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Abstract— We consider the discrete universal filtering problem,
where the components of a discrete signal emitted by an unknown
source and corrupted by a known DMC are to be causally
estimated. We derive a family of filters which we show to
be universally asymptotically optimal in the sense of achieving
the optimum filtering performance when the clean signal is
stationary, ergodic, and satisfies an additional mild positivity
condition. Our schemes are based on approximating the noisy
signal by a hidden Markov process (HMP) via maximum-
likelihood (ML) estimation, followed by use of the well-known
forward recursions for HMP state estimation. We show that as
the data length increases, and as the number of states in the
HMP approximation increases, our family of filters attain the
performance of the optimal distribution-dependent filter.

I. INTRODUCTION

The formulation of the filtering problem is the following:
A source sequence x1, x2, · · · is corrupted by the discrete
memoryless channel (DMC) and only the noisy sequence
z1, z2, · · · is observed. The observer wants to generate a
reconstruction sequence x̂1, x̂2, · · · , where x̂t is an estimate
of xt based on the observation zt = (z1, · · · , zt) and the
knowledge of the DMC.

The overall performance of filtering is measured by the ex-
pectation of the normalized sum of the losses incurred for each
estimation. Therefore, the optimal filter which minimizes this
expectation bases its estimation at time t on the conditional
probability of xt given zt. Furthermore, when the DMC is
invertible, this conditional probability can be deduced from
the conditional probability of zt given zt−1 and the inverse of
the channel [3,5]. Thus, the invertibility of the DMC enables
implementing the optimal filter from the mere knowledge of
probability law of the noisy output process.

However, in the universal setting, where nothing is known
about the probability law of the source, the probability law of
the noisy source is also not available. Therefore, we need to
learn the statistics of the output process and approximate the
true probability law as data size increases.

In this paper, we try to use a hidden Markov process (HMP)
model to learn the statistics of the output process. When the
original clean source is generated from a finite-state Markov
chain, the output process is an HMP, and the consistency of
maximum likelihood (ML) estimation, [8], guarantees that the
Kullback-Leibler (KL) divergence between the true probability

law of the output process and the ML estimator converges
to zero as data size increases. The question is whether this
is also going to be true when the original clean source is a
general stochastic process, and whether the induced filtering
scheme will be optimal for the approximated source. We show
the asymptotic result that this indeed is true under a mild
assumption.

The remainder of the paper is organized as follows. Section
II introduces some notation and preliminaries. In Section III,
the universal filtering problem is defined. In Section IV, our
universal filtering scheme is devised and our main theorem is
given, and proved. Omitted details in the proofs are given in
[9].

II. NOTATION AND PRELIMINARIES

A. General notation

Let X ,Z, X̂ denote, respectively, the finite alphabets of
the clean, noisy, and reconstructed source. For simplicity,
here we will assume that all alphabets are the same, i.e.,
X = Z = X̂ = A. The channel transition probability is
denoted by a |A|×|A| matrix Π, with the x,z-th entry Π(x,z)
specifying the probability of an output z given that the input is
x. A |A|×|A| matrix Λ denotes the loss function, with the x,x̂-
th entry Λ(x, x̂) specifying the loss incurred when estimating
the clean symbol x by x̂. The maximum single-letter loss will
be denoted by Λmax = maxx,x̂∈M Λ(x, x̂).

The invertibility of the DMC is crucial throughout the paper
since it enables us to deduce the probability law of X from
that of Z. A detailed argument can be found in [3]. The i-th
column of Π−1 will be denoted by Π−1

i .
E[·] is used as usual expectation. When the subscript of

probability law of Z is put and the expectation is over both
X and Z, it means the joint distribution is induced from
the probability law of Z by inverting the channel, and the
expectation is calculated.

As in [3], we define the extended Bayes response associated
with the loss matrix Λ to any V ∈ R

|A| as follows.

B(V) = arg min
a∈A

ΛT
a V,

where Λa is the a-th column of Λ, and the minimization
resolves ties by taking the letter in the alphabet with the lowest



index.
The n-tuple KL divergence between the two distributions

P , Q is denoted by

Dn(P ||Q) =
∑
zn

P (zn) log
P (zn)
Q(zn)

Also, when a probability law P is written in a bold face,
P(·), it means it is a simplex vector in R

|A| with first
order marginal of the random variable specified inside the
parenthesis. It can also be written as P(Xt|Zt) meaning the
conditional distribution of Xt given Zt.

B. Hidden Markov processes (HMP)

1) Definition: The HMPs are generally defined to be a
family of stochastic processes that are outputs of a memoryless
channel whose inputs are finite state Markov chains. In this
paper, we will only consider the case where the alphabet of
HMP, Z , and underlying Markov chain, X , are finite and
equal, i.e., Z = X = A ,and the channel is DMC and
invertible.

There are three parameters that determine the probability
laws of HMP, which are, π, the initial distribution of finite
state Markov chain, A, the probability transition matrix of
finite state Markov chain, and B, the probability transition
matrix of DMC. The triplet {π,A, B} is called the parameter
of HMP, and let Θ be a set of all θ’s where θ := {πθ, Aθ, Bθ}.
For each θ, we can calculate the likelihood function

Qθ(zn) = πθ

n∏
t=1

(B̂θ,tAθ)1,

where B̂θ,t is |A| × |A| diagonal matrix whose (j, j)-th entry
is (j, zt)-th entry of Bθ, and 1 is a |A| × 1 vector with all
entries 1.

Now let Θk ⊂ Θ be a set of θ’s such that the order of
underlying Markov chain of HMP is k. Furthermore, for some
δ > 0, define Θδ

k ⊂ Θk as a set of θ ∈ Θk that satisfy the
following:

• aij,θ ≥ δ if a k-tuple state j is a one shift to right of the
k-tuple state i

• aij,θ = 0 if otherwise
• bjz,θ = Π(j, z), for ∀j, z

where aij,θ is (i, j)-th entry of Aθ, and bij,θ is (j, z)-th entry
of Bθ. Hence, if θ ∈ Θδ

k, 1) the stochastic matrix Aθ is
irreducible and aperiodic, and its stationary distribution πθ is
uniquely determined from Aθ, 2) Bθ = Π ∀θ, and therefore,
θ is completely specified by Aθ.

For the notational brevity, we omit the subscript θ and
denote the probability law Q ∈ Θδ

k, if Q = Qθ, and θ ∈ Θδ
k.

2) Maximum likelihood (ML) estimation: Generally, sup-
pose a probability law Q is in a certain class Ω, and we have
n-tuple signal zn. Then, the n-th order maximum likelihood
(ML) estimator in Ω for zn, is defined to be

Q̂[zn] = arg max
Q∈Ω

Q(zn),

resolving ties arbitrarily. Now, if Q ∈ Θδ
k, then there is an

iterative algorithm called expectation-maximization(EM) [4]
that iteratively updates the parameter estimates via forward-
backward recursion to maximize the likelihood. Thus, when Q
is in the class of probability laws of a hidden Markov process,
the maximum likelihood estimate can be efficiently attained.1

We denote the ML estimator in Θδ
k based on zn by

Q̂k[zn] = arg max
Q∈Θδ

k

Q(zn).

Obviously, when the n-tuple Zn is random, Q̂k[Zn] is also a
random probability law that is a function of Zn.

III. THE UNIVERSAL FILTERING PROBLEM

Consider a stochastic setting, that is, the underlying clean
random signal is the double-sided stationary ergodic X∞

generated from the probability law PX . Then, X∞ is corrupted
by invertible DMC, Π, and we get the noisy random signal
Z∞.

Generally, a filter is a sequence of probability distributions
X̂ = {X̂t}, where X̂t : At → M(A). The interpretation is
that, upon observing zt, the reconstruction for the underlying,
unobserved, xt is given by the symbol x̂ with probability
X̂t(zt)[x̂]. The normalized cumulative loss of the scheme X̂
on the individual pair (xn, zn) is defined by

LX̂(xn, zn) =
1
n

n∑
t=1

�(xt, X̂t(zt)),

where �(xt, X̂t(zt)) =
∑

x̂∈X̂ Λ(xt, x̂)X̂t(zt)[x̂]. Then, the
goal of a filter is to minimize the expected normalized cumu-
lative loss ELX̂(Xn, Zn). Let F denote the class of all filters,
and define

φn(PX , Π) = min
X̂∈F

E[LX̂(Xn, Zn)],

where the expectation on the right side assumes the Xn was
emitted by the source PX , and Zn is its noisy version when
corrupted by the channel Π. By stationarity and sub-additivity
argument as in [3], we have

lim
n→∞φn(PX , Π) = inf

n≥1
φn(PX , Π) � Φ(PX , Π).

By definition, Φ(PX , Π) is the (distribution-dependent) op-
timal asymptotic filtering performance attainable when the
clean signal is generated by the law PX and corrupted by
Π. This Φ(PX , Π) can be achieved by the optimal filter
X̂PX

= {X̂PX ,t} where

X̂PX ,t(zt)[x̂] = Pr(B(PX(Xt|zt)) = x̂).

For the brevity of notation, we denote X̂PX
(zt) = X̂PX ,t(zt).

Note that this is a deterministic scheme, i.e., for given zt, the
filter is a unit vector in R

|A|.
As we can see, X̂PX

(zt) is dependent on the distribution
of underlying clean signal. The universal filtering problem

1We neglect issues of convergence of the EM algorithm and assume the
ML estimation is performed perfectly.



is to construct a distribution independent algorithm X̂univ

satisfying

lim
n→∞E

[
LX̂univ

(Xn, Zn)
]

= Φ(PX , Π)

for all PX .

IV. FILTERING BASED ON HIDDEN MARKOV MODELLING

A. Description of the filter

Before describing our universal filter, we need one more
assumption. Suppose for fixed δ > 0, PX has a property that

PX(X0|X−1
−k) ≥ δ, ∀k ∈ N,∀X0

−k(ω).

This additional assumption is essential in this paper, and the
reason will be explained in proving Lemma 3 below.

Now, define the probability law

Qt
k := Q̂k[Z2�log2 t�

] = arg max
Q∈Θδ

k

Q(Z2�log2 t�
).

Since Q ∈ Θδ
k, what we only need to do to get Qt

k is to find the
probability transition matrix of underlying Markov chain that
maximizes the likelihood of Z2�log2 t�

. Once we get Qt
k, we

can efficiently calculate Qt
k(xt|zt) by the forward-recursion

formula which can be found in [4]. Also, let U ∈ R
|A| be

a random vector uniformly distributed in L2 ε-ball. Then, we
define

X̂ε
Qt

k,t(z
t)[x̂] = Pr(B(Qt

k(Xt|zt) + U) = x̂).

For the brevity of notation, we denote X̂ε
Qt

k
(zt) = X̂ε

Qt
k,t(z

t).
Basically, this filtering scheme is dividing the output process

into exponentially growing sub-blocks, and to filter each sub-
block, it is using the ML estimator for the whole observation
of output process up to the previous sub-block. Unlike the
optimal filter defined in the previous section, this scheme is a
randomized scheme and continuous in Qt

k due to the random
perturbation vector U. This property will be needed in proving
Lemma 4 and Lemma 5 below.

The following theorem states the main result of this paper.
Theorem 1: Suppose a stationary, ergodic double-sided se-

quence X∞ ∈ A∞ whose probability law is PX , and assume
PX has the property PX(X0|X−1

−k) ≥ δ, ∀k ∈ N,∀X0
−k(ω),

for some δ > 0. Let Z∞ ∈ A∞ be the output of the DMC, Π,
for X∞. Now, for each k, define the filter X̂ε

univ,k = {X̂ε
Qt

k,t}.
Then:

(a) limε→0 lim supk→∞ lim supn→∞ LX̂ε
univ,k

(Xn, Zn)
≤ Φ(PX , Π) a.s.

(b) limε→0 limk→∞ lim supn→∞ E
[
LX̂ε

univ,k
(Xn, Zn)

]
= Φ(PX , Π)

B. Proof of the theorem

Before proving the theorem, we introduce several lemmas.
Lemma 1: Q(Z0|Z−1

−t ) converges to a limit Q(Z0|Z−1
−∞)

uniformly in ∀Q ∈ Θδ
k and ∀ω.

Proof: Let’s denote ft := Q(Z0|Z−1
−t ), and f0 = 0.

Then, the sequence {ft} uniformly converges in ∀Q ∈ Θδ
k, if

following k subsequences,

{fjk+l, j = 0, 1, 2, · · · , }, 0 ≤ l ≤ k − 1,

uniformly converge in ∀Q ∈ Θδ
k, and have the same limit.

First, the uniform convergence of each subsequence {fjk+l}
can be shown by showing the series

∑t
j=0(f(j+1)k+l−fjk+l)

converges absolutely. From Lemma 8 in the appendix and
setting m = k,

t∑
j=0

|f(j+1)k+l − fjk+l|

=
∑
x0

Q(Z0|x0)
t∑

j=1

|Q(x0|Z−1
−(j+1)k−l) − Q(x0|Z−1

−jk−l)|

≤
∑
x0

Q(Z0|x0)
t∑

j=1

ρj+1.

Since ρ < 1 and ρ does not depend on Q and l, we conclude
all k subsequences converges uniformly in ∀Q ∈ Θδ

k.
Now, to show that k subsequences have the same limit,

construct another subsequence, {fj(k+1)+1, j = 0, 1, 2, · · · , }.
Since this subsequence contains infinitely many terms from
all k subsequences, if this subsequence converges uniformly
in ∀Q ∈ Θδ

k, we can conclude that k subsequences have the
same limit. The uniform convergence of this subsequence can
be shown exactly as above, but setting m = k + 1 in Lemma
8. Therefore, the original sequence {ft} converges to its limit
uniformly in ∀Q ∈ Θδ

k.
Lemma 2: Suppose P is the true probability law of Z, and

Q ∈ Θδ
k. Then,

D(P‖Q) := lim
n→∞

1
n

Dn(P‖Q) = EP

[
log

P (Z0|Z−1
−∞)

Q(Z0|Z−1
−∞)

]
Moreover, we have the following uniform convergence:

lim
n→∞

1
n

log
P (Zn)
Q(Zn)

= D(P‖Q) a.s.

uniformly in ∀Q ∈ Θδ
k.

Proof: The first part and the pointwise convergence of
the second part is a kind of generalization of the Shannon-
McMillan-Breiman theorem, and the detailed proof can be
found in [1, Theorem 2.3.3].

For the uniform convergence of the second part of
the lemma, we need to show limn→∞ 1

n log Q(Zn) =
EP [log Q(Z0|Z0

−∞)] a.s. uniformly in ∀Q ∈ Θδ
k, by slightly

modifying the argument of [1, Lemma 2.4.1]. Since the
pointwise convergence is shown and the parameter set Θδ

k

is compact, it is enough to show that 1
n log Q(Zn) is an

equicontinuous sequence. That is, we need to show for ∀ε > 0,
∃δ(ε) > 0 such that

∀n, | 1
n

log Q(Zn)− 1
n

log Q
′
(Zn)| ≤ ε, if ‖Q−Q

′‖1 < δ(ε),



where ‖Q − Q
′‖1 :=

∑
i,j |aij − a

′
ij | is defined to be the

distance between two parameters of Q and Q
′
. To show

this, just like in [1, Lemma 2.4.1], we first deal with the
Markov process St = (Xt, Zt), and show the equicontinuity
of 1

n log Q(Sn). The only difference with [1, Lemma 2.4.1] is
that the transition matrix T of St has some zero elements, but
this can be overcome by just considering sequences sn that
have nonzero probabilities.

The following definitions are needed for Lemma 3.
Definition 1: When P ,Q are the probability laws of Z, we

define

S(P,Q) := EP

[
log

P (Z0|Z−1
−∞)

Q(Z0|Z−1
−∞)

]
.

That is, S(·, ·) is a functional of two probability laws of Z.
Note that when the probability law of the argument is random,
S(·, ·) is a random variable.

Definition 2: Define the k-th order Markov approximation
of PX for n ≥ k as

PXk
(Xn) = PX(Xk)

n∏
i=k+1

PX(Xi|Xi−1
i−k).

Also, denote PZ and PZk
as the probability law of the output

of DMC, Π, when the probability law of input is PX and PXk
,

respectively.
Lemma 3: We have following inequalities.

(a) lim supn→∞ S(PZ‖Q̂k[Zn]) ≤ D(PZ‖PZk
) a.s.

(b) Dn(PZ‖PZk
) ≤ Dn(PX‖PXk

), and thus, D(PZ‖PZk
) ≤

D(PX‖PXk
)

Proof: From the definition of PXk
, we can see why

the assumption of our theorem, PX(X0|X−1
−k) ≥ δ, ∀k ∈

N,∀X0
−k(ω) is needed. From the assumption, we have PZk

guaranteed to be in Θδ
k. Thus, since Q̂k[Zn] is a ML estimator

in Θδ
k, we can observe the following:

1
n

log
PZ(Zn)

Q̂k[Zn](Zn)
≤ 1

n
log

PZ(Zn)
PZk

(Zn)

for ∀ω, and thus,

lim sup
n→∞

1
n

log
PZ(Zn)

Q̂k[Zn](Zn)
≤ lim sup

n→∞
1
n

log
PZ(Zn)
PZk

(Zn)
a.s.

By Lemma 2, we get

lim sup
n→∞

1
n

log
PZ(Zn)

Q̂k[Zn](Zn)
= lim sup

n→∞
S(PZ , Q̂k[Zn]) a.s. , and

lim sup
n→∞

1
n

log
PZ(Zn)
PZk

(Zn)
=S(PZ , PZk

) = D(PZ‖PZk
) a.s.

Thus we have,

lim sup
n→∞

S(PZ‖Q̂k[Zn]) ≤ D(PZ‖PZk
) a.s. ,

which gives the part (a) of Lemma.
Part (b) can be easily proved by using log-sum inequality

[6, Thm 2.7.1] and the fact
∑

zn

∏n
t=1 Π(xt, zt) = 1.

Lemma 4: Suppose a single letter filtering setting, where
PZ is the true probability law of Z, and QZ is some other

probability law of Z. Let U ∈ R
|A| be a random vector in

L2 ε-ball as before, and X̂PZ
(z) and X̂ε

QZ
(z) be single letter

filters such that

X̂PZ
(z)[x̂] =Pr(B(PZ(X|z)) = x̂)

X̂ε
QZ

(z)[x̂] =Pr(B(QZ(X|z) + U) = x̂),

respectively. Then,

EPZ
[�(X, X̂ε

QZ
(Z))]−EPZ

[�(X, X̂PZ
(Z))]

≤2ΛmaxKΠ · ‖PZ(Z) − QZ(Z)‖1 + CΛ · ε,
where KΠ =

∑|A|
i=1 ‖Π−1

i ‖2, and CΛ = maxa,b∈A ‖Λa−Λb‖2.
Proof: The proof uses an idea from [2,(23)] and uses

some simple facts such as
∑

z Π(x, z) = 1, Cauchy-Schwartz
inequality and the fact that L2-norm is less than or equal to
L1-norm. Also, it uses the definition of X̂ε

QZ
(z), to get the

term including ε. A more detailed proof can be found in [9].

Lemma 5:

lim
n→∞

(
LX̂ε

Q
(Xn, Zn) − E[LX̂ε

Q
(Xn, Zn)]

)
= 0 a.s.

uniformly in ∀Q ∈ Θδ
k.

Proof: The proof is based on two facts. The first one is

|Q(X0|Z0
−t) − Q(X0|Z0

−∞)| < βρt,

for ∀ω, uniformly in ∀Q ∈ Θδ
k, where β and ρ are constants

that only depend on δ,k, and |A|. We can get this by the same
argument as in the proof of Lemma 1. The second one is the
fact that Q(X0|Z0

−t) is continuous in its parameters, i.e., the
transition probabilities of underlying Markov chain. A detailed
proof is somewhat involved, and can be found in [9].

Proof of Theorem 1: Consider the following inequalities,
where ÊPZ

[·] is used as special notation to denote that
expectation is over all the random variables, except for the
randomness of the probability law inside the bracket:

ÊPZ

[
LX̂ε

univ,k
(Xn, Zn)

]
− φn(PX , Π)

=
1
n

n∑
t=1

(
ÊPZ

[
�(Xt, X̂

ε
Qt

k
(Zt))

]
− ÊPZ

[
�(Xt, X̂PZ

(Zt))
])

=
1
n

n∑
t=1

ÊPZ

[
ÊPZ

[
�(Xt, X̂

ε
Qt

k
(Zt, Z

t−1))|Zt−1
]

− ÊPZ

[
�(Xt, X̂PZ

(Zt, Z
t−1))|Zt−1

]]
≤2KΠΛmax

n

n∑
t=1

ÊPZ
‖PZ(Zt|Zt−1) − Qt

k(Zt|Zt−1)‖1

+ C̃Π,Λ · ε (1)

≤2
√

2 ln 2KΠΛmax

n

n∑
t=1

ÊPZ

√
ÊPZ

[
log

PZ(Zt|Zt−1)
Qt

k(Zt|Zt−1)

∣∣∣Zt−1
]

+ C̃Π,Λ · ε (2)

≤2
√

2 ln 2KΠΛmax

√√√√ 1
n

n∑
t=1

ÊPZ

[
log

PZ(Zt|Zt−1)
Qt

k(Zt|Zt−1)

]
+ C̃Π,Λ · ε

(3)



where C̃Π,Λ = 2KΠΛmaxCΛ, (1) is from Lemma 4, (2) is
from Pinsker’s inequality, and (3) is from Jensen’s inequality.
Therefore, together with Lemma 5, we have almost surely,

lim sup
n→∞

(
LX̂ε

univ,k
(Xn, Zn) − φn(PX , Π)

)
= lim sup

n→∞

(
ÊPZ

[
LX̂ε

univ,k
(Xn, Zn)

]
− φn(PX , Π)

)

≤2
√

2 ln 2KΠΛmax

√√√√lim sup
n→∞

1
n

n∑
t=1

ÊPZ

[
log

PZ(Zt|Zt−1)
Qt

k(Zt|Zt−1)

]

+ C̃Π,Λ · ε
For the expression inside the square root of the right-hand side
of the inequality,

lim sup
n→∞

1
n

n∑
t=1

ÊPZ

[
log

PZ(Zt|Zt−1)
Qt

k(Zt|Zt−1)

]

= lim sup
t→∞

ÊPZ

[
log

PZ(Zt|Zt−1)
Qt

k(Zt|Zt−1)

]
a.s. (4)

= lim sup
t→∞

ÊPZ

[
log

PZ(Z0|Z−1
−∞)

Qt
k(Z0|Z−1

−∞)

]
a.s. (5)

= lim sup
t→∞

S(PZ , Qt
k) a.s.

= lim sup
t→∞

S(PZ , Q̂k[Zt]) ≤ D(PX‖PXk
) a.s. (6)

where (4) is from Cesáro’s mean convergence theorem, (5) is
from the fact that P (Z0|Z−1

−t ) → P (Z0|Z−1
−∞) a.s. and Lemma

1, and (6) is from the fact that 2�log2 t� → ∞ as t → ∞ and
Lemma 3. Therefore, we have almost surely,

lim sup
n→∞

(
LX̂ε

univ,k
(Xn, Zn) − φn(PX , Π)

)
≤2

√
2 ln 2KΠΛmax

√
D(PX‖PXk

) + C̃Π,Λ · ε
Since this inequality holds for every k, and D(PX‖PXk

) → 0
as k → ∞, we can now conclude

lim
k→∞

lim sup
n→∞

(
LX̂ε

univ,k
(Xn, Zn)−φn(PX , Π)

)
≤ C̃Π,Λ·ε, a.s.

Finally, sending ε to zero, part (a) of the theorem is proved.
Part (b) follows directly from (a), and Reverse Fatou’s Lemma.
That is,

lim
k→∞

lim sup
n→∞

(
E

[
LX̂ε

univ,k
(Xn, Zn)

]
− φn(PX , Π)

)
= lim

k→∞
lim sup

n→∞
E

[
LX̂ε

univ,k
(Xn, Zn) − φn(PX , Π)

]

≤ lim
k→∞

E

[
lim sup

n→∞

(
LX̂ε

univ,k
(Xn, Zn) − φn(PX , Π)

)]

≤C̃Π,Λ · ε
Note that the expectation here is with respect to the random-
ness of probability law inside the bracket, too. Since it is
obvious that

lim inf
n→∞

(
E

[
LX̂ε

univ,k
(Xn, Zn)

]
−φn(PX , Π)

)
≥ 0 , for ∀k, ε

and by sending ε to zero, part (b) is proved. �

V. CONCLUSION AND FUTURE WORK

In this paper we proved that a family of filters based
on HMPs is universally asymptotically optimal. That is, we
showed that a sequence of schemes indexed by k are asymp-
totically optimal. The future direction of the work would be
to find out the relationship between k and n such that we can
devise a single scheme that grows k with some rate related to
n. Trying to loosen the positivity assumption that we made
in our main theorem and extending our discrete universal
filtering schemes to discrete universal denoising schemes, are
additional future directions.

APPENDIX

Here we state some revised lemmas from [7]. For the
following lemmas, fix k and δ, and suppose Q ∈ Θδ

k. Also,
let fix some m ∈ N such that m ≥ k. Proofs are very similar
with [7, Appendix], and details will be given in [9].

Lemma 6: Let Zt be a HMP with probability law Q, Xt be
the underlying Markov process. Then,

Q(Xt+m = j|Xt = i, Zt�
, t� ∈ T ) ≥ µδ,k,m

where µδ,m,k = (1 + |A|−1
δ2(k+m) )−1 is independent of

Q, T , Zt�
, i, j.

Lemma 7: Let

Ct :={Xt1 = i1, · · · , Xtp
= ip, where tp ≥ t, } ∈ X∞

t

D :={Zt1 = z1, · · · , Zth
= zh, where thare arbitrary} ∈ Z∞

1

and define

M+(d, m,Ct, D) := maxiQ(Ct|Xt−dm = i,D)
M−(d, m,Ct, D) := miniQ(Ct|Xt−dm = i,D),

Then,

M+(d,m,Ct, D) − M−(d, m,Ct, D) ≤ ρd−1

where ρ = 1 − 2µδ,k,m.
Lemma 8:

|Q(Ct|Zp
t−dm−l) − Q(Ct|Zp

t−(d+1)m−l)| ≤ ρd+1

for ∀p, ∀d ≥ 1, and 0 ≤ l ≤ m − 1.
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