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Abstract

Let X = (X1, . . .) be a stationary ergodic finite-alphabet source, Xn denote its first n symbols, and Y n be the
codeword assigned to Xn by a lossy source code. The empirical kth-order joint distribution Q̂k[Xn, Y n](xk, yk) is
defined as the frequency of appearances of pairs of k-strings (xk, yk) along the pair (Xn, Y n). Our main interest
is in the sample behavior of this (random) distribution. Letting I(Qk) denote the mutual information I(Xk; Y k)
when (Xk, Y k) ∼ Qk we show that for any (sequence of) lossy source code(s) of rate ≤ R

lim sup
n→∞

1

k
I
(
Q̂k[Xn, Y n]

)
≤ R +

1

k
H(Xk

1 ) − H(X) a.s.,

where H(X) denotes the entropy rate of X. This is shown to imply, for a large class of sources including all i.i.d.
sources and all sources satisfying the Shannon lower bound with equality, that for any sequence of codes which is
good in the sense of asymptotically attaining a point on the rate distortion curve

Q̂k[Xn, Y n]
d⇒ PXk,Ỹ k a.s.,

whenever PXk,Ỹ k is the unique distribution attaining the minimum in the definition of the kth-order rate distortion
function. Further consequences of these results are explored. These include a simple proof of Kieffer’s sample
converse to lossy source coding, as well as pointwise performance bounds for compression-based denoisers.

Key words and phrases: Empirical distribution, Good codes, Lossy source codes, Pointwise bounds, Strong converse,

Shannon lower bound.

1 Introduction

Loosely speaking, a rate distortion code sequence is considered good for a given source if it attains a point on its

rate distortion curve. The existence of good code sequences with empirical distributions close to those achieving the

minimum mutual information in the definition of the rate distortion function is a consequence of the random coding

argument at the heart of the achievability part of rate distortion theory. It turns out, however, in ways that we

quantify in this work, that any good code sequence must have this property.

This behavior of the empirical distribution of good rate distortion codes is somewhat analogous to that of good

channel codes which was characterized by Shamai and Verdú in [SV97]. Defining the kth-order empirical distribution

of a channel code as the proportion of k-strings anywhere in the codebook equal to every given k-string, this empirical

distribution was shown to converge to the capacity-achieving channel input distribution. The analogy is more than
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merely qualitative. For example, the growth rate of k with n where this convergence was shown in [SV97] to break

down will be seen to have an analogue in our setting. A slight difference between the problems is that in the setting of

[SV97] the whole codebook of a good code was shown to be well-behaved in the sense that the empirical distribution

is defined as an average over all codewords. In the source coding analogue, it is clear that no meaningful statement

can be made on the empirical distribution obtained when averaging and giving equal weights to all codewords in the

codebook. The reason is that any approximately good codebook will remain approximately good when appending

to it a sub-exponential number of additional codebooks of the same size, so essentially any empirical distribution

induced by the new codebook can be created while maintaining the “goodness” of the codebook. We therefore adopt

in this work what seems to be a more meaningful analogue to the empirical distribution notion of [SV97], namely

the empirical distribution of the codeword corresponding to the particular source realization, or the joint empirical

distribution of source realization and its associated codeword. We shall show several strong probabilistic senses

in which the latter entities converge to the distributions attaining the minimum in the associated rate distortion

function.

The basic phenomenon we quantify in this work is that a rate constraint on a sequence of codes imposes a severe

limitation on the mutual information associated with its empirical distribution. This is independent of the notion of

distortion, or goodness of a code. The described behavior of the empirical distribution of good codes is a consequence

of it.

Our work consists of two main parts. The first part, Section 3, considers the distribution of the pair of k-tuples

obtained by looking at the source-reconstruction pair (Xn, Y n) through a k-window at a uniformly sampled location.

More specifically, we look at the distribution of (XI+k−1
I , Y I+k−1

I ), where I is chosen uniformly from {1, . . . , n−k+1}
(independently of everything else). We refer to this distribution as the “kth-order marginalization of the distribution

of (Xn, Y n)”. In subsection A we show that the normalized mutual information between XI+k−1
I and Y I+k−1

I is

esentially1 upper bounded by R + 1
kH(Xk) − H(X), R denoting the rate of the code and H(X) the source entropy

rate. This is seen in subsection B to imply, for any asymptotically good code sequence, the convergence in distribution

of (XI+k−1
I , Y I+k−1

I ) to the joint distribution attaining R(Xk,D) (the kth-order rate distortion function) whenever

it is unique and satisfies the relation R(Xk,D) = R(X,D) + 1
kH(Xk) − H(X) (with R(X,D) denoting the rate

distortion function of the source). This includes all i.i.d. sources, as well as the large family of sources for which

the Shannon lower bound holds with equality (cf. [Gra70, Gra71, BG98] and references therein). In subsection C we

show that convergence in any reasonable sense cannot hold for any code sequence when k increases with n such that

k/n > R(X,D)/H(Ỹ), where H(Ỹ) is the entropy rate of the reconstruction process attaining the minimum mutual

information defining the rate distortion function. In subsection D we apply the results to obtain performance bounds

for compression-based denoising. We extend results from [Don02] by showing that any additive noise distribution

induces a distortion measure such that if optimal lossy compression of the noisy signal is performed under it, at a

distortion level matched to the level of the noise, then the marginalized joint distribution of the noisy source and

the reconstruction converges to that of the noisy source and the underlying clean source. This is shown to lead to
1Up to an o(1) term, independent on the particular code.
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bounds on the performance of such compression-based denoising schemes.

Section 4 presents the primary part of our work, which consists of pointwise analogues to the results of Section 3.

More specifically, we look at properties of the (random) empirical kth-order joint distribution Q̂k[Xn, Y n] induced

by the source-reconstruction pair of n-tuples (Xn, Y n). The main result of subsection A (Theorem 7) asserts that

R+ 1
kH(Xk)−H(X) is not only an upper bound on the normalized mutual information between XI+k−1

I and Y I+k−1
I

(as established in Section 3), but is essentially2, with probability one, an upper bound on the normalized mutual

information under Q̂k[Xn, Y n]. This is seen in subsection B to imply the sample converse to lossy source coding of

[Kie91], avoiding the use of the ergodic theorem in [Kie89]. In subsection C this is used to establish the almost sure

convergence of Q̂k to the joint distribution attaining the kth-order rate distortion function of the source, under the

conditions stipulated for the convergence in the setting of Section 3. In subsection D we apply these almost sure

convergence results to derive a pointwise analogue of the performance bound for compression-based denoising derived

in subsection 3.D. In subsection E we show that a simple post-processing “derandomization” scheme performed on the

output of the previously analyzed compression-based denoisers results in essentially optimum denoising performance.

The empirical distribution of good lossy source codes was first considered by Kanlis, Khudanpur and Narayan

in [KSP96]. For memoryless sources they showed that any good sequence of codebooks must have an exponentially

non-negligible fraction of codewords which are typical with respect to the R(D)-achieving output distribution. It was

later further shown in [Kan97] that this subset of typical codewords carries most of the probabilistic mass in that

the probability of a source word having a non-typical codeword is negligible. That work also sketched a proof of the

fact that the source word and its reconstruction are, with high probability, jointly typical with respect to the joint

distribution attaining R(D). More recently, Donoho established distributional properties of good rate distortion

codes for certain families of processes and applied them to performance analysis of compression based denoisers

[Don02]. The main innovation in the parts of the present work related to good source codes is in considering the

pointwise behavior of any kth-order joint empirical distribution for general stationary ergodic processes.

Other than sections 3 and 4 which were detailed above, we introduce notation and conventions in Section 2, and

summarize the paper with a few of its open directions in Section 5.

2 Notation and Conventions

X and Y will denote, respectively, the source and reconstruction alphabets which we assume throughout to be finite.

We shall also use the notation xn for (x1, . . . , xn) and xj
i = (xi, . . . xj).

We denote the set of probability measures on a finite set A by M(A). For P, P ′ ∈ M(A) we let ‖P − P ′‖ =

maxa∈A |P (a) − P ′(a)|. B(P, δ) will denote the l∞ ball around P , i.e.,

B(P, δ) = {P ′ : ‖P ′ − P‖ ≤ δ}. (1)

For {Pn}, Pn, P ∈ M(A), Pn
d⇒ P , Pn ⇒ P , and Pn → P will all stand for

lim
n→∞ ‖Pn − P‖ = 0. (2)

2In the limit of large n.
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For Q ∈ M(X × Y), I(Q) will denote the mutual information I(X;Y ) when (X,Y ) ∼ Q. Similarly, for Qk ∈
M(X k × Yk), I(Qk) will stand for I(Xk;Y k) when (Xk, Y k) ∼ Qk. For P ∈ M(A) and a stochastic matrix W

from A into B, P ⊗ W ∈ M(A × B) is the distribution on (A,B) under which Pr(A = a,B = b) = P (a)W (b|a).

HP⊗W (X|Y ) and H(W |P ) will both denote H(X|Y ) when (X,Y ) ∼ P ⊗ W . I(P ;W ) will stand for I(X;Y ) when

(X,Y ) ∼ P ⊗ W . When dealing with expectations of functions or with functionals of random variables, we shall

sometimes subscript the distributions of the associated random variables. Thus, for example, for any f : A → R and

P ∈ M(A) we shall write EP f(A) for the expectation of f(A) when A is distributed according to P .

Mn(A) will denote the subset of M(A) consisting of n-th-order empirical types, i.e., P ∈ Mn(A) if and only if

P (a) is an integer multiple of 1/n for all a ∈ A. For any P ∈ M(X ), Cn(P ) will denote the set of stochastic matrices

(conditional distributions) from X into Y for which P ⊗ W ∈ Mn(X × Y).

For P ∈ M(A) we let Tn
P , or simply TP , denote the associated type class, i.e., the set of sequences un ∈ An with

1
n
|{1 ≤ i ≤ n : ui = a}| = P (a) ∀a ∈ A. (3)

Mn(A) will denote the set of P ∈ M(A) for which Tn
P 	= ∅. For δ ≥ 0, Tn

[P ]δ
, or simply T[P ]δ , will denote the set of

sequences un ∈ An with ∣∣∣∣ 1n |{1 ≤ i ≤ n : ui = a}| − P (a)
∣∣∣∣ ≤ δ ∀a ∈ A. (4)

For a random element, P subscripted by the element will denote its distribution. Thus, for example, for the

process X = (X1,X2, . . .), PX1 , PXn and PX will denote, respectively, the distribution of its first component, the

distribution of its first n components, and the distribution of the process itself. If, say, (X0, Z
j
i ) are jointly distributed

then PX0|zj
i
∈ M(X ) will denote the conditional distribution of X0 given Zj

i = zj
i . This will also hold for the cases

with i = −∞ and\or j = ∞ by assuming PX0|zj
i

to be a regular version of the conditional distribution of X0 given

Zj
i , evaluated at zj

i . For a sequence of random variables {Xn}, Xn
d⇒ X will stand for PXn

d⇒ PX .

For xn ∈ Xn and yn ∈ Yn we let Q̂k[xn] ∈ M(X k), Q̂k[yn] ∈ M(Yk), and Q̂k[xn, yn] ∈ M(X k × Yk) denote the

k-th order empirical distributions defined by

Q̂k[xn](uk) =
1

n − k + 1
|{0 ≤ i ≤ n − k : xi+k

i+1 = uk}|, (5)

Q̂k[yn](vk) =
1

n − k + 1
|{0 ≤ i ≤ n − k : yi+k

i+1 = vk}|, (6)

and

Q̂k[xn, yn](uk, vk) =
1

n − k + 1
|{0 ≤ i ≤ n − k : xi+k

i+1 = uk, yi+k
i+1 = vk}|. (7)

Q̂k[yn|xn] will denote the conditional distribution PY k|Xk when (Xk, Y k) ∼ Q̂k[xn, yn]. In accordance with notation

defined above, for example, EQ̂k[xn,yn]f(Xk, Y k) will denote expectation of f(Xk, Y k) when (Xk, Y k) ∼ Q̂k[xn, yn].

Definition 1 A fixed-rate n-block code is a pair (Cn, φn) where Cn ⊆ Yn is the code-book and φn : Xn → Cn. The

rate of the block-code is given by 1
n log |Cn|. The rate of a sequence of block codes is defined by

lim sup
n→∞

1
n

log |Cn|.
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Y n = Y n(Xn) = φn(Xn) will denote the reconstruction sequence when the n-block code is applied to the source

sequence Xn.

Definition 2 A variable-rate code for n-blocks is a triple (Cn, φn, ln) with Cn and φn as in Definition 1. The

code operates by mapping a source n-tuple Xn into Cn via φn, and then encoding the corresponding member of the

code-book (denoted Y n in Definition 1) using a uniquely decodable binary code. Letting ln(Xn) denote the associated

length function, the rate of the code is defined by E 1
n ln(Xn) and the rate of a sequence of codes for the source

X = (X1,X2, . . .) is defined by lim supn→∞ E 1
n ln(Xn).

Note that the notion of a code in the above definitions does not involve a distortion measure according to which

goodness of reconstruction is judged.

We assume throughout a given single-letter loss function ρ : X × Y → [0,∞) satisfying

∀x ∈ X ∃y ∈ Y s.t. ρ(x, y) = 0. (8)

For xn ∈ Xn and yn ∈ Yn we let ρn(xn, yn) = 1
nρ(xi, yi). We shall also let δY |X denote a conditional distribution of

Y given X with the property that for all x ∈ X
∑
y∈Y

δY |X(y|x)ρ(x, y) = 0 (9)

(note that (8) implies existence of at least one such conditional distribution). The rate distortion function associated

with the random variable X ∈ X is defined by

R(X,D) = min
Eρ(X,Y )≤D

I(X;Y ), (10)

where the minimum is over all joint distributions of the pair (X,Y ) ∈ X × Y consistent with the given distribution

of X. Letting ρn denote the (normalized) distortion measure between n-tuples induced by ρ,

ρn(xn, yn) =
1
n

n∑
i=1

ρ(xi, yi), (11)

the rate distortion function of Xn ∈ Xn is defined by

R(Xn,D) = min
Eρn(Xn,Y n)≤D

1
n

I(Xn;Y n). (12)

The rate distortion function of the stationary ergodic process X = (X1,X2, . . .) is defined by

R(X,D) = lim
n→∞R(Xn,D). (13)

Note that our assumptions on the distortion measure, together with the assumption of finite source alphabets,

combined with its well-known convexity, imply that R(X,D) (as a function of D ∈ [0,∞)) is

1. Non-negative valued and bounded.

2. Continuous.
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3. Strictly decreasing in the range 0 ≤ D ≤ DX
max, where DX

max
�
= min{D : R(X,D) = 0} (and identically 0 for

D ≥ DX
max),

properties that will be tacitly relied on in proofs of some of the results. The set
{
(R(X,D),D) : 0 ≤ D ≤ DX

max

}
will be referred to as the “rate distortion curve”. The distortion rate function is the inverse of R(X, ·), which we

formally define (to account for the trivial regions) as

D(X, R) =




unique value of D such that R(X,D) = R for R ∈ (0, R(X, 0)]
DX

max for R = 0
0 for R > R(X, 0).

(14)

3 Distributional Properties of Rate-Constrained Codes

Throughout this section “codes” can be taken to mean either fixed- or variable-rate codes.

A Bound on the Mutual Information Induced by a Rate-Constrained Code

The following result and its proof are implicit in the proof of the converse of [DW03, Theorem 1].

Theorem 1 Let X = (X1,X2 . . .) be stationary and Y n = Y n(Xn) be the reconstruction of an n-block code of rate

≤ R. Let J be uniformly distributed on {1, . . . , n}, and independent of X. Then

I(XJ ;YJ) ≤ R + H(X1) − 1
n

H(Xn). (15)

In particular I(XJ ;YJ ) ≤ R when X is memoryless.

Proof:

H(Y n) ≥ I(Xn;Y n)

= H(Xn) − H(Xn|Y n)

= H(Xn) − nH(X1) +
n∑

i=1

[H(Xi) − H(Xi|Xi−1, Y n)]

≥ H(Xn) − nH(X1) +
n∑

i=1

[H(Xi) − H(Xi|Yi)]

= H(Xn) − nH(X1) +
n∑

i=1

I(Xi;Yi)

≥ H(Xn) − nH(X1) + nI(XJ ;YJ ), (16)

where the last inequality follows from the facts that (by stationarity) for all i XJ
d= Xi, that PYJ |XJ

= 1
n

∑n
i=1 PYi|Xi

,

and the convexity of the mutual information in the conditional distribution (cf. [CT91, Theorem 2.7.4]). The fact

that Y n is the reconstruction of an n-block code of rate ≤ R implies H(Y n) ≤ nR, completing the proof when

combined with (16). �

Remark: It is readily verified that (15) remains true even when the requirement of a stationary X is relaxed to the

requirement of equal first order marginals. To see that this cannot be relaxed much further note that when the

6



source is an individual sequence the right side of (15) equals R. On the other hand, if this individual sequence is

non-constant one can take a code of rate 0 consisting of one codeword whose joint empirical distribution with the

source sequence has positive mutual information, violating the bound.

Theorem 2 Let X = (X1,X2 . . .) be stationary and Y n = Y n(Xn) be the reconstruction of an n-block code of rate

≤ R. Let 1 ≤ k ≤ n and J be uniformly distributed on {1, . . . , n − k + 1}, and independent of X. Then

1
k

I
(
XJ+k−1

J ;Y J+k−1
J

) ≤ n

n − k
R +

1
k

H(Xk) − 1
n

H(Xn) +
2k

n
log |X |. (17)

Proof: Let, for 1 ≤ j ≤ k, Sj = {1 ≤ i ≤ n : i = j mod k}. Note that n
k − 1 ≤ |Sj | ≤ n

k . Let P
(j)

Xk,Y k be the

distribution defined by

P
(j)

Xk,Y k(xk, yk) =
1

|Sj |
∑
i∈Sj

Pr{Xi+k−1
i = xk, Y i+k−1

i = yk}. (18)

Note, in particular, that

PXJ+k−1
J ,Y J+k−1

J
=

k∑
j=1

|Sj |
n

P
(j)

Xk,Y k . (19)

Now

nR ≥ H(Y n)

≥ H
(
Y

j+k|Sj |−1
j

)

≥ H
(
X

j+k|Sj |−1
j

)
− |Sj |H(Xk) + |Sj |I

(
P

(j)

Xk,Y k

)
, (20)

where the first inequality is due to the rate constraint of the code and the last one follows from the bound established

in (16) with the assignment n → |Sj |, (Xn, Y n) →
(
X

j+k|Sj |−1
j , Y

j+k|Sj |−1
j

)
, (Xi, Yi) →

(
Xj+ik−1

j+(i−1)k,Xj+ik−1
j+(i−1)k

)
.

Rearranging terms

I
(
P

(j)

Xk,Y k

)
≤ n

|Sj |R + H(Xk) − 1
|Sj |H

(
X

j+k|Sj |−1
j

)

≤ k

[
n

n − k
R +

1
k

H(Xk) − 1
n

H(Xn) +
2k

n
log |X |

]
, (21)

where in the second inequality we have used the fact that

H(Xn) ≤ H
(
X

j+k|Sj |−1
j

)
+ H(Xj−1,Xn

j+k|Sj |) ≤ H
(
X

j+k|Sj |−1
j

)
+ 2k log |X |.

Inequality (17) now follows from (21), (19), the fact that PXJ+k−1
J

= P
(j)

Xk (both equaling the distribution of a source

k-tuple) for all 1 ≤ j ≤ k, and the convexity of the mutual information in the conditional distribution. �

An immediate consequence of Theorem 2 is

Corollary 1 Let X = (X1,X2 . . .) be stationary and {Y n(·)} be a sequence of block codes of rate ≤ R. For 1 ≤ k ≤ n

let J (n,k) be uniformly distributed on {1, . . . , n − k + 1}, and independent of X. Consider the pair (Xn, Y n) =

(Xn, Y n(Xn)) and denote (
X̃(n,k), Ỹ (n,k)

)
=
(
XJ(n,k)+k−1

J(n,k) , Y J(n,k)+k−1
J(n,k)

)
. (22)
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Then

lim sup
k→∞

lim sup
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≤ R. (23)

Proof: Theorem 2 implies

lim sup
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≤ R +

1
k

H(Xk) − H(X), (24)

completing the proof by letting k → ∞. �

B The Empirical Distribution of Good Codes

The converse in rate distortion theory (cf. [Ber71], [Gal68]) asserts that if X is stationary ergodic and (R,D) is a

point on its rate distortion curve then any code sequence of rate ≤ R must satisfy

lim inf
n→∞ Eρn(Xn, Y n(Xn)) ≥ D. (25)

The direct part, on the other hand, guarantees the existence of codes that are good in the following sense.

Definition 3 Let X be stationary ergodic, 0 ≤ D ≤ DX
max, and (R,D) be a point on its rate distortion curve.

The sequence of codes (with associated mappings {Y n(·)}) will be said to be good for the source X at rate R (or at

distortion level D) if it has rate ≤ R and

lim sup
n→∞

Eρn(Xn, Y n(Xn)) ≤ D. (26)

Note that the converse to rate distortion coding implies that the limit supremum in the above definition is actually

a limit and the rate of the corresponding good code sequence is = R.

Theorem 3 Let {Y n(·)} correspond to a good code sequence for the stationary ergodic source X and
(
X̃(n,k), Ỹ (n,k)

)
be defined as in Corollary 1. Then:

1. For every k

lim
n→∞Eρk

(
X̃(n,k), Ỹ (n,k)

)
= D, (27)

R(Xk,D) ≤ lim inf
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≤ lim sup

n→∞
1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≤ R(X,D) +

1
k

H(Xk) − H(X) (28)

so, in particular,

lim
k→∞

lim inf
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
= lim

k→∞
lim sup

n→∞
1
k

I
(
X̃(n,k); Ỹ (n,k)

)
= R(X,D). (29)

2. If it also holds that R(Xk,D) = R(X,D) + 1
kH(Xk

1 ) − H(X) then

lim
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
= R(Xk,D). (30)

3. If, additionally, R(Xk,D) is uniquely achieved (in distribution) by the pair (X̃k, Ỹ k) then

(
X̃(n,k), Ỹ (n,k)

)
d⇒ (X̃k, Ỹ k) as n → ∞. (31)
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The condition in the second item clearly holds for any memoryless source. It holds, however, much beyond memoryless

sources. Any source for which the Shannon lower bound holds with equality is readily seen to satisfy R(Xk,D) =

R(X,D)+ 1
kH(Xk

1 )−H(X) for all k. This is a rich family of sources that includes Markov processes, hidden Markov

processes, auto-regressive sources, and Gaussian processes (in the continuous alphabet setting), cf. [Gra70, Gra71,

BG98, EM02, WM03].

The first part of Theorem 3 will be seen to follow from Theorem 2. Its last part will be a consequence of the

following lemma, whose proof is given in Appendix A.

Lemma 1 Let R(D) be uniquely achieved by the joint distribution PX,Y . Let further {P (n)
X,Y } be a sequence of

distributions on (X,Y ) satisfying

P
(n)
X

d⇒ PX , (32)

lim
n→∞ I

(
P

(n)
X,Y

)
= R(D), (33)

and

lim
n→∞E

P
(n)
X,Y

ρ(X,Y ) = D. (34)

Then

P
(n)
X,Y

d⇒ PX,Y . (35)

Proof of Theorem 3: For any code sequence {Y n(·)}, an immediate consequence of the definition of
(
X̃(n,k), Ỹ (n,k)

)
is that

lim
n→∞

[
Eρk

(
X̃(n,k), Ỹ (n,k)

)
− Eρn(Xn, Y n)

]
= 0. (36)

Combined with the fact that {Y n(·)} is a good code this implies

lim
n→∞Eρk

(
X̃(n,k), Ỹ (n,k)

)
= lim

n→∞Eρn(Xn, Y n) = D, (37)

proving (27). To prove (28) note that since {Y n(·)} is a sequence of codes for X at rate R(X,D), Theorem 2 implies

lim sup
n→∞

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≤ R(X,D) +

1
k

H(Xk) − H(X). (38)

On the other hand, since X̃(n,k) d= Xk, it follows from the definition of R(Xk, ·) that

1
k

I
(
X̃(n,k); Ỹ (n,k)

)
≥ R

(
Xk, Eρk

(
X̃(n,k), Ỹ (n,k)

))
, (39)

implying

lim inf
n→∞

1
k

I
(
X̃(n,k), Ỹ (n,k)

)
≥ R(Xk,D) (40)

by (37) and the continuity of R(Xk, ·). This complete the proof of (28). Displays (29) and (30) are immediate

consequences. The convergence in (31) is a direct consequence of (30) and Lemma 1 (applied with the assignment

X → Xk, Y → Y k and ρ → ρk). �

Remark: Note that to conclude the convergence in (31) in the above proof a weaker version of Lemma 1 would have

sufficed, that assumes P
(n)
X = PX for all n instead of P

(n)
X

d⇒ PX in (32). This is because clearly, by construction of

X̃(n,k), X̃(n,k) d= Xk for all n and k ≤ n. The stronger form of Lemma 1 given will be instrumental in the derivation

of a pointwise analogue to (31) in Section 4 (third item of Theorem 9).
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C A Lower Bound on the Convergence Rate

Assume a stationary ergodic source X that satisfies, for each k, R(Xk,D) = R(X,D) + 1
kH(Xk

1 ) − H(X) and for

which R(Xk,D) is uniquely achieved by the pair (X̃k, Ỹ k). Theorem 3 implies that any good code sequence for X

at rate R(X,D) must satisfy

(X̃(n,k), Ỹ (n,k)) d⇒ (X̃k, Ỹ k) as n → ∞ (41)

(recall Corollary 1 for the definition of the pair (X̃(n,k), Ỹ (n,k))). This implies, in particular,

1
k

H(Ỹ (n,k)) −→ 1
k

H(Ỹ k) as n → ∞. (42)

It follows from (42) that for kn increasing slowly enough with n

1
kn

[H(Ỹ (n,kn)) − H(Ỹ kn)] −→ 0 as n → ∞. (43)

Display (43) is equivalent to
1
kn

H(Ỹ (n,kn)) −→ H(Ỹ) as n → ∞, (44)

where we denote limk→∞ 1
kH(Ỹ k) by H(Ỹ) (a limit which exists3 under our hypothesis that R(Xk,D) is uniquely

achieved by (X̃k, Ỹ k) for every k). The rate at which kn may be allowed to increase while maintaining the convergence

in (44) may depend on the particular code sequence (through which (X̃(n,k), Ỹ (n,k)) are defined). We now show,

however, that if kn increases more rapidly than a certain fraction of n, then the convergence in (44) fails for any

code sequence. To see this note that for any k

1
k

H(Ỹ (n,k)) =
1
k

H(Y J(n,k)+k−1
J(n,k) ) (45)

≤ 1
k

H(Y J(n,k)+k−1
J(n,k) , J (n,k)) (46)

≤ 1
k

H(Y n, J (n,k)) (47)

≤ 1
k

H(Y n) +
1
k

H(J (n,k)) (48)

≤ 1
k

H(Y n) +
log n

k
. (49)

Now, since Y n is associated with a good code,

1
n

H(Y n) → R(X,D). (50)

Letting kn = αn, (49) and (50) imply

lim sup
n→∞

1
kn

H(Ỹ (n,kn)) ≤ 1
α

R(X,D), (51)

excluding the possibility that (44) holds whenever

α >
R(X,D)
H(Ỹ)

. (52)

3In particular, for a memoryless source H(Ỹ) = H(Ỹ1). For sources for which the Shannon lower bound is tight it is the entropy rate
of the source which results in X when corrupted by the max-entropy white noise tailored to the corresponding distortion measure and
level.
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This is analogous to the situation in the empirical distribution of good channel codes where it was shown in [SV97,

Section III] for the memoryless case that convergence is excluded whenever kn = αn for α > C
H , where H stands for

the entropy of the capacity-achieving channel input distribution.

To sum up, we see that convergence takes place whenever k = O(1) (Theorem 3), and does not take place

whenever k = αn for α satisfying (52). For k growing with n at the intermediate rates convergence depends on the

particular code sequence, and examples can be constructed both for convergence and for lack thereof (analogous to

[SV97, Examples 4,5]).

D Applications to Compression-Based Denoising

The point of view that compression may facilitate denoising was put forth by Natarajan in [Nat95]. It is based on the

intuition that the noise constitutes that part of a noisy signal which is least compressible. Thus, lossy compression

of the noisy signal, under the right distortion measure and at the right distortion level, should lead to effective

denoising. Compression-based denoising schemes have since been suggested and studied under various settings and

assumptions (cf. [Nat93, Nat95, NKH98, CYV97, JY01, Don02, TRA02, Ris00, TPB99] and references therein). In

this subsection we consider compression-based denoising when the clean source is corrupted by additive white noise.

We will give a new performance bound for denoisers that optimally lossily compress the noisy signal (under distortion

measure and level induced by the noise).

For simplicity, we restrict attention throughout this section to the case where the alphabets of the clean-, noisy-,

and reconstructed-source are all equal to the M -ary alphabet A = {0, 1, . . . ,M − 1}. Addition and subtraction

between elements of this alphabet should be understood modulo-M throughout. The results we develop below have

analogues for cases where the alphabet is the real line.

We consider the case of a stationary ergodic source X corrupted by additive “white” noise N. That is, we assume

Ni are i.i.d.∼ N , independent of X, and that the noisy observation sequence Z is given by

Zi = Xi + Ni. (53)

By “channel matrix” we refer to the Toeplitz matrix whose, say, first row is (Pr(N = 0), . . . ,Pr(N = M − 1)). We

assume that Pr(N = a) > 0 for all a ∈ A and associate with it a difference distortion measure ρ(N) defined by

ρ(N)(a) = log
1

Pr(N = a)
. (54)

We shall omit the superscript and let ρ stand for ρ(N) throughout this section.

Fact 1

max{H(X) : X is A-valued and Eρ(X) ≤ H(N)}

is uniquely achieved (in distribution) by N .

Proof: N is clearly in the feasible set by the definition of ρ. Now, for any A-valued X in the feasible set with X
d

	= N

H(N) ≥ Eρ(X)
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=
∑

a

PX(a) log
1

Pr(N = a)

> H(X),

where the strict inequality follows from D(PX‖PN ) > 0. �

Theorem 4 Let R(Zk, ·) denote the k-th order rate distortion function of Z under the distortion measure in (54).

Then

R(Zk,H(N)) =
1
k

H(Zk) − H(N). (55)

Furthermore, it is uniquely achieved (in distribution) by the pair (Zk,Xk) whenever the channel matrix is invertible.

Proof: Let (Zk, Y k) achieve R(Zk,H(N)). Then

kR(Zk,H(N)) = I(Zk;Y k)

= H(Zk) − H(Zk|Y k)

≥ H(Zk) − H(Zk − Y k|Y k)

≥ H(Zk) − H(Zk − Y k)

≥ H(Zk) − kH(N), (56)

where the last inequality follows by the fact that Eρn(Zk, Y k) ≤ H(N) (otherwise (Zk, Y k) would not be an achiever

of R(Zk,H(N))) and Fact 1. The first part of the theorem follows since the pair (Zk,Xk) satisfies Eρn(Zk,Xk) =

H(N) and is readily seen to satisfy all the inequalities in (56) with equality. For the uniqueness part note that

it follows from the chain of inequalities in (56) that if (Zk, Y k) achieve R(Zk,H(N)) then Zk is the output of

the memoryless additive channel with noise components ∼ N whose input is Y k. The invertibility of the channel

matrix guarantees uniqueness of the distribution of the Y k satisfying this for any given output distribution (cf., e.g.,

[WOS+03]). �

Let now Λ : A × A → [0,∞) be the loss function according to which denoising performance is measured. For

un, vn ∈ An let Λn(un, vn) = 1
n

∑n
i=1 Λ(ui, vi). Define Γ : M(A) ×M(A) → [0,∞) by

Γ(P,Q)
�
= max

(U,V ):U∼P,V ∼Q
EΛ(U, V ). (57)

and Ψ : M(A) → [0,∞) by

Ψ(P )
�
= Γ(P, P ) = max

(U,V ):U∼P,V ∼P
EΛ(U, V ). (58)

It will be convenient to state the following (implied by an elementary continuity argument) for future reference

Fact 2 Let {Rn}, {Qn} be sequences in M(A) with Rn → P and Qn → P . Then

lim
n→∞Γ(Rn, Qn) = Ψ(P ).
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Example 1 In the binary case, M = 2, when Λ denotes Hamming distortion, it is readily checked that, for 0 ≤ p ≤ 1

Ψ(Bernoulli(p)) = 2min{p, 1 − p} = 2φ(p), (59)

where

φ(p) = min{p, 1 − p} (60)

is the well-known Bayesian envelope for this setting [Han57, Sam63, MF98]. The achieving distribution in this case

(assuming, say, p ≤ 1/2) is

Pr(U = 0, V = 0) = 1 − 2p, Pr(U = 0, V = 1) = p, Pr(U = 1, V = 0) = p, Pr(U = 0, V = 0) = 0. (61)

Theorem 5 Let {Y n(·)} correspond to a good code sequence for the noisy source Z at distortion level H(N) (under

the difference distortion measure in (54)) and assume that the channel matrix is invertible. Then

lim sup
n→∞

EΛn(Xn, Y n(Zn)) ≤ EΨ
(
PX0|Z∞

−∞

)
. (62)

Note, in particular, that for the case of a binary source corrupted by a BSC, the optimum distribution dependent

denoising performance is Eφ
(
PX0|Z∞

−∞

)
(cf. [WOS+03, Section 5]), so the right side of (62) is, by (59), precisely

twice the expected fraction of errors made by the optimal denoiser (in the limit of many observations). Note that

this performance can be attained universally (i.e., with no a priori knowledge of the distribution of the noise-free

source X) by employing a universal rate distortion code on the noisy source, e.g., the fixed distortion version of the

Yang-Kieffer codes4 [YK96, Section III].

Proof of Theorem 5: Similarly as in Corollary 1, for 1 ≤ k ≤ n−1
2 let J (n,k) be uniformly distributed on {k+1, . . . , n−

k + 1}, and independent of (X,Z). Consider the triple (Xn, Zn, Y n) = (Xn, Zn, Y n(Zn)) and denote
(
X [n,k]k

−k, Z [n,k]k

−k, Y [n,k]k

−k

)
=
(
XJ(n,k)+k

J(n,k)−k
, ZJ(n,k)+k

J(n,k)−k
, Y J(n,k)+k

J(n,k)−k

)
. (63)

Note first that

EΛ
(
X [n,k]

0, Y
[n,k]

0

)
=

1
n − 2k

n−k+1∑
i=k+1

EΛ(Xi, Yi) (64)

so

EΛn(Xn, Y n(Zn)) − 2kΛmax

n
≤ EΛ

(
X [n,k]

0, Y
[n,k]

0

)
≤ n

n − 2k
EΛn(Xn, Y n(Zn)) (65)

and, in particular,

lim
n→∞

[
EΛn(Xn, Y n(Zn)) − EΛ

(
X [n,k]

0, Y
[n,k]

0

)]
= 0. (66)

Also, by the definition of Γ,

EΛ
(
X [n,k]

0, Y
[n,k]

0

)
=

∑
zk
−k∈Ak

E
[
Λ
(
X [n,k]

0, Y
[n,k]

0

)∣∣∣Z [n,k]k

−k = zk
−k

]
Pr
(
Z [n,k]k

−k = zk
−k

)

≤
∑

zk
−k∈Ak

Γ
(
PX[n,k]0|Z[n,k]k−k=zk

−k
, PY [n,k]0|Z[n,k]k−k=zk

−k

)
Pr
(
Z [n,k]k

−k = zk
−k

)
. (67)

4This may conceptually motivate employing a universal lossy source code for denoising. Implementation of such a code, however, is
too complex to be of practical value. It seems even less motivated in light of the universally optimal and practical scheme in [WOS+03].
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Now, clearly
(
X [n,k]k

−k, Z [n,k]k

−k

)
d= (Xk

−k, Zk
−k) so, in particular, ∀zk

−k ∈ Ak

PX[n,k]0|Z[n,k]k−k=zk
−k

= PX0|Zk
−k=zk

−k
. (68)

On the other hand, from the combination of Theorem 3 and Theorem 4 it follows, since {Y n(·)} corresponds to a

good code sequence, that (
Y [n,k]k

−k, Z [n,k]k

−k

)
d⇒ (Xk

−k, Zk
−k) as n → ∞. (69)

and therefore, in particular, ∀zk
−k ∈ Ak

PY [n,k]0|Z[n,k]k−k=zk
−k

−→ PX0|Zk
−k=zk

−k
as n → ∞. (70)

The combination of (68), (70), and Fact 2 implies that ∀zk
−k ∈ Ak

Γ
(
PX[n,k]0|Z[n,k]k−k=zk

−k
, PY [n,k]0|Z[n,k]k−k=zk

−k

)
−→ Ψ

(
PX0|Zk

−k=zk
−k

)
as n → ∞. (71)

Thus we obtain

lim sup
n→∞

EΛn(Xn, Y n(Zn))
(a)
= lim sup

n→∞
EΛ

(
X [n,k]

0, Y
[n,k]

0

)

(b)

≤
∑

zk
−k∈Ak

Ψ
(
PX0|Zk

−k=zk
−k

)
Pr
(
Zk
−k = zk

−k

)

= EΨ
(
PX0|Zk

−k

)
, (72)

where (a) follows from (66) and (b) from combining (67) with (71) (and the fact that Z [n,k]k

−k
d= Zk

−k). The fact

that limk→∞ PX0|Zk
−k

= PX0|Z∞
−∞ a.s. (martingale convergence), the continuity of Ψ, and the bounded convergence

theorem imply

lim
k→∞

EΨ
(
PX0|Zk

−k

)
= EΨ

(
PX0|Z∞

−∞

)
, (73)

which completes the proof when combined with (72). �

4 Sample Properties of the Empirical Distribution

Throughout this section “codes” should be understood in the fixed-rate sense of Definition 1.

A Pointwise Bounds on the Mutual Information Induced by a Rate-Constrained Code

The first result of this section is the following.

Theorem 6 Let {Y n(·)} be a sequence of block codes with rate ≤ R. For any stationary ergodic X

lim sup
n→∞

I
(
Q̂1[Xn, Y n(Xn)]

)
≤ R + H(X1) − H(X) a.s. (74)

In particular, when X is memoryless,

lim sup
n→∞

I
(
Q̂1[Xn, Y n(Xn)]

)
≤ R a.s. (75)
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The following lemma is at the heart of the proof of Theorem 6.

Lemma 2 Let Y n(·) be an n-block code of rate ≤ R. Then, for every P ∈ Mn(X ) and η > 0,

∣∣∣{xn ∈ TP : I
(
Q̂1[xn, Y n(xn)]

)
> R + η

}∣∣∣ ≤ en[H(P )+εn−η], (76)

where εn = |X ||Y|
n log(n + 1).

Lemma 2 quantifies a remarkable limitation that the rate of the code induces: for any η > 0, only an exponentially

negligible fraction of the source sequences in any type can have an empirical joint distribution with their reconstruction

with mutual information exceeding the rate by more than η.

Proof of Lemma 2: For every W ∈ Cn(P ) let

S(P,W ) = {xn : (xn, Y n(xn)) ∈ TP⊗W } (77)

and note that

|S(P,W )| ≤ enRen[HP⊗W (X|Y )], (78)

since there are no more than enR different values of Y n(xn) and, by [CK81, Lemma 2.13], no more than en[HP⊗W (X|Y )]

different sequences in S(P,W ) that can be mapped to the same value of Y n. It follows that

I(P ;W ) ≤ R + η ∀W ∈ Cn(P ) : |S(P,W )| ≥ en[H(P )−η]. (79)

Now, by definition,

{
xn ∈ TP : I

(
Q̂1[xn, Y n(xn)]

)
> R + η

}
=

⋃
W∈Cn(P ):I(P ;W )>R+η

S(P,W ) (80)

so

∣∣∣{xn ∈ TP : I
(
Q̂1[xn, Y n(xn)]

)
> R + η

}∣∣∣ ≤
∑

W∈Cn(P ):I(P ;W )>R+η

|S(P,W )|

≤
∑

W∈Cn(P ):I(P ;W )>R+η

en[H(P )−η] (81)

≤ |Cn(P )|en[H(P )−η]

≤ (n + 1)|X ||Y|en[H(P )−η]

≤ en[H(P )+εn−η], (82)

where (81) follows from (79) and (82) from the definition of εn. �

We shall also make use of the following “converse to the AEP” (proof of which is deferred to Appendix B).

Lemma 3 Let X be stationary ergodic and An ⊆ Xn an arbitrary sequence satisfying

lim sup
n→∞

1
n

log |An| < H(X). (83)

Then, with probability one, Xn ∈ An for only finitely many n.
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Proof of Theorem 6: Fix an arbitrary η > 0 and ξ > 0 small enough so that

max
P∈B(PX1 ,ξ)

H(P ) ≤ H(X1) + η/2 (84)

(the continuity of the entropy functional guarantees the existence of such a ξ > 0). Lemma 2 (with the assignment

η → H(X1) − H(X) + η) guarantees that for every n and P ∈ Mn(X ),

∣∣∣{xn ∈ TP : I
(
Q̂1[xn, Y n(xn)]

)
> Rn + H(X1) − H(X) + η

}∣∣∣ ≤ en[H(P )+εn−H(X1)+H(X)−η], (85)

where Rn denotes the rate of Y n(·). Thus

∣∣∣{xn ∈ T[PX1 ]ξ : I
(
Q̂1[xn, Y n(xn)]

)
> Rn + H(X1) − H(X) + η

}∣∣∣ (86)

≤ exp
{

n

[
max

P∈B(PX1 ,ξ)
H(P ) + 2εn − H(X1) + H(X) − η

]}
(87)

≤ exp{n[2εn + H(X) − η/2]}, (88)

where (87) follows from (85) and from the (obvious) fact that T[PX1 ]ξ is a union of less than enεn strict types, and

(88) follows from (84). Denoting now the set in (86) by An, i.e.,

An =
{

xn ∈ T[PX1 ]ξ : I
(
Q̂1[xn, Y n(xn)]

)
> Rn + H(X1) − H(X) + η

}
, (89)

we have {
xn : I

(
Q̂1[xn, Y n(xn)]

)
> Rn + H(X1) − H(X) + η

}
⊆ T c

[PX1 ]ξ
∪ An. (90)

But, by ergodicity, Xn ∈ T c
[PX1 ]ξ

for only finitely many n with probability one. On the other hand, the fact that

|An| ≤ exp{n[2εn + H(X) − η/2]} (recall (88)) implies, by Lemma 3, that Xn ∈ An for only finitely many n with

probability one. Thus we get

I
(
Q̂1[Xn, Y n(Xn)]

)
≤ Rn + H(X1) − H(X) + η eventually a.s. (91)

But, by hypothesis, {Y n(·)} has rate ≤ R (namely lim supn→∞ Rn ≤ R) so (91) implies

lim sup
n→∞

I
(
Q̂1[Xn, Y n(Xn)]

)
≤ R + H(X1) − H(X) + η a.s. (92)

which completes the proof by the arbitrariness of η > 0. �

Theorem 6 extends to higher-order empirical distributions as follows:

Theorem 7 Let {Y n(·)} be a sequence of block codes with rate ≤ R. For any stationary ergodic X and k ≥ 1

lim sup
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
≤ R +

1
k

H(Xk
1 ) − H(X) a.s. (93)

In particular, when X is memoryless,

lim sup
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
≤ R a.s. (94)
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Note that defining, for each 0 ≤ j ≤ k − 1, Q̂k,j by5

Q̂k,j [xn, yn](uk, vk) =
k

n

∣∣∣{0 ≤ i ≤ n

k
− 1 : x

(i+1)k+j
ik+j+1 = uk, y

(i+1)k+j
ik+j+1 = vk

}∣∣∣ , (95)

it follows from Theorem 6 (applied to a kth-order super symbol) that when the source is ergodic in k-blocks6

lim sup
n→∞

1
k

I
(
Q̂k,j [Xn, Y n(Xn)]

)
≤ R +

1
k

H(Xk
1 ) − H(X) a.s. (96)

Then, since for fixed k and large n Q̂k ≈ 1
k

∑k−1
j=0 Q̂k,j and, by the k-block ergodictiy, Q̂k,j [Xn] ≈ Q̂k,j [Xn] ≈ PXk ,

it would follow from the continuity of I(·) and its convexity in the conditional distribution that, for large n, I(Q̂k)
≈
<

1
k

∑k−1
j=0 I(Q̂k,j), implying (93) when combined with (96). The proof that follows makes these continuity arguments

precise and accommodates the possibility that the source is not ergodic in k-blocks.

Proof of Theorem 7: For each 0 ≤ j ≤ k − 1 denote the kth-order super source by X(k,j) = {X(i+1)k+j
ik+j+1 }i. Lemma

9.8.2 of [Gal68] implies the existence of k events A0, . . . , Ak−1 with the following properties:

1. P (Ai ∩ Aj) =
{

1/k if i = j
0 otherwise.

2. For each i, j ∈ {0, . . . , k − 1}, X(k,j) conditioned on Ai is stationary and ergodic.

3. X(k,j) conditioned on Ai is equal in distribution to X(k,j+1) conditioned on Ai+1 (where the indices i, j are to

be taken modulo k).

Note that ∥∥∥∥∥∥Q̂
k[xn, yn] − 1

k

k−1∑
j=0

Q̂k,j [xn, yn]

∥∥∥∥∥∥ ≤ δ(k)
n , (97)

where {δ(k)
n }n is a deterministic sequence with δ

(k)
n → 0 as n → ∞. Theorem 6 applied to X(k,j) conditioned on Ai

gives

lim sup
n→∞

I
(
Q̂k,j [Xn, Y n(Xn)]

)
≤ Rk + H(Xk+j

j+1 |Ai) − H(X(k,j)|Ai) a.s. on Ai, (98)

where H(Xk+j
j+1 |Ai) and H(X(k,j)|Ai) denote, respectively, the entropy of the distribution of Xk+j

j+1 when conditioned

on Ai and the entropy rate of X(k,j) when condition on Ai. Now, due to the fact that X(k,j) conditioned on Ai is

stationary ergodic we have, for each j,

lim
n→∞ Q̂k,j [Xn] = PXk|Ai

a.s. on Ai, (99)

with PXk|Ai
denoting the distribution of Xk conditioned on Ai. Equation (99) implies, in turn, by a standard

continuity argument (letting Q̂k,j [yn|xn] be defined analogously as Q̂k[yn|xn]),

lim
n→∞

∥∥∥Q̂k,j [Xn, Y n(Xn)] − PXk|Ai
⊗ Q̂k,j [Y n(Xn)|Xn]

∥∥∥ = 0 a.s. on Ai. (100)

5Note that Q̂k,j [xn, yn] may not be a bona fide distribution but is very close to one for fixed k and large n.
6When Q̂k,j [xn, yn] is not a bona fide distribution I

(
Q̂k,j [xn, yn]

)
should be understood as the mutual information under the

normalized version of Q̂k,j [xn, yn].
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Combined with (97), (100) implies also

lim
n→∞

∥∥∥∥∥∥Q̂
k[Xn, Y n(Xn)] − PXk|Ai

⊗

1

k

k−1∑
j=0

Q̂k,j [Y n(Xn)|Xn]



∥∥∥∥∥∥ = 0 a.s. on Ai (101)

implying, in turn, by the continuity of the mutual information as a function of the joint distribution

I(Q̂k[Xn, Y n(Xn)]) − I


PXk|Ai

⊗

1

k

k−1∑
j=0

Q̂k,j [Y n(Xn)|Xn]




 n→∞−→ 0 a.s. on Ai. (102)

On the other hand, by the convexity of the mutual information in the conditional distribution [CT91, Theorem 2.7.4],

we have for all k, n (and all sample paths)

I


PXk|Ai

⊗

1

k

k−1∑
j=0

Q̂k,j [Y n(Xn)|Xn]




 ≤ 1

k

k−1∑
j=0

I
(
PXk|Ai

⊗ Q̂k,j [Y n(Xn)|Xn]
)

. (103)

Using (99) and the continuity of the mutual information yet again gives for all j

I
(
PXk|Ai

⊗ Q̂k,j [Y n(Xn)|Xn]
)
− I

(
Q̂k,j [Xn, Y n(Xn)]

)
n→∞−→ 0 a.s. on Ai. (104)

Consequently, a.s. on Ai,

lim sup
n→∞

I(Q̂k[Xn, Y n(Xn)]) ≤ lim sup
n→∞

1
k

k−1∑
j=0

I
(
Q̂k,j [Xn, Y n(Xn)]

)
(105)

≤ Rk +
1
k

k−1∑
j=0

[H(Xk+j
j+1 |Ai) − H(X(k,j)|Ai)] (106)

= Rk +
1
k

k−1∑
j=0

[H(Xk
1 |Ai−j mod k

) − H(X(k,1)|A
i−j mod k

)] (107)

= Rk +
1
k

k−1∑
j=0

[H(Xk
1 |Aj) − H(X(k,1)|Aj)], (108)

where (105) follows by combining (102) - (104), (106) follows from (98), and (107) follows from the third property

of the events Ai recalled above. Since (108) does not depend on i we obtain

lim sup
n→∞

I(Q̂k[Xn, Y n(Xn)]) ≤ Rk +
1
k

k−1∑
j=0

[H(Xk
1 |Aj) − H(X(k,1)|Aj)] a.s. (109)

Defining the {0, . . . , k − 1}-valued random variable J by

J = i on Ai, (110)

it follows from the first property of the sets Ai recalled above that

1
k

k−1∑
j=0

H(Xk
1 |Aj) = H(Xk

1 |J) ≤ H(Xk
1 ) (111)
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and that

1
k

k−1∑
j=0

H(X(k,1)|Aj) = H(X(k,1)|J)

= k lim
n→∞

1
n

H(Xn|J)

= k lim
n→∞

1
n

[H(Xn, J) − H(J)]

= k lim
n→∞

1
n

H(Xn, J)

≥ k lim
n→∞

1
n

H(Xn) = kH(X). (112)

Combining (109) with (111) and (112) gives (93). �

A direct consequence of (93) is the following:

Corollary 2 Let {Y n(·)} be a sequence of block codes with rate ≤ R. For any stationary ergodic X

lim sup
k→∞

lim sup
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
≤ R a.s. (113)

B Sample Converse in Lossy Source Coding

One of the main results of [Kie91] is the following.

Theorem 8 (Theorem 1 in [Kie91]) Let {Y n(·)} be a sequence of block codes with rate ≤ R. For any stationary

ergodic X

lim inf
n→∞ ρn(Xn, Y n(Xn)) ≥ D(X, R) a.s. (114)

The proof in [Kie91] was valid for general source and reconstruction alphabets, and was based on the powerful ergodic

theorem in [Kie89]. We now show how Corollary 2 can be used to give a simple proof, valid in our finite-alphabet

setting.

Proof of Theorem 8: Note first that by a standard continuity argument and ergodicity, for each k,

lim
n→∞

∥∥∥Q̂k[Xn, Y n(Xn)] − PXk ⊗ Q̂k[Y n(Xn)|Xn]
∥∥∥ = 0 a.s. (115)

implying, in turn, by the continuity of the mutual information as a function of the joint distribution

I(Q̂k[Xn, Y n(Xn)]) − I
(
PXk ⊗ Q̂k[Y n(Xn)|Xn]

)
n→∞−→ 0 a.s. (116)

Fix now ε > 0. By Corollary 2, with probability one there exists a k large enough that

1
k

I(Q̂k[Xn, Y n(Xn)]) ≤ R + ε for all sufficiently large n, (117)

implying, by (116), with probability one existence of k large enough that

1
k

I
(
PXk ⊗ Q̂k[Y n(Xn)|Xn]

)
≤ R + 2ε for all sufficiently large n. (118)
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By the definition of Dk(X, ·) it follows that for all such k and n

EP
Xk⊗Q̂k[Y n(Xn)|Xn]ρk(Xk, Y k) ≥ Dk(X, R + 2ε) ≥ D(X, R + 2ε), (119)

implying, by the continuity property (115), with probability one the existence of k large enough that

EQ̂k[Xn,Y n(Xn)]ρk(Xk, Y k) ≥ D(X, R + 2ε) − ε for all sufficiently large n. (120)

By the definition of Q̂k it is readily verified that for any k (and all sample paths)7

∣∣∣EQ̂k[Xn,Y n(Xn)]ρk(Xk, Y k) − ρn(Xn, Y n)
∣∣∣ ≤ ε(k)

n , (121)

where {ε(k)
n }n is a deterministic sequence with ε

(k)
n → 0 as n → ∞. Combined with (120) this implies

lim inf
n→∞ ρn(Xn, Y n) ≥ D(X, R + 2ε) − ε a.s., (122)

completing the proof by the arbitrariness of ε and the continuity of D(X, ·). �

C Sample Behavior of the Empirical Distribution of Good Codes

In the context of Theorem 8 we make the following sample analogue of Definition 3.

Definition 4 Let {Y n(·)} be a sequence of block codes with rate ≤ R and let X be a stationary ergodic source.

{Y n(·)} will be said to be a pointwise good sequence of codes for the stationary ergodic source X in the strong sense

at rate R if

lim sup
n→∞

ρn(Xn, Y n(Xn)) ≤ D(X, R) a.s. (123)

Note that Theorem 8 implies that the limit supremum in the above definition is actually a limit, the inequality in

(123) actually holds with equality, and the rate of the corresponding good code sequence is = R. The bounded

convergence theorem implies that a pointwise good sequence of codes is also good in the sense of Definition 3. The

converse, however, is not true [Wei]. The existence of pointwise good code sequences is a known consequence of

the existence of good code sequences [Kie91, Kie78]. In fact, there exist pointwise good code sequences that are

universally good for all stationary and ergodic sources [Ziv72, Ziv80, YK96]. Henceforth the phrase “good codes”

should be understood in the sense of Definition 4, even when omitting “pointwise”.

The following is the pointwise version of Theorem 3.

Theorem 9 Let {Y n(·)} correspond to a pointwise good code sequence for the stationary ergodic source X at rate

R(X,D). Then:

1. For every k

lim
n→∞EQ̂k[Xn,Y n(Xn)]ρk(Xk, Y k) = D a.s., (124)

7In fact, we would have pointwise equality EQ̂k[xn,yn]ρk(Xk, Y k) = ρn(xn, yn) had Q̂k been slightly modified from its definition in

(2) to Q̂k[xn, yn](uk, vk) = 1
n
|{1 ≤ i ≤ n : xi+k

i+1 = uk, yi+k
i+1 = vk}| with the indices understood modulo n.
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R(Xk,D) ≤ lim inf
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
≤ lim sup

n→∞
1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
≤ R(X,D)+

1
k

H(Xk)−H(X) a.s.,

(125)

so in particular

lim
k→∞

lim inf
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
= lim

k→∞
lim sup

n→∞
1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
= R(X,D) a.s. (126)

2. If it also holds that R(Xk,D) = R(X,D) + 1
kH(Xk

1 ) − H(X) then

lim
n→∞

1
k

I
(
Q̂k[Xn, Y n(Xn)]

)
= R(Xk,D) a.s. (127)

3. If, additionally, Rk(X,D) is uniquely achieved by the pair (X̃k, Ỹ k) then

Q̂k[Xn, Y n(Xn)] ⇒ PX̃k,Ỹ k a.s. (128)

Proof of Theorem 9: {Y n(·)} being a good code sequence implies

lim
n→∞ ρn(Xn, Y n(Xn)) = D a.s., (129)

implying (124) by (121). Reasoning similarly as in the proof of Theorem 8, it follows from (115) that

lim
n→∞EP

Xk⊗Q̂k[Y n(Xn)|Xn]ρk(Xk, Y k) = lim
n→∞EQ̂k[Xn,Y n(Xn)]ρk(Xk, Y k) = D a.s., (130)

implying

lim inf
n→∞

1
k

I(Q̂k[Xn, Y n(Xn)]) ≥ lim inf
n→∞

1
k

I
(
PXk ⊗ Q̂k[Y n(Xn)|Xn]

)
≥ Rk(X,D) a.s., (131)

where the left inequality follows from (116) and the second one by (130) and the continuity of Rk(X, ·). The upper

bound in (125) follows from Theorem 7. Displays (126) and (127) are immediate consequences. The convergence in

(128) follows directly from combining (127), (124), the fact that, by ergodicity,

Q̂k[Xn] ⇒ PX̃k a.s., (132)

and Lemma 1 (applied to the k-th order super-symbol). �

D Application to Compression-Based Denoising

Consider again the setting of subsection 3.D where the stationary ergodic source X is corrupted by additive noise N

of i.i.d. components. The following is the almost sure version of Theorem 5.

Theorem 10 Let {Y n(·)} correspond to a good code sequence for the noisy source Z at distortion level H(N) (under

the difference distortion measure in (54)) and assume that the channel matrix is invertible. Then

lim sup
n→∞

Λn(Xn, Y n(Zn)) ≤ EΨ
(
PX0|Z∞

−∞

)
a.s. (133)
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Proof: The combination of Theorem 4 with the third item of Theorem 9 gives

Q̂k[Zn, Y n(Zn)] ⇒ PZk,Xk a.s. (134)

On the other hand, joint stationarity and ergodicity of the pair (X,Z) implies

Q̂k[Xn, Zn] ⇒ PXk,Zk a.s. (135)

Arguing analogously as in the proof of Theorem 5 (this time for the sample empirical distribution8 Q̂k[Xn, Zn, Y n]

instead of the distribution of the triple in (63)) leads, taking say k = 2m + 1, to

lim sup
n→∞

Λn(Xn, Y n(Zn)) ≤ EΨ
(
PX0|Zm

−m

)
a.s., (136)

implying (62) upon letting m → ∞. �

E Derandomizing for Optimum Denoising

The reconstruction associated with a good code sequence has what seems to be a desirable property in the denoising

setting of the previous subsection, namely, that the marginalized distribution, for any finite k, of the noisy source

and reconstruction is essentially distributed like the noisy source with the underlying clean signal, as n becomes

large. Indeed, this property was enough to derive an upper bound on the denoising loss (theorems 5 and 10) which,

for example, for the binary case was seen to be within a factor of 2 from the optimum.

We now point out, using the said property, that essentially optimum denoising can be attained by a simple

“post-processing” procedure. The procedure is to fix an m and evaluate, for each zm
−m ∈ A2m+1 and y ∈ A

Q̂2m+1[Zn, Y n(Zn)](zm
−m, y)

�
=

∑
y−1
−m,ym

1

Q̂2m+1[Zn, Y n(Zn)](zm
−m, y−1

−myym
1 ).

In practice, the computation of Q̂2m+1[Zn, Y n(Zn)](zm
−m, y) can be done quite efficiently and sequentially by updating

counts for the various zm
−m ∈ A2m+1 as they appear along the noisy sequence (cf. [WOS+03, Section 3]). Define now

the n-block denoiser X̂ [m],n(Zn) by letting the reconstruction symbol at location m + 1 ≤ i ≤ n − m be given by

X̂i = arg min
x̂

∑
y

Q̂2m+1[Zn, Y n(Zn)](zi+m
i−m , y)Λ(y, x̂) (137)

(and can be arbitrarily defined for i-s outside that range). Note that X̂i is nothing but the Bayes response to

the conditional distribution of Ym+1 given Z2m+1 = zi+m
i−m induced by the joint distribution Q̂2m+1[Zn, Y n(Zn)] of

(Z2m+1, Y 2m+1). However, from the conclusion in (134) we know that this converges almost surely to the conditional

distribution of Xm+1 given Z2m+1 = zi+m
i−m. Thus, X̂i in (137) is a Bayes response to a conditional distribution that

converges almost surely (as n → ∞) to the true conditional distribution of Xi conditioned on Zi+m
i−m . It thus follows

from continuity of the performance of Bayes responses (cf., e.g., [Han57, Equation (14)], [WOS+03, Lemma1]) and

(135) that

lim
n→∞Λn(Xn, X̂ [m],n(Zn)) = Eφ

(
PX0|Zm

−m

)
a.s., (138)

8We extend the notation by letting Q̂k[xn, zn, yn] stand for the k-th-order empirical distribution of the triple (Xk, Zk, Y k) induced
by (xn, zn, yn).
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with φ denoting the Bayes envelope associated with the loss function Λ defined, for P ∈ M(A), by

φ(P ) = min
x̂∈A

∑
x∈A

Λ(x, x̂)P (x). (139)

Letting m → ∞ in (138) gives

lim
m→∞ lim

n→∞Λn(Xn, X̂ [m],n(Zn)) = Eφ
(
PX0|Z∞

−∞

)
a.s., (140)

where the right side is the asymptotic optimum distribution-dependent denoising performance (cf. [WOS+03, Section

5]). Note that X̂ [m],n can be chosen independently of a source, e.g., taking the Yang-Kieffer codes of [YK96] (followed

by the postprocessing detailed in (137)). Thus, (140) implies that the post-processing step leads to essentially

asymptotically optimum denoising performance. Bounded convergence implies also

lim
m→∞ lim

n→∞EΛn(Xn, X̂ [m],n(Zn)) = Eφ
(
PX0|Z∞

−∞

)
(141)

implying, in turn, the existence of a deterministic sequence {mn} such that for X̂n = X̂ [mn],n

lim
n→∞EΛn(Xn, X̂ [mn],n(Zn)) = Eφ

(
PX0|Z∞

−∞

)
. (142)

The sequence {mn} for which (142) holds, however, may depend on the particular code sequence {Y n(·)}, as well as

on the distribution of the active source X.

5 Conclusion and Open Questions

In this work we have seen that a rate constraint on a source code places a similar limitation on the mutual information

associated with its k-th order marginalization, for any finite k, as n becomes large. This was shown to be the case

both in the distributional sense of Section 3 and the pointwise sense of Section 4. This was also shown to imply,

in various quantitative senses, that the empirical distribution of codes that are good (in the sense of asymptotically

attaining a point on the rate distortion curve) becomes close to that attaining the minimum mutual information

problem associated with the rate distortion function of the source. For a source corrupted by additive “white”

noise this was shown to imply that, under the right distortion measure, and at the right distortion level, the joint

empirical distribution of the noisy source and reconstruction associated with a good code tends to “imitate” the

joint distribution of the noisy and noise-free source. This property led to performance bounds (both in expectation

and pointwise) on the denoising performance of such codes. It was also seen to imply the existence of a simple

postprocessing procedure that, when applied to these compression-based denoisers, results in essentially optimum

denoising performance.

One of the salient questions left open in the context of the third item in Theorem 3 (respectively, Theorem 9) is

whether the convergence in distribution (in some appropriately defined sense) continues to hold in cases beyond those

required in the second item. Another interesting question, in the context of the postprocessing scheme of subsection

4.E, is whether there exists a universally good code sequence (for the noisy source sequence under the distortion
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measure and level associated with the given noise distribution) and a corresponding growth rate for m under which

(142) holds simultaneously for all stationary ergodic underlying noise-free sources.

Appendix

A Proof of Lemma 1

We shall use the following elementary fact from analysis.

Fact 3 Let f : D → R be continuous and D be compact. Assume further that minz∈D f(z) is uniquely attained by

some z∗ ∈ D. Let zn ∈ D satisfy

lim
n→∞ f(zn) = f(z∗)

(
= min

z∈D

f(z)
)

.

Then

lim
n→∞ zn = z∗.

Equipped with this, we prove Lemma 1 as follows. Let P
(n)
Y |X denote the conditional distribution of Y given X induced

by P
(n)
X,Y and define

P̂
(n)
X,Y = PX ⊗ P

(n)
Y |X . (A.1)

It follows from (32) that

‖P̂ (n)
X,Y − P

(n)
X,Y ‖ → 0 (A.2)

and therefore also, by (34),

lim
n→∞E

P̂
(n)
X,Y

ρ(X,Y ) = D. (A.3)

Define further P̃
(n)
X,Y by

P̃
(n)
X,Y = αnP̂

(n)
X,Y + (1 − αn)PX ⊗ δY |X , (A.4)

where

αn = min




D

E
P̂

(n)
X,Y

ρ(X,Y )
, 1


 . (A.5)

By construction,

P̃
(n)
X = PX and E

P̃
(n)
X,Y

ρ(X,Y ) ≤ D ∀n. (A.6)

Also, (A.3) implies that αn → 1 and hence ‖P̂ (n)
X,Y − P̃

(n)
X,Y ‖ → 0 implying, when combined with (A.2), that

‖P̃ (n)
X,Y − P

(n)
X,Y ‖ → 0 (A.7)

implying, in turn, by (33) and uniform continuity of I(·),

lim
n→∞ I

(
P̃

(n)
X,Y

)
= R(D). (A.8)
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Now, the set
{

P ′
X,Y : P ′

X = PX , EP ′
X,Y

ρ(X,Y ) ≤ D
}

is compact, I(·) is continuous, and R(D) is uniquely achieved

by PX,Y . So (A.6), (A.8), and Fact 3 imply

P̃
(n)
X,Y

d⇒ PX,Y , (A.9)

implying (35) by (A.7). �

B Proof of Lemma 3

Inequality (83) implies the existence of η > 0 and n0 such that

|An| ≤ en[H(X)−2η] ∀n ≥ n0. (A.10)

Defining

Gn,η =
{

xn :
∣∣∣∣− 1

n
log PXn(xn) − H(X)

∣∣∣∣ ≤ η

}
, (A.11)

we have for all n ≥ n0

Pr(Xn ∈ Gn,η ∩ An) =
∑

xn∈Gn,η∩An

PXn(xn) (A.12)

≤
∑

xn∈Gn,η∩An

en[−H(X)+η] (A.13)

≤ |An|en[−H(X)+η] (A.14)

≤ e−nη. (A.15)

Thus, by the Borel-Cantelli lemma, with probability one, Xn ∈ Gn,η∩An for only finitely many n. On the other hand,

by the Shannon-McMillan-Breiman Theorem (cf., e.g., [CT91, Theorem 15.7.1]), with probability one, Xn ∈ Gc
n,η

for only finitely many n. The result now follows since An ⊆ Gc
n,η ∪ (Gn,η ∩ An). �
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