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How to Filter an “Individual Sequence With Feedback”

Tsachy Weissman, Senior Member, IEEE

Abstract—We consider causally estimating (filtering) the components
of a noise-corrupted sequence relative to a reference class of filters. The
noiseless sequence to be filtered is designed by a “well-informed antago-
nist,” meaning it may evolve according to an arbitrary law, unknown to
the filter, based on past noiseless and noisy sequence components. We show
that this setting is more challenging than that of an individual noiseless
sequence (a.k.a. the “semi-stochastic” setting) in the sense that any deter-
ministic filter, even one guaranteed to do well on every noiseless individual
sequence, fails under some well-informed antagonist. On the other hand,
we constructively establish the existence of a randomized filter which
successfully competes with an arbitrary given finite reference class of
filters, under every antagonist. Thus, unlike in the semi-stochastic setting,
randomization is crucial in the antagonist framework. Our noise model
allows for channels whose noisy output depends on the l past channel
outputs (in addition to the noiseless channel input symbol). Memoryless
channels are obtained as a special case of our model by taking l = 0.
In this case, our scheme coincides with one that was recently shown to
compete with an arbitrary reference class when the underlying noiseless
sequence is an individual sequence. Hence, our results show that the latter
scheme is universal not only for the semi-stochastic setting in which it was
originally proposed, but also under the well-informed antagonist.

Index Terms—Compound sequential decisions, individual sequence with
feedback, universal filtering, well-informed antagonist.

I. INTRODUCTION

Stated in modern terms, the “compound decision problem” is con-
cerned with estimating the components of an individual sequence cor-
rupted by memoryless noise. This problem was formulated by Robbins
in the pioneering work [14], where it was shown that such estimation
can be done essentially as well as the best time-invariant symbol-by-
symbol scheme (that can be chosen by a genie with access to the noise-
less sequence). In [16], Samuel showed that this goal is attainable also
sequentially, i.e., when the estimate of each clean symbol can depend
only on the present and past noisy observations. The schemes that
Samuel constructed, which were based on ideas from Hannan’s seminal
work on prediction of individual sequences [11], were randomized, i.e.,
utilized external randomization variables which were assumed avail-
able. Subsequently, Van Ryzin showed in [15] that randomization is
not necessary, and that deterministic versions of the schemes in [16]
attain the same goal of doing as well as the best “symbol-by-symbol”
scheme regardless of the underlying noiseless individual sequence.

While earlier work on the compound sequential decision
problem concentrated on competing with the class of time-invariant
“symbol-by-symbol” estimation rules, later developments extended
the scope to reference classes of “Markov” estimators of a fixed and
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known order [1], [2], [18], [19], culminating in the recent work [22]
which considered competition with an arbitrary finite reference class
of filtering schemes, as well as the set of finite-state filters of arbitrary
order.

The compound decision framework, where no assumptions are made
on a probabilistic or any other type of mechanism that may have gen-
erated the noiseless data, leads to performance guarantees that hold
uniformly for all individual sequences. Results for the case where the
sequence is assumed stochastically generated by an unknown source
(though evolving independently of past noisy sequence components)
follow as corollaries. For this reason, the individual sequence setting is
generally regarded a rather strong one.

Indeed, in prediction of individual sequences [11], [7], [8], [20], [3],
[4], [12], [5], a bound that holds for all individual sequences imme-
diately holds also under any stochastic mechanism for generating the
sequence, no matter how adversarial one tries to make it. Furthermore,
regret bounds that hold under an “oblivious opponent” hold also under
a “nonoblivious opponent” who is fully cognizant of the randomization
and hence the predictions of the competing predictor (cf. [5, Sec. 4.1]).
Tempting as it may seem to extend to the filtering setting, this kind
of a conclusion was actually shown by Vardeman [17] to fail for the
compound sequential decision problem. Vardeman showed, in the set-
ting of a binary symmetric channel (BSC)-corrupted binary sequence,
that “playing Bayes against the estimated past empirical distribution,”
shown by Van Ryzin in [15] to yield a filter that successfully competes
with the best symbol-by-symbol scheme when the underlying signal
is an individual sequence, can perform disastrously if the noiseless
sequence is allowed to evolve based on past noisy sequence compo-
nents (a.k.a. “channel outputs”). Vardeman referred to this as a situation
where the sequence components are chosen by a “well-informed antag-
onist,” a terminology we adopt herein, using “antagonist” for short. Al-
ternatively, taking a communications-oriented viewpoint, as is alluded
in the title of this correspondence , one may choose to think of this
framework as one where the underlying noiseless sequence is an “in-
dividual sequence with feedback.”

The framework of a well-informed antagonist is of interest not
merely for its conceptual and theoretical significance, but also since
it may better capture the reality of some filtering scenarios. Consider,
for example, a case where the filter represents a device for tracking a
target sequentially based on a noisy observation of its trajectory. The
antagonist can then represent the trajectory of a target that has feedback
on its past noisy trajectory (and hence knowledge of what the tracker
is doing), and that can use this feedback to better evade the tracker.
A filter that can perform well under the antagonist would correspond
then to a device that can successfully track such a potentially more
elusive target.

A natural question arising in the context of Vardeman’s result is
whether failure to perform under the well-informed antagonist is due to
peculiarities of Van Ryzin’s scheme or perhaps, on the other extreme,
due to some more basic limitation shared by all deterministic filters.
We answer this question in Section II by showing that any determin-
istic filter will fail to compete with the class of symbol-by-symbol fil-
ters under some antagonist. Evidently, competing under an antagonist
is more challenging than under an individual noiseless sequence.

This negative result raises the question of whether it is at all pos-
sible for a filter to compete with a nontrivial reference class under the
well-informed antagonist. We answer this question in the affirmative in
Sections III–VI by constructing a randomized filter that can success-
fully compete in the following generality.

1. An arbitrary finite reference class of (possibly randomized) filters.
2. Noisy time-invariant channels satisfying a mild invertibility con-

dition, possibly having memory, where the noisy output depends
on the l past channel outputs (in addition to the noiseless input

symbol). This is a large class of channels, that includes many
channels arising naturally in signal processing and communica-
tions (cf. [6] and references therein).

3. A possibly randomized antagonist, allowed to base its choice for
the next noiseless sequence component on knowledge of the past
noisy sequence, as well as all past randomization variables. Thus,
in particular, when choosing the current noiseless sequence com-
ponent, the antagonist knows all history of the noiseless sequence,
noisy sequence, actions of competing filters, and actions of all fil-
ters in the reference class (and, in particular, their respective cu-
mulative losses).

Memoryless channels are obtained as a special case of our setting
by taking l = 0. In this case, our filter coincides with the one in [22],
shown therein to compete with an arbitrary finite reference class in the
individual sequence (semi-stochastic1) setting. Thus, for memoryless
channels, our main contribution is in establishing that the filter of [22]
is universal not only for the semi-stochastic setting in which it was
originally proposed, but also under the more challenging setting of a
well-informed antagonist. Further, in this more challenging setting, our
results imply that randomization is an absolute necessity.

The main problem we treat, as well as the approach we take to its so-
lution via the prediction-filtering correspondence, form a natural con-
tinuation and extension to the framework of [22]. Thus, though we give
a self-contained account of our framework, results, and analysis, famil-
iarity with [22] will make for an easier read of the present work.

The remainder of the correspondence is organized as follows. As
mentioned, we show in Section II that any deterministic filter will fail
under some antagonist, thereby both establishing the antagonist frame-
work as more challenging than the semi-stochastic one, and making
the case for the use of randomized filters. In Section III, we describe
the antagonist framework in its full generality, and state our main re-
sult, Theorem 1, on the existence of a randomized filter that success-
fully competes with an arbitrary finite reference class regardless of the
underlying antagonist. Section IV is a short detour into prediction of
individual sequences, to introduce notation and recap a known result
(with a slight twist) on prediction of individual sequences relative to
a set of experts that will serve us well in later sections. In Section V,
we describe the correspondence between filters and predictors which
allows us to present Theorem 3 and its corollary, Corollary 1, the main
technical results underlying Theorem 1. In Section VI, we detail the
construction of a filter which, equipped with the results of the previous
sections, we show is competitive in the senses asserted in Theorem 1,
thereby proving the theorem. It will be clear that our main technical
increment in proving Theorem 1, beyond ingredients that were already
used in [22], is Theorem 3, which extends the martingale lemma [22,
Lemma 2] to the setting of an arbitrary antagonist and channels with
memory. We conclude in Section VII with a summary of our findings
and related questions for future research.

II. INDIVIDUAL SEQUENCE VERSUS THE

WELL-INFORMED ANTAGONIST

The main point of this section is to show that the well-informed an-
tagonist is a more challenging adversary than the individual sequence
for the filtering problem. To this end, it suffices to restrict attention, as
we do throughout this section, to the case of a memoryless channel,
and only a certain type of antagonist (namely, a nonrandomized one).
The full generality in which our main result holds will be specified in
Section III.

1The term “semi-stochastic” is due to the fact that the individual noiseless
sequence is deterministic, while the noise in the channel and, hence, the noisy
sequence are stochastic.
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A. Filtering a Corrupted Individual Sequence Relative to a
Set of Experts

Let x1; x2; . . ., xi 2 X , be an individual (deterministic) sequence
and Z1; Z2; . . ., Zi 2 Z , denote its noisy observation when corrupted
by some known memoryless channel, where X , Z are finite alphabets
(without loss of generality, we will identify the elements of any finite
alphabet V with f0; 1; . . . ; jVj � 1g).2 Concretely, Zt = g(xt;Wt),
where W1;W2; . . . are independent and identically distributed (i.i.d.)
� U [0; 1] (with U [0; 1] denoting the uniform distribution on the [0; 1]
interval) and the function3 g is known. Note that g induces the channel
matrix � defined by

�(x; z) = �(fw : g(x; w) = zg) (1)

where � denotes Lebesgue measure. In words, �(x; z) is the proba-
bility of a channel output z when the channel input is x. A deterministic
filter is a sequential (causal) estimator for the components of the indi-
vidual sequence based on its noisy observations. Specifically, a deter-
ministic filter X̂XX is given by a sequence of mappings fX̂tgt�1, where
X̂t : Zt ! X̂ , and X̂ is a finite reconstruction alphabet, so that the
filter’s estimate of xt is given by X̂t = X̂t(Z

t), whereZt is shorthand
notation for the sequence (Z1; Z2; . . . ; Zt). We will also use, e.g., Zt

t

to denote the sequence (Zt ; . . . ; Zt ) (which is to be understood as
the empty string when t1 > t2).

A randomized filter, or just filter for short, is one that accesses,
in addition to the noisy sequence, a randomization sequence
U1; U2; . . . of i.i.d. � U [0; 1] components, independent of the
channel noise W1;W2; . . ., on which it can base its estimates.
More specifically, the randomized filter is given as X̂XX = fX̂tgt�1,
where X̂t : Zt � [0; 1] ! X̂ , the filter’s estimate of xt being
X̂t = X̂t Zt; Ut . We further assume, for concreteness that
will enable a simplified presentation of later results, that for each
zt there exists a partition of the unit interval into subintervals
��1 = 0 � �0 � �1 � � � � � �jX̂ j�1 = 1 such that

X̂t zt; ut = x̂; iff ut 2 [�x̂�1; �x̂): (2)

In other words, the randomization variable is used by “slicing” the unit
interval into subintervals of lengths corresponding to the sought proba-
bilities of the possible reconstruction symbols. This entails no essential
loss of generality since clearly, for any filter X̂XX , not necessarily of the
form in (2), there exists another filter ~XXX such that

X̂t zt; ut
d
= ~Xt zt; ut ; 8 t and zt 2 Zt (3)

where
d
= denotes equality in distribution.4 The per-symbol loss of the

filter (deterministic or randomized) is denoted by

L
X̂XX
(xn; Zn) =

1

n

n

t=1

�(xt; X̂t) (4)

2We use j � j to denote cardinality or absolute value according to whether the
argument is set- or real-valued.

3Here and throughout, all functions considered are assumed to be measurable.
4Two filters satisfying (3) were said in [22] to be “equivalent.” Every equiv-

alence class of filters contains one (and only one) filter of the form in (2). The
restriction to filters of this form will allow us in the sequel to make statements
about filters which would otherwise have to involve qualifications about equiv-
alence classes.

where � : X � X̂ ! is a given loss function (when X̂XX is a random-
ized filter, L

X̂XX
(xn; Zn) may depend on the randomization sequence

as well, though we suppress this dependence in the notation for sim-
plicity). Given a set of filters G, the goal is to find a filter (not neces-
sarily a member of G) that does essentially as well as the best in the
set, regardless of the underlying noiseless individual sequence. More
concretely, one seeks a filter X̂XX satisfying

max
x 2X

EL
X̂XX
(xn; Zn)� min

X̂XX 2G

EL
X̂XX

(xn; Zn) � "n (5)

where "n ! 0. In [15], it was shown, under benign assumptions on
the channel, that for the case where G = Gs, the class of constant
“symbol-by-symbol” filters, there exists a deterministic filter X̂XX satis-
fying

max
x 2X

EL
X̂XX
(xn; Zn)� min

X̂XX 2G

EL
X̂XX

(xn; Zn) � C=
p
n (6)

for some constant C (depending on jX j, jZj, �). This result was ex-
tended in [2] to the case of reference classes consisting of “Markov” (fi-
nite-memory, time-invariant, sliding-window) filters of a known order.

B. Any Deterministic Filter Fails Under Some Antagonist

Consider now the case where the sequence to be filtered, rather than
a predetermined individual sequence, is allowed to evolve based on the
past noisy (channel output) sequence. Specifically, fXtgt�1 is now a
sequence of mappings whereXt : Zt�1 ! X , so that the tth noiseless
sequence component is Xt = Xt(Z

t�1). Let An (“A” standing for
“antagonists”) denote the set of all such length-n sequences Xn =
fXtgnt=1. While clearly

max
X 2A

EL
X̂XX
(Xn; Zn)� min

X̂XX 2G

EL
X̂XX

(Xn; Zn)

� max
x 2X

EL
X̂XX
(xn; Zn)� min

X̂XX 2G

EL
X̂XX

(xn; Zn) (7)

it may be tempting to assume that the inequality in (7) is satisfied with
equality. Vardeman disproved this supposition in [17] by establishing
the existence of a filter X̂XX satisfying (6) but for which there exists a
constant � > 0 such that for all n

max
X 2A

EL
X̂XX
(Xn; Zn)� min

X̂XX 2G

EL
X̂XX

(Xn; Zn) � �: (8)

To do this, Vardeman considered the setting of filtering a binary se-
quence corrupted by a BSC of some crossover probability �, under
Hamming loss. In this case, X = Z = X̂ = f0; 1g, g is given
by equation (9) at the bottom of the page, and � is Hamming loss,
i.e., �(x; x̂) = 1fx 6=x̂g. Van Ryzin’s “play Bayes against the esti-
mated past empiric distribution” filter [15], for this setting, assuming
0 � � < 1=2, is given as

X̂t(z
t) =B

n1(z
t�1)� �

1� 2�
; zt

=

0; if n1(zt�1) < 2�(1� �)

1; if n1(zt�1) > �2 + (1� �)2

zt; otherwise

(10)

g(x; w) =
0; if fx = 0 and w 2 [0; 1� �)g or fx = 1 and w 2 [0; �)g
1; otherwise

(9)
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where n1(zt) denotes the fraction of 1’s in zt (and n1(z0) � 1=2) and
B(p; z) is defined by

B(p; z) =

0; if p < �

1; if 1� p < �

z; otherwise
(11)

i.e., the optimal estimate of X given Z = z, when X � Bernoulli(p)
and Z is the output of the BSC (�) whose input is X . The bottom line
of [17] was the construction of an antagonist, on which the filter in
(10), for � = 1=3, has limnELX̂XX(X

n; Zn) = 5=9, which is nowhere
near the expected per-symbol loss of the best symbol-by-symbol filter
(which is � � = 1=3, since � is achievable by the “say what you see”
scheme).

Thus, Vardeman’s result shows that Van Ryzin’s deterministic filter,
shown in [15], that competes with the filter set Gs under any noise-
less individual sequence, fails under some antagonist. It does not, how-
ever, exclude the possibility of the existence of some other determin-
istic filter that successfully competes with that set under all antagonists.
This possibility is excluded by the result that follows (stated assuming
the BSC setting).

Proposition 1: For any deterministic filter X̂XX there exists an antag-
onist such that, for all n

EL
X̂XX
(Xn; Zn)� min

X̂XX 2G

EL
X̂XX
(Xn; Zn) � �(1� �): (12)

Proof: Given the deterministic filter X̂XX = fX̂tg, we construct
the adversarial sequence (antagonist) by

Xt(z
t�1) =

1; if X̂t(z
t�1; �) � 0

0; otherwise
(13)

where X̂t(z
t�1; �) denotes the mapping s : Z ! X̂ satisfying s(z) =

X̂t(z
t�1; z) for all z 2 Z . This gives

E �(Xt; X̂t)jz
t�1 =

1; if X̂t(z
t�1; �) � 0

1; if X̂t(z
t�1; �) � 1

�; if X̂t(z
t�1; �) = SWYS

1� �; if X̂t(z
t�1; �) = SWYS,

(14)

where SWYS(z) = z and SWYS(z) = z with z denoting the binary
complement of z. Evidently5

E �(Xt; X̂t)jZ
t�1 � 1fX =1g + 1fX =0g � �

= � + 1fX =1g � (1� �) (15)

which, taking expectations over both sides of (15) and summing from
t = 1 to t = n, implies

EL
X̂XX
(Xn; Zn) =

1

n

n

t=1

E�(Xt; X̂t)

� � + (1� �)
1

n

n

t=1

P (Xt = 1): (16)

On the other hand

min
XXX 2G

EL
X̂XX
(Xn; Zn)

= min
1

n

n

t=1

P (Xt = 1); 1�
1

n

n

t=1

P (Xt = 1); �; 1� � (17)

5Throughout, equalities and inequalities between random variables should be
understood in the almost-sure sense.

where the four terms inside the brackets on the right-hand side cor-
respond, respectively, to the expected per-symbol loss of the schemes
“say all zeros,” “say all ones,” “say what you see,” and “say the binary
complement of what you see.” Consequently

EL
X̂XX
(Xn; Zn)� min

XXX 2G
EL

X̂XX
(Xn; Zn)

� f �;
1

n

n

t=1

P (Xt = 1)

� �(1� �) (18)

where the left inequality follows upon defining

f(�; p) = p(1� �) + � �minfp; 1� p; �; 1� �g (19)

and the right inequality by the fact that f(�; p)��(1��) for 0�p � 1.

It is interesting to examine the form that the antagonist constructed in
the above proof assumes when applied to a familiar filter. Specifically,
the form of this antagonist (given in (13)), when applied to Van Ryzin’s
scheme (10), is

Xt(z
t�1) =

1; if n1(zt�1) < 2�(1� �)

0; otherwise.
(20)

Thus, under this antagonist, a typical sample path of n1(Zt) will fluc-
tuate around the value 2�(1 � �), which is a boundary point in the
decision region of the filter it was designed to impede. Indeed, each
time that n1(Zt) “down-crosses” the level 2�(1 � �), the antagonist
produces the channel input symbol “1” while the Van Ryzin filter, as
can be seen in (10), outputs a “0,” hence incurring a loss of “1.” On the
other hand, at each up-crossing of that level, the antagonist produces an
input symbol of “0” while the Van Ryzin filter “says what it sees,” thus
incurring an expected loss of �. Thus, overall, the expected per-symbol
loss of the Van Ryzin filter under the antagonist in (20) exceeds that
of the “say what you see” filter (and, a fortiori, of the best filter in the
reference class of symbol-by-symbol schemes) by a nondiminishing
amount.

Fig. 1 plots the performance (cumulative non-normalized loss) of
the Van Ryzin filter, employed on a BSC(� = 1=3)-corrupted indi-
vidual sequence. Also plotted are the respective cumulative losses of
the four symbol-by-symbol filters in the reference class with which the
Van Ryzin filter was designed to compete. The filter is indeed seen to
be doing as well as the best in the reference class, as may be expected
from the fact that this filter satisfies (6). The individual sequence is ob-
tained via a raster scan of the binary image in Fig. 2. Fig. 3 plots the
performance of the same filter, again for a BSC(� = 1=3), but this time
under the antagonist in (20). As can be expected from Proposition 1,
and as discussed above, this filter performs poorly relative to the best
in the reference class. Indeed, inspection of the graph shows that es-
sentially for all n plotted

L
X̂XX
(Xn; Zn)� min

X̂XX 2G

L
X̂XX
(Xn; Zn) �

5

9
�

1

3
=

1

3
�
2

3
= �(1� �)

which is in line with the lower bound (12).
Clearly, Proposition 1, which is stated in the setting of the BSC and

the (small) reference class of symbol-by-symbol schemes, implies a
fortiori that in the more general case of larger alphabets, larger ref-
erence classes, and more general loss functions, deterministic filters
that successfully compete under all antagonists do not exist. Evidently,
deterministic filters, even those that can successfully compete with a
reference class on all individual noiseless sequences, fail under the
well-informed antagonist. Viewed positively, feedback about the past
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Fig. 1. Performance of Van Ryzin’s filter on an individual sequence.

Fig. 2. The individual sequence.

noisy channel outputs can be of substantial benefit to an antagonist
trying to avoid being tracked by a deterministic filter. The question now
arises as to whether allowing randomization could enable a filter to suc-
cessfully compete under this more adversarial antagonist. We answer
this question in the affirmative in what follows, for a problem setting
more general than considered above.

III. FILTERING AGAINST THE WELL-INFORMED ANTAGONIST

In what follows UUU = (U1; U2; . . .), VVV = (V1; V2; . . .), WWW =
(W1;W2; . . .) are independent sequences of i.i.d. � U [0; 1] random

variables, constituting the sources of randomness, respectively, for the
filters, the antagonist, and the channel, in ways that will be detailed
below. Given a finite reference class of filters G, our goal is to choose
a filter X̂XX , after which the antagonist, based on knowledge of the refer-
ence class and our choice of filter, chooses the sequence of mappings
fXtg to be used in the following game: For each t � 1

[Nature:] Generates randomization variables Ut, Vt, Wt

[Antagonist:] Generates noiseless sequence component
Xt = Xt(W

t�1; U t�1; V t)
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Fig. 3. Performance of Van Ryzin’s filter under the antagonist of Proposition 1.

[Channel:] Generates noisy sequence component Zt =
g Z

t�1

t�l
; Xt;Wt

[Filter:] Generates estimate of noiseless sequence component
X̂t = X̂t Zt; Ut

[Reference Class:] Each filter in reference class X̂XX
0

2 G generates
estimate X̂ 0

t = X̂ 0

t Zt; Ut :

Assumptions:

1. Z0
�l+1 is an arbitrary deterministic sequence known to all sides

(the particular values are inconsequential). The sole goal ofZ0
�l+1

is to initiate the noisy context for the channel.
2. The function g is known to all sides. Note that, since g character-

izes the channel, this assumption is equivalent to that of a known
channel (cf. [21] for a discussion of why this assumption is real-
istic in many practical scenarios). Note also that l corresponds to
the effective channel memory (the case l = 0 reducing to a mem-
oryless channel). The function g induces the channel matrices

�
z
(x; z) = � fw : g(zl; x; w) = zg : (21)

�
z
(x; z) is thus the probability of a channel output symbol z

when the input symbol is x and the previous l noisy symbols are
zl. Our assumption on the channel is that the matrix �

z
is of full

row rank for every zl. This assumption guarantees that, for every
zl, there exists a function hz : Z ! X such that

z

h
z
(z)[x0]�

z
(x; z) = �(x; x0) (22)

where h
z
(z)[x0] denotes the x0th component of h

z
(z) and

�(x; x0) denotes the Kronecker delta. In vector notation, viewing
h
z
(z) as a column vector, (22) is equivalent to

z

h
z
(z)�

z
(x; z) = �x (23)

where �x 2 X denotes the column vector all of whose com-
ponents are 0 except for the xth one which is 1. Throughout the

remainder of the paper we assume a fixed set of functions fh
z
g
z

satisfying (23).

Remarks:

• LetH
z

denote the jZj�jX jmatrix whose zth row is hT
z
(z), i.e.,

H
z
(z; b) = h

z
(z)[b]. Equality (23), in matrix form, becomes

�z �Hz = I (24)

where I is the jX j � jX j identity matrix. Thus, as stated, �z

being of full row rank guarantees the existence of a matrix H
z

satisfying (24). Note further that for the case where jX j = jZj,
the matrix Hz is uniquely determined and given by the inverse of
�
z

. Thus, H
z

can be thought of an operation for “inverting” the
effect of the channel.

• The requirement that �z be of full row rank for every zl is
rather benign, and satisfied by most channels of interest. For
example, in the binary case where X = Z = f0; 1g, this re-
quirement boils down to the condition that �z (0; 0)�z (1; 1) 6=
(1� �

z
(0; 0))(1� �

z
(1; 1)) for every zl. On the other hand,

it is easy to show that when the full-rankness assumption does
not hold, competition with any nontrivial reference class in the
setting of an unknown individual sequence (and, a fortiori, the
setting of an antagonist) is infeasible (cf. [15], [21], [10]).

• Let for each t � 1

Ft = �(U t
; V

t
;W

t) (25)

where the right-hand side denotes the sigma-field generated by
U t, V t, W t. Note that since Zt is completely determined by W t

and Xt, and since both W t 2 Ft and Xt 2 Ft,6 it follows that
Zt 2 Ft. Also, for any filter X̂XX , X̂t is completely determined by
Zt and U t, so, since both Zt 2 Ft and U t 2 Ft, it follows that
X̂t 2 Ft. Note further that when the antagonist chooses the tth
noiseless component Xt, it has access to Ft�1 so, in particular, is
fully cognizant not only of the past noisy sequence Zt�1 (which

6WhenX is a random variable and � a sigma field, we shall writeX 2 � to
denote the fact that X is �-measurable. Whether 2 denotes set membership or
measurability will be clear from the context.
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was the case with the antagonist constructed in the previous sec-
tion), but also of the actual past reconstruction symbols generated
by the filter X̂XX , as well as all those generated by the reference
filters in G. The additional variable available to the antagonist at
time t, Vt, is to allow it to also randomize if it so chooses.

Toward stating our main result, we now let Ln

X̂XX
denote the normal-

ized cumulative loss of the filter X̂XX in the first n rounds of the game,
i.e.,

Ln

X̂XX
=

1

n

n

t=1

�(Xt; X̂t): (26)

Though we suppress this dependence in the notation for simplicity,
Ln

X̂XX
depends on the underlying antagonist (i.e., the mappings fXtgnt=1)

and, consequently, also on the variables Un, V n, Wn. Similarly, for
each filter in the reference class X̂XX

0 2 G, we let Ln

X̂XX
denote its nor-

malized cumulative loss. Our ultimate goal in the game is to construct
a filter X̂XX competing with the reference class G in the sense of ensuring
that the difference

Ln

X̂XX
� min

X̂XX 2G

Ln

X̂XX
(27)

is small, regardless of the underlying antagonist who may be trying
to make this difference as large as possible. This goal turns out to be
achievable in senses we make precise in Theorem 1 below. To state the
theorem, we define for every zl and mapping s : Z ! X̂ the column
vector �z (s), whose xth component is given by

�z (s)[x] =
z

�(x; s(z))�z (x; z): (28)

One can think of �z (s)[x] as the expected loss when employing the
estimation rule s on the channel output, when the channel input is x
and the noisy context (past noisy l-tuple) is zl. Defining now

`max = max
z ;z;s

hz (z)T � �z (s)� min
z ;z;s

hz (z)T � �z (s) (29)

and

Cmax = max
x;x̂;z ;z;s

�(x; x̂)� hz (z)T � �z (s) (30)

our main result can be stated as follows.

Theorem 1: For any finite set of filters G, and anyn � 1, there exists
a filter X̂XX such that for all " > 0, and under all antagonists

1.

ELn

X̂XX
� min

X̂XX 2G

ELn

X̂XX
� `max

ln jGj
2n

(31)

2.
P Ln

X̂XX
� min

X̂XX 2G

Ln

X̂XX
� "+ `max

ln jGj
2n

� 2(jGj+ 1) exp �n "2

2C2
max

: (32)

Remarks:

• Note that inequality (32) implies

E Ln

X̂XX
� min

X̂XX 2G

Ln

X̂XX

= E Ln

X̂XX
� min

X̂XX 2G

Ln

X̂XX
� `max

ln jGj
2n

+ `max
ln jGj
2n

�
1

0

P Ln

X̂XX
� min

X̂XX 2G

Ln

X̂XX
� `max

ln jGj
2n

� " d"

+ `max
ln jGj
2n

(a)

� 2(jGj+ 1)
1

0

exp �n "2

2C2
max

d"+ `max
ln jGj
2n

= (jGj+ 1) 2C2
max� + `max

ln jGj
2

1p
n

(33)

where (a) follows from (32). Thus, (32) implies also a bound
on the expected regret, in addition to the bound in (31)
which is on the regret under the expected losses. Of course,
E Ln

X̂XX
�min

X̂XX 2G
Ln

X̂XX
� ELn

X̂XX
� min

X̂XX 2G
ELn

X̂XX
, so (32),

which implies (33), is enough to imply a bound of the form
const:=

p
n on the left-hand side of (31). The bound in (31),

however, is much better in terms of the constant and, in particular,
the dependence of the constant on jGj.

• The proof of Theorem 1 will constructively establish existence of
a filter X̂XX satisfying (31) and (32).

• For the case of a memoryless channel, i.e., l = 0, the filtering
scheme we will construct coincides with the one in Theorem 1 of
[22]. Thus, for this case, our main contribution is in showing that
the scheme of [22] competes under the well-informed antagonist
just as efficiently as it does under an individual noiseless sequence.
In turn, this can be shown to imply that all other performance guar-
antees that are given in [22] for the semi-stochastic setting in fact
hold under the well-informed antagonist. In particular, the “incre-
mental parsing filter” of [22, Sec. 5] is guaranteed to attain the “fi-
nite-state filterability” that can be associated with any antagonist
(analogously, as is associated with a noise-corrupted individual
sequence).

• As previously discussed, our (benign) assumption that the channel
matrices �z are of full row rank guarantees the existence of ma-
trices fHz gz satisfying (24). However, when jX j < jZj, the
requirement to satisfy (24) does not uniquely determine fHz g.
In this case, the upper bound in (31) suggests that the minimiza-
tion of `max (recall (29) for the dependence of `max on fHz g)
may be a reasonable guideline for the choice of matrices fHz g,
among all those that satisfy (24).

• The filter of Theorem 1 is “horizon-dependent” (i.e., dependent
on the sequence length n). However, as was the case for the
filter of [22, Theorem 1], a similar result holds for a “strongly
sequential” (horizon- independent) filter at the price of slightly
larger constants multiplying the square-root term in (31) and in
(32). Such a strongly sequential filter can be constructed from the
one in Theorem 1 via a standard “doubling trick,” as described,
e.g., in [3].

Theorem 1 will be proved in Section VI by combining a bound
from the realm of prediction of individual sequences (presented in
Section IV) with an association between the problems of prediction
and filtering that we extend in Section V from the setting of [22]
to our present setting of the well-informed antagonist.
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IV. PREDICTION UNDER A LOSS-FUNCTION WITH MEMORY

In this section, we digress briefly to the setting of prediction of indi-
vidual sequences relative to an arbitrary expert set, under a loss function
with memory. Let the finite setsY ,A be, respectively, a source alphabet
and a prediction alphabet (also referred to as the “action space”). A pre-
dictor, F = fFtgt�1, is a sequence of functions Ft : Yt�1 !M(A),
whereM(A) denotes the simplex of probability distributions on the al-
phabet A. The interpretation is that the prediction for time t is given
by a 2 A with probability Ft(y

t�1)[a], where Ft(y
t�1)[a] denotes

the ath component of Ft(y
t�1). Note that, unlike for the filtering set-

ting of the previous section, where the filter output was a reconstruction
symbol (rather than a distribution on the reconstruction alphabet) with
access to a randomization variable, here we view the prediction as a
distribution on the prediction alphabet, with no access to external ran-
domization. This view simplifies the statement of Theorem 2 below,
and will suffice for our later goal of transferring results from predic-
tion to filtering. Assuming a given loss function � : Yl+1 � A ! ,
for any n and yn 2 Yn we define the normalized cumulative loss of
the predictor F by

LF (y
n) =

1

n

n

t=1 a2A

�(ytt�l; a)Ft(y
t�1)[a]; (34)

which can be interpreted as the expected prediction loss on the indi-
vidual sequence yn,7 when averaging over the randomization. Note that
the loss function may depend on sequence components from some fixed
portion of the past of length l, but not on past predictions. The latter case
was treated in [13] and is more challenging than our situation, which
is easily reduced to the standard prediction problem by considering the
sequence ~yn, where ~yi = yii�l. The following theorem is then a direct
consequence of [22, Theorem 2] (which, in turn, follows from [4, The-
orem 1]).

Theorem 2: For every finite predictor set F there exists a predictor
F such that for all yn 2 Yn

LF (y
n)� min

F 2F
LF (yn) � �max

ln jFj
2n

(35)

where

�max = max
y ;a

� y
0
�l; a � min

y ;a

� y
0
�l; a : (36)

The proof of [22, Theorem 2] implies that a predictor F satisfying
(35) is

Ft(y
t�1) = F 2F e��L (y )F 0

t (y
t�1)

F 2F e��L (y )
(37)

where � =

p
8n ln jFj

�
.

V. FROM PREDICTION TO FILTERING AND BACK

In this section, we establish a correspondence between prediction
and filtering under an arbitrary antagonist that will be key for proving
Theorem 1. This correspondence is the natural generalization of that
established in [22] to the case of channels with memory.

7The right-hand side of (34) actually depends also on y which we assume
is set to some arbitrary value.

Let F be a predictor (from the setting of the previous section), where
the source alphabet is taken to be the alphabet of the noisy sequence
from the filtering problem Y = Z . As the prediction alphabet we take
A = S , where S is the (finite) set of mappings that take Z into X̂ ,
i.e., S = fs : Z ! X̂g. Thus, for each zt�1 2 Zt�1, Ft(zt�1) is a
distribution on the set of mappings S , i.e., Ft(zt�1) 2 M(S). With

any such predictor we associate a filter X̂XX
F

as follows:

X̂
F
t z

t
; ut = x̂ if

x̂�1

a=0 s:s(z )=a

Ft(z
t�1)[s]

�ut <

x̂

a=0 s:s(z )=a

Ft(z
t�1)[s] (38)

where, without loss of generality, we assume the reconstruction al-
phabet to be f0; 1; . . . ; jX̂ j � 1g. In words, X̂F is defined so that the
probability that X̂F

t Zt; Ut = x̂ is the probability that the mapping
S, generated according to the distributionFt(zt�1), maps zt to x̂. Con-
versely, for any filter X̂XX , we define the associated predictor F X̂XX by

F
X̂XX
t (zt�1)[s] =� u 2 [0; 1] : X̂t(z

t�1
z; u) = s(z) 8 z

=� u 2 [0; 1] : X̂t(z
t�1�; u) = s (39)

where zt�1z denotes the sequence of length t formed by concatenation
of the symbol z to the right of zt�1. The associations in (38) and (39),
taken with the convention on the structure of filters stated in (2), are
readily verified (cf. [22, Sec. 4] for a similar derivation) to be consistent
in the sense that, for any filter X̂XX

X̂XX
(F )

= X̂XX: (40)

We are now ready to present the main technical result underlying the
proof of Theorem 1, where the setting of Section III is assumed (recall,
in particular, the �-field Ft defined in (25)).

Theorem 3: Let LF (z
n) denote the normalized cumulative loss of a

predictor F from the prediction setting of Section IV when employed
on the sequence zn, for source alphabet Y = Z , prediction alphabet
A = S , and under the loss function with memory

`(zlz; s) = hz (z)T � �z (s): (41)

For any predictor F , and under any antagonist, fn[Ln

X̂XX
�

LF (Z
n)]gn�1 is an fFng-martingale.

Theorem 3 extends [22, Lemma 2] to accommodate our current set-
ting of channels with memory and an underlying antagonist (rather
than an individual sequence). For the proof of Theorem 3, it will be
convenient to introduce the following notation: For each t, zt, define
P
X̂XX
(zt) 2 M(X̂ ) by

P
X̂XX
(zt)[x̂] =

u2[0;1]:X̂ (z ;u)=x̂

du (42)

namely, the probability that X̂t zt; Ut = x̂.

Proof of Theorem 3: We fix a predictor F , t � 1, an antagonist,
and consider (43)–(44) at the bottom of the next page, where

• (a) follows since Xt; Z
t 2 �(Vt; Wt;Ft�1) and Ut is inde-

pendent of �(Vt;Wt;Ft�1) so

E � Xt; X̂
F
t z

t
; ut Vt; Wt;Ft�1

=
x̂

�(Xt; x̂)P
X̂XX

(Zt)[x̂]
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• (b) follows since (Xt; Z
t�1) 2 �(Vt;Ft�1) and, conditioned on

�(Vt;Ft�1), Zt is distributed according to �
Z

(Xt; �) so

E

x̂

�(Xt; x̂)PX̂XX (Zt)[x̂] Vt;Ft�1

=
z

�
Z

(Xt; z)
x̂

�(Xt; x̂)P
X̂XX

(Zt�1
z)[x̂]

• (c) follows since Zt�1 2 Ft�1

• (d) follows from

z

�
Z

(x; z)
x̂

�(x; x̂)P
X̂XX

(Zt�1
z)[x̂]

=
z

�
Z

(x; z)
x̂

�(x; x̂)
s:s(z)=x̂

Ft(Z
t�1)[s]

=
z

�
Z

(x; z)
s

�(x; s(z))Ft(Z
t�1)[s]

=
s

�
Z

(s)[x]Ft(Z
t�1)[s]

=
s

�
T
x � �

Z
(s) Ft(Z

t�1)[s]

where the equality before last follows from the definition of �z (s)
(recall (28))

• (e) follows from

E h
Z

(Zt)
T Ft�1

=
z

P (Zt = zjFt�1)hZ (z)T

=
z x

P (Xt = xjFt�1)�Z
(x; z) h

Z
(z)T

=
x

P (Xt = xjFt�1)
z

�
Z

(x; z)h
Z

(z)T

=
x

P (Xt = xjFt�1)�
T
x

where the last equality follows from (23).
The proof is concluded by noting that

n L
n

X̂XX
� LF (Z

n) � (n� 1) L
n�1

X̂XX
� LF (Z

n�1)

= �(Xn; X̂
F
n (Z

n
; Un))�

s

`(Zn
n�l; s)Fn(Z

n�1)[s] (45)

that, by (44), the right-hand side of (45) equals 0 a.s. when conditioned
on Fn�1, and that Ln�1

X̂XX
� LF (Z

n�1) 2 Fn�1.

Corollary 1: For all n, any predictor F , and under any antagonist,
[Unbiasedness:]

EL
n

X̂XX
= ELF (Z

n): (46)

[Concentration:]

P L
n

X̂XX
� LF (Z

n) � " � 2 exp �n
2"2

C2
max

: (47)

Proof: The equality in (46) is immediate from Theorem 3. To
establish (47) note first that since `(zlz; s) = hz (z)T � �z (s) (recall
(41)), Cmax, as defined in (30), is equivalently expressed as

Cmax = max
x;x̂;z ;z;s

�(x; x̂)� `(zlz; s) : (48)

From (45), (48), and Theorem 3 it then follows that Ln

X̂XX
�LF (Z

n) is
a martingale with differences bounded by Cmax. Inequality (47) now

E �(Xt; X̂
F
t z

t
; ut ) Ft�1 (43)

= E E �(Xt; X̂
F
t z

t
; ut ) Vt; Wt;Ft�1 Ft�1

(a)
= E E

x̂

�(Xt; x̂)P
X̂XX

(Zt)[x̂] Vt;Ft�1 Ft�1

(b)
= E

z

�
Z

(Xt; z)
x̂

�(Xt; x̂)P
X̂XX

(Zt�1
z)[x̂] Ft�1

(c)
=

x

P (Xt = xjFt�1)
z

�
Z

(x; z)
x̂

�(x; x̂)P
X̂XX

(Zt�1
z)[x̂]

(d)
=

x

P (Xt = xjFt�1)
s

[�Tx � �
Z

(s)]Ft(Z
t�1)[s]

=
s x

P (Xt = xjFt�1)�
T
x � �

Z
(s) Ft(Z

t�1)[s]

(e)
=

s

E h
Z

(Zt)
T Ft�1 � �

Z
(s) Ft(Z

t�1)[s]

= E

s

h
Z

(Zt)
T � �

Z
(s) Ft(Z

t�1)[s] Ft�1

= E

s

`(Zt
t�l; s)Ft(Z

t�1)[s] Ft�1 (44)
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Fig. 4. Randomized filter of Theorem 1 (the “Hannan filter”) and Van Ryzin’s deterministic filter under the antagonist.

follows from an application of the Hoeffding–Azuma inequality [9,
Theorem 9.1].

VI. THE COMPETING FILTER

The important conclusion of the previous section, encapsulated in
Corollary 1, is that the LF (Z

n) (which can be computed based on
observing only the noisy channel output sequence Zn) is an unbi-
ased—and quite efficient—estimate of Ln

^XXX
(the unobserved loss of

the filter X̂XX
F

), regardless of what the (unknown) underlying antagonist
may be. This conclusion suggests the following recipe for construction
of a filter competing with the reference class of filters G.

• Transform each of the filters in G into its associated predictor to
obtain the predictor set

F = F
^XXX : X̂XX

0

2 G : (49)

• Construct a predictor F that competes with F in the sense of
Theorem 2.

• Let the competing filter X̂XX be given by X̂XX
F

.
With this recipe, Theorem 1 is proved using Corollary 1 similarly to
the way in which [22, Theorem 5] was proved using [22, Theorem 4].
We give the full proof in Appendix A for completeness.

Fig. 4 shows the performance of the filter constructed in the above
proof for the binary setting of a BSC(� = 1=3), Hamming loss, and
the reference class Gs of symbol-by-symbol filters, when the noiseless
sequence evolves according to the antagonist in (20). We refer to it as
the “Hannan filter,” as it is induced by the “Hannan predictor” com-
peting with the set of constant predictors in the individual sequence
setting of Section IV (under the loss function, source alphabet, and
prediction space detailed in Theorem 3). In line with Theorem 1, this
filter is seen to be doing as well as the best in the reference class (its
curve in the graph is obscured by those of the best schemes). Also
plotted for comparison is the performance of Van Ryzin’s determin-
istic filter [15] which was shown in Section III to fail to compete
under this antagonist.

VII. CONCLUSION

We have considered the problem of filtering relative to an arbitrary
finite set of filtering experts when the noiseless sequence to be filtered
is allowed to evolve based on knowledge of the past noisy sequence
components (that is, chosen by the “well-informed antagonist” or, al-
ternatively, the noiseless sequence can be thought of as an “individual
sequence with feedback”).

We have shown that this framework is more challenging than its
“semi-stochastic” origin of an underlying noiseless individual se-
quence. Specifically, that while there exist deterministic filters that can
compete with certain reference classes of filters in the semi-stochastic
setting, all such filters fail under an appropriately chosen antagonist.

On the positive side, we have constructively established the existence
of a randomized filter that can compete with an arbitrary given finite
reference class of filters regardless of what the underlying antagonist
may be. This was done in the generality of channels that may have
memory of a finite number of past noisy symbols.

Our findings suggest a fundamental difference between the prob-
lems of prediction and of filtering: while in the former, randomiza-
tion is needed whether the sequence outcomes are formed by an indi-
vidual sequence or a “nonoblivious opponent” [5], in the latter we have
shown that, at least for some reference classes, randomization is not
needed when the underlying sequence components form an individual
sequence but is crucial when they are generated by the well-informed
antagonist. These findings reiterate and further motivate consideration
of the open question mentioned in [22]: is randomization needed to
successfully compete in the semi-stochastic setting with an arbitrary
(finite) reference class of filters? We conjecture that the answer is neg-
ative, for reasons elaborated on in [22, Sec. VI].

Another question arising naturally in the context of our findings
is: What happens when the “feedback” is noisy, i.e., if the antagonist
driving the noiseless sequence gets to see only a noisy version of the
past channel outputs? Is it still the case that any deterministic filter will
fail under some antagonist of this type? As motivation, we note that
for the application discussed in the Introduction, of tracking a target
with access to its past noisy trajectory, it is more realistic to assume the
presence of noisy rather than noise-free feedback.
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APPENDIX

A. Proof of Theorem 1

Let F be the predictor set in (49) and F be the predictor that com-
petes with this set in the sense of Theorem 2. Letting X̂XX = X̂XX

F

ELn
^XXX
� min

^XXX 2G

ELn
^XXX

= ELF (Z
n)� min

^XXX 2G

EL
F

(Zn) (50)

= ELF (Z
n)� min

F 2F
ELF (Zn) (51)

� E LF (Z
n)� min

F 2F
LF (Zn) (52)

� `max
ln jFj

2n
(53)

= `max
ln jGj

2n
(54)

where (50) follows from the combination of (40) and (46), (51) follows
from the definition of F in (49), (53) follows from Theorem 2 (and the
association `max  ! �max), and the equality follows since jFj = jGj
(which is implied by (40)). This proves (31). For the second item note
that, for all sample paths

Ln
X̂XX
� min
X̂XX 2G

Ln
X̂XX
� LF (z

n)� min
F 2F

LF (zn)

= Ln
X̂XX
� min
F 2F

Ln
X̂XX
� LF (z

n)� min
F 2F

LF (zn) (55)

� Ln
X̂XX
� LF (z

n) + max
F 2F

Ln
X̂XX
� LF (zn) (56)

where equality (55) follows from the fact that G = X̂XX
F

: F 0 2 F

(implied by (40)). It follows from (35), (47), (56), and a union bound
that

P Ln
X̂XX
� min
X̂XX 2G

Ln
X̂XX
� "+ `max

ln jFj

2n

� P Ln
X̂XX
� min
X̂XX 2G

Ln
X̂XX
� "+ LF (Z

n)� min
F 2F

LF (Zn)

� P Ln
X̂XX
� LF (Z

n) � "=2

+ P max
F 2F

Ln
X̂XX
� LF (Zn) � "=2

� 2(jFj+ 1) exp �n
"2

2C2
max

= 2(jGj+ 1) exp �n
"2

2C2
max

:
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