
beforehand. Any given coding scheme that achieves average

distortion D for the BSMS(q), can also be considered as a

scheme for encoding the underlying {Yi} sequence as well.
In the sequel, it is shown how the average expected loss
incurred by the {Yi} sequence using this technique can be
upper bounded. Note that by definition,

I n(1c+l)-l
n(k + 1) E E[d(Xi,Xi)]

j=O

k
n-1

jk1) E E[d(Yi,i)]

I n-1

+ n1 ) E E[d(Si, Si)] < D.

t=O

Since both terms in the above sum are greater than zero,

each of them individually should be less than D as well. This
implies that

k
n(k + 1)

n-1

tOE[d(Yi,i)]<D,
i=O

rkRk(D) < R(D). (1 1)

Combining (10) and (11), we can bound the rate-distortion
function of a BSMS(q) as follows

rkRk(D) < R(D) <rkRk(D) + H(Xk Xo) (12)

A point to note about these bounds is that the difference
between the upper bound and lower bound given in (12) goes

to zero as k goes to infinity, and can separately be computed
without computing the bounds themselves. For instance, for
a given 6, choosing k > F1/- 11, guarantees IrkR(D)
R(D) < 6.

Although the difference between the two sides of (12) goes

to zero as k goes to infinity, still the lower bound seems to
be a loose bound, because in its derivation, it was assumed
that the decoder has access to the so-called side information
sequence losslessly without spending any rate. In the sequel,
an alternative lower bound is derived which will be seen in the
next section to be tighter than the previous lower bound, and
even outperforming Berger lower bound for moderate values
of k.

Define the conditional rate distortion function R-(D) as

follows

(13)

and similarly,

R-(D)-= min _jI Xk; oxk
Rk() p(_XkkXk,Xo):Ed(Xk,Xk)<D k( xo

(14)

In the following, it will first be shown that for any first order
Markov source R(D) is lower bounded by R- (D), and then
by a simple argument it will be proven that for a BSMS(q),
the rate distortion function would also be lower bounded by
Rk(D).

For a given first-order finite-alphabet Markov source, con-

sider C to be a source code of length n, rate R, and average

expected distortion per symbol less than D. Similar to the
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Fig. 1. Comparing the upper/lower bounds on R(D) for a BSMS(q) with q = 0.25

0.5

inverse proof of the rate-distortion theory, the following series
of inequalities holds,

nR > H(Xn),
=I(Xn; Xn ),

n

= [H(Xixi 1)

i=l

H(Xi,Xt 1Xn)],

n

> E [H(Xi Xi-1)-H(Xd Xi- 1,Xi)]
i=l
n

> ,TI Xi ; Xi|-1)
i=l

n

> [(XK; _1) + E R (Ed(Xi, Xi))
i=2

n

> R- (Ed(Xi, Xi)),

> nR- Ed(Xi, Xki)) > nR- (D).
i=i

(15)

Therefore, R(D) is lower bounded by R- (D). Now define

the sequence {Zi}, where Zi = X(il)k+l. Since the two

{Xi} and {Zi} sequences are essentially the same, they should
have the same rate-distortion function. But since the defined
sequence is also a first-order Markov source, the lower bound
given by (13) applies to the new source as well. Consequently,
since the two source have the same rate-distortion function, we
conclude that

R(D) > min -I Zi; Zi ZoP(Z-1Zi,Zo):Ed(Zj,Zi)<D k

or,

R(D)> mini 1(Xk; XkX0k1
p(Xk kXk,XO+1):Ed(Xk,Xk)<D k

= ~~min -I (Xk; Xk lXo)
p(XkklXk,Xo):Ed(Xk,Xk)<D k

Rk (D).

V. COMPUTING THE BOUNDS

As mentioned in the previous section, the new bounds
have the property that for a given 6, one can easily compute
the k that guarantees finding R(D) within precision 6. The
undesirable fact about these bounds is that for computing
Rk (D), four k-th order rate distortion functions have to be
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computed. Note that the synmmetry involved in the structure [7] T. Weissman, A. El Gamal, "Source Coding With Limited-Look-Ahead
of the problem implies Side Information at the Decoder," IEEE Trans. on Inform. Theory,

Dec. 2006, pp. 5218-5239.
R(°0')D = R(1'1) D [8] S. Verdu and T. Weissman, "Erasure entropy," in Proc. Int. Symp. Inf Th.,

k ) k ()' Seattle, USA, July 2006, pp. 98-102.
R (D,) = R(1'°) [9] R. G. Gallager, Information Theory and Reliable Communication, New

k kikk/ York: Wiley, 1968.
For every (i, j), in order to compute R(i'j) (D), first the

corresponding induced probability distribution on the binary
vectors of length k, namely P(Xk AXo =i, X1 = j) should
be computed, and then solving the geometric programming
given in (3), or equivalently in (2) would give the desired
result.

Fig. 1 compares the new bounds with Berger upper and
lower bounds for a BSMS(q), with q = 0.25. The tighter lower
bound mentioned in the figure refers to the Rk (D), which is
computed for k = 10. For tighter upper bound, we have used
the normal k-th order rate distortion function defined in (6)
for k = 8. Note that Rk (D) converges to R(D) from above
and consequently, for each value of k, can be considered as
an upper bound to it.

VI. CONCLUSION AND FUTURE WORK

The rate-distortion function of an i.i.d. source can be com-
puted numerically within desired precision. But in practice the
more interesting case would be computing the rate-distortion
function of a source that has memory. The reason is that the
sources encountered in source coding context are naturally
sources with memory. In this paper, binary symmetric Markov
sources as one of the simplest sources with memory were
investigated, and new upper and lower bounds on their rate-
distortion function were derived. The point to note about the
new bounds is that they are a sequence of bounds able to
bound the rate-distortion function within any precision. Still
the problem is that computing the bounds requires computing
k dimensional rate-distortion functions which has a complexity
growing with k exponentially. As a future work, one can
look for new algorithms for computing these k-th order rate-
distortion functions more efficiently, using the symmetries and
structures involved in the problem.
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