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Denoising and Filtering Under the Probability of
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Abstract—Subclasses of finite alphabet denoising and filtering
(causal denoising) schemes are compared. Performance is mea-
sured by the normalized cumulative loss (a.k.a. distortion), as
measured by a single-letter loss function. We aim to minimize the
probability that the normalized cumulative loss exceeds a given
threshold. We call this quantity the probability of excess loss.
Specifically, we consider a scheme to be optimal if it attains the
maximal exponential decay rate of the probability of excess loss.
This provides another way of comparing schemes that comple-
ments and contrasts previous work which considered the expected
value of the normalized cumulative loss.

In particular, the question of whether the optimal denoiser is
symbol-by-symbol for an independent and identically distributed
(i.i.d.) source and a discrete memoryless channel (DMC) is inves-
tigated. For Hamming loss, the optimal denoiser is proven to be
symbol-by-symbol. Perhaps somewhat counterintuitively, for a
general single letter loss function, the optimal scheme need not be
symbol-by-symbol.

The optimal denoiser requires unbounded delay and unbounded
look-ahead while symbol-by-symbol schemes mandate zero delay
and look-ahead. It is natural to wonder about the effect of limited
delay and limited look-ahead. Consequently, finite sliding-window
denoisers and finite block denoisers are defined. They are shown to
perform no better than symbol-by-symbol denoisers.

Finally, the effect of causality is investigated. While it is difficult
to characterize the performance of filters with unbounded memory
explicitly, it is shown that finite memory filters perform no better
than symbol-by-symbol filters.

Index Terms—Causality, delay, denoising, filtering, large de-
viations, look-ahead, memory, probability of excess loss, single
letter loss, sliding-block, Stein’s paradox, symbol-by-symbol,
time-invariant schemes.

I. INTRODUCTION

THE denoising and filtering problems have a long history
focussed on the continuous alphabet case. Recently, there

has been work on the discrete alphabet case (cf., [1], [2]). To our
knowledge, only the problem of minimizing expected loss has
been considered. We study the probability that the loss exceeds
a particular threshold, first considered by Marton in [3] in the
context of lossy source codes. This excess loss criterion enables
us to design denoisers and filters that have loss less than some
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target level with high probability. Further, even if a denoiser/
filter has low expected loss, the spread of this loss may be high.
The excess loss criterion provides a handle on the spread of the
loss. Our work was partially inspired by results in lossy source
coding (cf. [3], [4], [5]).

In particular, we analyze the asymptotic excess loss proba-
bility by establishing a large deviations principle (LDP) for de-
noisers and determining the corresponding rate function. Large
deviations characterizations have been used as a performance
metric both in the information theory and statistics literature
(see [3], [6], [4], [7], and [8], respectively).

The LDP for denoising is a special case of the lossy source
coding LDP discussed in [4] and [7]. However, while [4] and
[7] are concerned with characterizing the performance of the
optimal scheme, the basic question we ask in this work is how
different subclasses of schemes compare to the optimal scheme.
In other words, how much, if anything, is lost by restricting the
class of allowable schemes? There is a clear practical motivation
to this question. The subclasses we consider are those that limit
the amount of noisy observations that the denoiser “sees.” In
practice, a denoiser may not have an unbounded horizon so it is
important to ascertain whether/when such practical schemes are
close to the optimal bound. Further, we demonstrate that there
are cases where symbol-by-symbol denoising is stricly subop-
timal. This result is qualitatively similar to Stein’s paradox [9],
[10] where it is shown that an admissible estimate of an indi-
vidual sequence corrupted by independent and identically dis-
tributed (i.i.d.) Gaussian noise (alternately estimating the para-
metric mean of a multivariate) under mean-square error loss re-
quires that the estimate for each sequence component be based
on the entire observation sequence. Note, however, that in our
problem we are estimating an i.i.d. source (as opposed to an in-
dividual sequence or parametric estimation) and optimizing the
exponent of the probability of the excess loss (as opposed to the
minimum mean-square error).

We further note that, while the derivations of [4] and [7] are
information-theoretic, our results have more of a large devia-
tions flavor. That is, while the characterizations in [4] and [7] are
given in terms of minimum Kullback–Leibler divergences, in
this work we emphasize the Fenchel–Legendre transform repre-
sentation of the exponents. This representation makes the com-
parison of the rate functions for different subclasses more trans-
parent and helps us to establish cases of strict suboptimality of
symbol-by-symbol and other classes of schemes.

II. SETUP

The setup (see Fig. 1) is as follows: a source generates
i.i.d. symbols, , that take values in a discrete alphabet
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Fig. 1. Denoising/filtering setup.

Fig. 2. Denoiser.

Fig. 3. Symbol-by-symbol denoiser/filter.

Fig. 4. k-finite sliding-window denoiser.

offinite cardinality. These source symbols pass through a
discrete memoryless channel (DMC) to produce that
take values in a discrete alphabet of finite cardinality. Denote
the distribution of the by .

A. Denoising

The goal of a denoiser is to estimate
from . The

vector is denoised to produce the symbol ,
for each , where the denoising functions are general,
deterministic functions of the random vector with
range . We note that while

is a deterministic function, is a random variable.
The denoiser is the collection of denoising functions

and is denoted by . We
illustrate a general denoiser in Fig. 2. If the denoising functions
satisfy for some deterministic
function , we call the denoiser time invariant.

We refer to a denoiser with denoising functions that de-
pend only on as a symbol-by-symbol denoiser, so that

for a symbol-by-symbol denoiser. A
symbol-by-symbol denoiser is shown in Fig. 3. Note that the

may vary with time (hence the subscript ). Applying
the above definition and the definition of a symbol-by-symbol
denoiser, we can see that a symbol-by-symbol denoiser is time
invariant if for some function .

We define the -finite sliding-window denoiser to allow
to depend on (i.e., ) (see Fig. 4). As
above, a time-invariant -finite sliding-window denoiser satis-
fies for . We can
view -blocks of symbols as supersymbols to be denoised. We

Fig. 5. k-finite block denoiser.

Fig. 6. Filter.

Fig. 7. k-finite memory filter.

thus define the -finite block denoiser to divide the output se-
quence sequentially into blocks of symbols and up
to one remainder block of less than symbols: ,

, and . A block of reconstruction
symbols is produced after observing each output block, so that

and

(see Fig. 5). It is straightforward to deduce the form of a time-
invariant -finite block filter from the above definition.

B. Filtering

The basic idea in filtering is to reconstruct causally. That
is, the filtering function at time may depend only on

so that as in Fig. 6. So, the most general fil-
tering functions can make use of all of when deciding on
output . The memory of a general filter is unbounded in that
the number of observation symbols used to make the decision
on grows arbitrarily large with . We call this most general
class of filters the class of infinite filters. It turns out to be dif-
ficult to analyze such filters so we now define some classes of
filters with finite memory (i.e., their output at time depends on
a fixed number of past output symbols) which are interesting in
their own right. In particular, we consider the symbol-by-symbol
filter, which is the same as the symbol-by-symbol denoiser (i.e.,

) of Fig. 3, and the -finite memory filter, which
allows to depend on (i.e., ) as shown
in Fig. 7. Similar to the above, a time-invariant -finite memory
filter satisfies for .

C. Criterion for Optimality

We assume a given single-letter loss function
such that there exists a maximum loss

. Note that what we call loss is also
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referred to as distortion, particularly in the context of source
coding. An example of such a single letter loss function is
Hamming loss, where if and if

. We denote the maximum value of the single-letter loss
function by .

We consider the normalized cumulative loss

(1)

For the general denoising setup

(2)

The cumulative loss for the other denoisers and for the filters
is defined analogously, with the appropriate restrictions on the
functions . Note that depends on the particular denoiser/
filter as well as on and . We omit these from the notation
for readability.

The normalized cumulative loss is a random variable. The
performance of a denoiser is usually characterized by the ex-
pected value of the normalized cumulative loss. We take a dif-
ferent approach and examine the probability that the normal-
ized cumulative loss exceeds some threshold . For less
than or equal to the minimum achievable expected loss, this
probability goes to when using the optimal scheme, by the
law of large numbers. Thus, we consider values of that ex-
ceed the minimum achievable expected loss. In the sequel, a
denoiser (i.e., the collection of denoising functions

as described in Section II-A) will be said
to be optimal if it achieves the best exponential rate of decay of

. Similarly, the optimal symbol-by-symbol, -finite
block, -finite sliding window and -finite memory denoisers/
filters maximize the exponential rate of decay of
among all symbol-by-symbol, -finite sliding window, -finite
block, and -finite memory schemes, respectively (i.e., among
the schemes where the denoising/filtering functions are
chosen so that the denoiser/filter is symbol-by-symbol,

-finite sliding window, -finite block or -finite memory, re-
spectively, as in Sections II-A and II-B).

III. MAIN RESULTS

In Section IV, we prove the following.

Theorem 1:

(3)

exists for equal to
• , the class of all denoisers;
• , the class of symbol-by-symbol denoisers;
• , the set of -finite block denoisers;
• , the class of -finite sliding window denoisers;
• , the class of -finite memory filters;

noting that or defines a class of denoisers/
filters for each value of . We call the optimal rate

function for class . Furthermore,
exists for any symbol-by-symbol denoiser (i.e., ) and
we call it the rate function for symbol-by-symbol denoisers.

Theorem 2: There exist sources, channels, and distortion
criteria for which . That is, in general,
symbol-by-symbol denoisers are suboptimal. Furthermore, the
optimal denoiser and the optimal symbol-by-symbol denoiser
are time invariant.

Theorem 3: Under Hamming loss, ,
i.e., symbol-by-symbol denoising is optimal for all sources and
channels.

Theorem 4: For any

That is, in general, finite block denoisers, finite sliding-
window denoisers, and finite memory filters do no better than
symbol-by-symbol denoisers/filters. Since for

, Theorem 2 implies that the optimal rate functions for
are achieved by time-invariant symbol-by-symbol

denoisers.

Remark 1: Establishing the LDP for the best denoiser in
in Theorem 1 is nontrivial because (as we elaborate upon in
Section IV-A1), is a sum of dependent random variables.

Remark 2: We give concrete examples where the inequality
of Theorem 2 is strict.

Remark 3: Theorem 2 seems somewhat counterintuitive
since the source is i.i.d., the channel is memoryless, and the
distortion is single-letter.

Remark 4: To obtain Theorem 4, we first compute
and show that . We

use these two results to obtain
by an approximation argument. Finally, we show that

by observing that .

IV. OPTIMAL RATE FUNCTIONS AND OPTIMALITY OF

DENOISERS/FILTERS

We prove the first two parts of Theorem 1 in Section IV-A.
We establish the last part of Theorem 1 and the time-invari-
ance of the optimal symbol-by-symbol denoiser of Theorem 2
in Section IV-B. In Section IV-C, we show that the optimal de-
noisers in and are time invariant and find a set of exam-
ples where symbol-by-symbol denoising is strictly suboptimal
thereby showing Theorem 2. Section IV-D characterizes the per-
formance of -finite block denoisers and shows it to be equiva-
lent to the that of symbol-by-symbol denoisers, thus establishing
the third part of Theorem 1 and part of Theorem 4. Section IV-E
does the same for -finite sliding-window denoisers. Finally,
Section IV-F discusses filtering, explaining why it is difficult
to analyze the performance of filters with unbounded memory
and then characterizing finite memory filters in order to estab-
lish the remainders of Theorems 1 and 4.
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A. and

1) An Overview of Optimal Denoisers: We present upper and
lower bounds on for an optimal denoiser, preceded
by some notation. First, however, we explain why obtaining the
LDP for is nontrivial. We note that is a sum of random
variables, , that are not in general independent
of each other. This is because the estimate is based on
and is correlated to each of the by the
channel so that is correlated to each of the . It is thus
nontrivial to show whether and when the sum concentrates
for general denoising functions.

If we restrict ourselves to symbol-by-symbol denoisers
(as defined in Section II-A), we have that

and are independent but not identically dis-
tributed. It is reasonable to expect a sum of such random
variables to concentrate, but the proof uses a key lemma from
[5] which is a recent result. We show how to apply their arbi-
trarily varying source lemma directly to in Section IV-B.
Also, we will elaborate upon this lemma shortly.

For the case of a general denoiser, where the th estimate
, we will show in Section IV-A3 that the sum

concentrates for the optimal denoiser. We obtain the concen-
tration result by conditioning on and expressing

as a sum of conditionally independent but not iden-
tically distributed random variables. We can then use the ar-
bitrarily varying source lemma of [5] to show that

concentrates. However, to get we must sum
over an exponential set so that it is not clear

that concentrates. We will argue that the best de-
noiser depends only on the empirical type of and so the sum-
mation can be taken over the (polynomial) number of types of

rather than the exponential number of . This will yield a
concentration of but only for the optimal denoiser.

Having established the difficulty of the problem and having
summarized our approach, we now summarize and state for-
mally an important lemma that we will use repeatedly in this
paper.

2) Arbitrarily Varying Sources: Basically, the arbitrarily
varying source lemma establishes an LDP for sums of in-
dependent but not identically distributed random variables. It
requires that the random variables take on a finite number of
discrete values, have bounded support, and have probability dis-
tributions that lie in some finite set of distributions. In addition
to establishing the LDP, the error of the LDP approximation is
given and holds for sufficiently large but finite . We now state
the lemma formally.

Consider a set of probability mass functions on the real
line which we denote by . Denote the
support of distribution by . Suppose
that for each , there are a finite number of elements in
and that every element of , is upper-bounded by
and that (where the inequalities are strict).
Now, let be independent random variables with distribution
in . Then, following the terminology of [5], we call
an arbitrarily varying source (AVS). Define

Denote the fraction of in with distribution by .
For example, if and only five of the nine have dis-
tribution , then . We now see the reason for using
both and in the notation for . The indexes the distribu-
tion and the is relevant because can only take values
in . (In fact, we will want to optimize a func-
tion of the for a particular and we
will argue that as , we can equivalently solve the opti-
mization over the continuous parameter space instead of
over the discrete valued parameter space of
the .) Let be the moment generating function of a
random variable with distribution , i.e.,

where we can write the expectation as a finite sum since
is a finite set.

Let and let

Then, we have the following.

Lemma 1 (Large Deviations for AVS): For and for
finite but sufficiently large,

where can be characterized explicitly as a function of .
Proof: Although the proof is given in [5], for the conve-

nience of the reader, we include in Appendix I of this paper a
proof of the arbitrarily varying source lemma which includes
more details than the proof in [5]. The precise expression for

can also be found in Appendix I.

3) Optimal Denoisers: With Lemma 1, we can compute
for a general denoiser.

Consider an arbitrary denoiser . We ex-
amine the relation

Now, since is deterministic, there is no randomness in
given . Given , consider the set

. We suppress the dependence of
on for simplicity. is the set of all noisy observations

(which are deterministic given ) that are denoised to the
estimate . We index these pairs by their time index
. One can see that for all , are conditionally

independent given and have the same distribution as
given , where has the source distribution and

has the distribution induced by the channel and by the distribution
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of . So, given is an AVS, where the finite
set of possible distributions of this random variable is indexed
by the possible values of and has magnitude . We
can thus use Lemma 1 with and the collection of distributions

from the statement of the lemma corresponding to
and the distributions associated with given

. Note that we have shown that, conditioned on
is a sum of independent random variables.

Let be the fraction of occurrences of in , and let
be the fraction of occurrences of among

the pairs with . Given , the denoiser
induces a particular . Also, the magnitude of the set

defined above is . To simplify notation, we will
not show the dependence of on and . We have

where are independent with distributed as
given .

We now apply Lemma 1 to the random variables . We
will omit the explicit specification of the alphabets of and

, for simplicity. Also, we use to denote the empirical
distribution of , i.e., . Similarly,
denotes the collection of conditional empirical distributions of

given . Then, using Lemma 1, we have that

(4)

and

(5)

where is independent of (and again, is given in Ap-
pendix I) and where, for probability distributions (using similar
notation to that of the empirical distributions) on and

on

(6)

(7)

where is the given conditional distribution of the channel
input given the channel output.

We now restrict our attention to the schemes that maximize
the exponential rate of decay of

(8)

i.e., those that achieve (3). Notice that the probabilities in (4)
and (5) depend on and the denoiser only through the joint
empirical type of . We claim that the best (in the sense
of maximizing the exponential rate of decay of ),
joint empirical type, , is constant for of the same
type. The reason is that the set of possible joint types of
is identical for of the same type. This is easily seen by con-
sidering and to be of the same type and noting that,
because they are of the same type, there is a bijection

from between and . So, if a particular de-
noiser produces joint type when used on ,
the denoiser resulting from the composition of and
on produces the same joint type . The opposite is
clearly true since is a bijection.

Since the set of joint types is the same, the best exponent is
the same (since it depends only on the joint type). So, rather than
summing over all in (8), a set with magnitude exponential in

, we can group the according to their type and sum over
the different types, (a set with magnitude polynomial in

), and we may restrict our attention to denoising functions that
depend only on . These facts will help us to express the
desired probability as asymptotically equal to an exponential in

, that is, establish the LDP.
We will omit explicit dependence of the notation of the de-

noiser on for brevity. Further, we can use the classical typ-
ical sequence bounds on the probability that has type
(c.f. [11]–[13]). Thus, for a particular choice of the denoising
functions chosen among the set of optimal denoising functions,
i.e., where induced by the denoiser depends on only
through its type

(9)

where denotes the distribution of the channel output,
is standard Kullback–Leibler divergence, and

(10)

Note that the summations in (9) and (10) are over the set of
possible empirical distributions, which is of polynomial size.

The optimal denoiser chooses the best denoising functions
given the type of . Denoting the loss of the optimal denoiser
by , we have

(11)

and

(12)

Therefore

(13)
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where we use the notation to denote that
.

4) Optimal Symbol-by-Symbol Denoisers: Now we derive
the best performance among the class of symbol-by-symbol
denoisers. As stated in Section IV-A1, one option is to use the
AVS lemma immediately. We will do this in Section IV-B.
Here, however, we will show how to derive the rate function
in a manner similar to that of Section IV-A3. The optimal
symbol-by-symbol denoiser must choose the denoising func-
tions before observing the realized type so that is a
deterministic mapping (i.e., it is the same for all types ).
It thus picks a set of denoising functions that maximize the
exponent (or minimize has type ) over
all types . Denoting the loss of the symbol-by-symbol
scheme by , we have from (9) and (10) the inequalities (14)
and (15) shown at the bottom of the page, so that

(16)

5) Optimal Rate Functions: We compute (3) by showing that
we can move the limit inside the optimizations and then op-
timizing over a continuum of distributions instead of over the
discrete sets and which take values in

and

respectively. We thus define a new domain of optimization vari-
ables, and , that are continuous valued in
and , respectively. We will show that optimizing the rate
function in terms of and instead of and

is equivalent in the limit of large . Specifically, we have
the following statement.

Definition 1: For and , let and
, such that , and for

each . We can think of as the frequency of in
as and, likewise, for . We denote the collection of
such frequencies by

and

We now claim that we can move the limit inside the optimiza-
tion. We let

where is distributed as given , and

Then, we get the following.

Lemma 2: For

(17)

and

(18)

We first need the following claims.

Claim 1: is convex in and also in
.

Proof: For two different values of which we will
denote and , and for some

, consider the linear combination

We have that

(19)

(14)

and

(15)
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Thus, since and are arbitrary, they can be chosen to be the
that achieves

(20)

which exists since the objective is continuous in . Thus,
. Notice that (20) is simply

. So we have that is convex in
. A similar argument holds for . Thus, we have

Claim 1.

Claim 2: is convex in
and also in .

Proof: The claim follows from the previous claim and the
fact that is convex in and independent of

.

Claim 3: For , and satisfying
is uniformly continuous

in and uniformly continuous in

Proof: The set of allowable is closed and bounded
and thus compact. Since is
convex in , it is uniformly continuous in .

Since is continuous where finite, the set
is closed. Clearly, this set is

also bounded since the range of is bounded. Uniform
continuity follows from the compactness of this set and the
convexity of . It is also
clear that the types such that cannot
minimize the rate function, so we may assume the existence
of some such that the optimization is equivalent to
optimizing over . To simplify
the notation, we will not state this restricted range of values of

explicitly in the following.

We are now ready to prove Lemma 2.

Proof of Lemma 2: For all , there exists an such
that implies

for all since we can approximate a point in
arbitrarily well by a point in as .

Since is uniformly con-
tinuous in , for all , there is an such that

implies

The same is true using and . So, there is an such
that for all

and

Thus, for

and

Since is arbitrary, we have the first part of the lemma. The
second part follows analogously.

Thus, combining Lemma 2 with (13) and (16) shows that
and are well defined and that

(21)

and

(22)

B. Alternate Derivation of and Rate Function for
Symbol-by-Symbol Denoisers

We can find the rate function for a symbol-by-symbol de-
noiser by noting that is an AVS with distribu-
tion depending only on the denoising function . There are
a finite number, , of different denoising functions
which we will now label . Let be
the fraction of times appears (there is a dependence on

since there are total observations being denoised). Then, we
can apply Lemma 1 to conclude that, for any symbol-by-symbol
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denoiser, we have (23) which is shown at the bottom of the page,
thus establishing the last part of Theorem 1.

We get an alternate derivation of the optimal rate function
by optimizing over the to get (24), which is also shown
at the bottom of the page. Equation (24) follows from the fact
that the optimal denoising function, , depends only on the
distribution of for all and is therefore the same function
for all . In other words, the optimal symbol-by-symbol scheme
is time-invariant, establishing part of Theorem 2. We now have
another expression for , namely

(25)

C. Optimal Denoising and Theorem 2

1) Theory: Our goal is to investigate whether
, i.e., whether . We

can see the following from (21).

Lemma 3: For Hamming loss, symbol-by-symbol denoising
is optimal.

Proof: For all types (see (6)) is
maximized over by ,
i.e., the deterministic conditional distribution that sets as the
most likely given .

We thus have Theorem 3. Using (21) and (22), we now show
the following.

Lemma 4: The best denoisers and the best symbol-by-symbol
denoisers are time invariant.

Proof: The best denoiser picks a conditional distribution
based on . It is easy to extend Claim 1 to continuous

distributions. Thus, for a fixed
is convex in . Thus, for each , the best

choice of sets for some and otherwise, i.e., the best
denoiser is time invariant. The best symbol-by-symbol denoiser
chooses to maximize

. It is easy to see that this expression is convex
in . So, for each , the best symbol-by-symbol
denoiser has equal to for some and equal to otherwise.
Thus, it is time invariant.

2) Concrete Examples of Suboptimality: We now show that
there are cases for which symbol-by-symbol denoising is strictly
suboptimal, i.e., the inequality between (21) and (22) is strict.

We will consider a binary-symmetric channel (BSC) with
crossover probability . We use the notation to refer
to such a channel. Consider a Bernoulli , source that
passes through a with . We define an asym-
metric loss function where a loss of is incurred when we de-
code as and a loss of is incurred when we decode as .

By Lemma 4, it is clear that the best denoiser has
or for . So, for a given , there is no need to
time-share; the best denoiser makes the same decision at each
time for the same output symbol . Thus, there are only four pos-
sible optimal denoising schemes: say-what-you see (SWYS),
say-the-opposite (SWYS), decode all ones (ONES), and decode
all zeros (ZEROS). We represent the denoising decision by
which takes a single symbol as an argument. So, for the SWYS
denoiser, and for the ONES denoiser, .

Since we are in the binary setting, we can simplify the no-
tation for the frequency/distribution vectors. Instead of writing

or , we specify the frequency/distribution, respec-
tively, by or . In our setting, the objective function,

, for a particular denoiser,
, is

(26)

(27)

where denotes binary divergence. That is

where and are probability distributions on .
We can now make the following claim.

Claim 4: SWYS and ZEROS are suboptimal.

(23)

(24)



PEREIRA AND WEISSMAN: DENOISING AND FILTERING UNDER THE PROBABILITY OF EXCESS LOSS CRITERION 1273

Fig. 8. Region of symbol-by-symbol suboptimality.

Proof: For SWYS, the quantity inside the supremum of
(26) is

(28)

For SWYS, it is

(29)

Since , (28) for is greater than or equal to (29)
for , for each . So, for any fixed denoiser and

, (26) for SWYS is better than for SWYS for that same
denoiser and . Thus, the performance of SWYS is
better than that of SWYS.

Since , we are as likely to incorrectly decode a as we
are to incorrectly decode a . Since it is more costly to mistake
a , the ONES denoiser is better than the ZEROS denoiser.

We also have the following claim.

Claim 5:

(30)

is concave in .
Proof: Since log convexity is preserved under sums and

is log convex in , the terms inside the logarithm of
(26) are log convex. Hence, the log terms are convex and so (30)
is concave in .

Now, (17) can be expressed as follows:

(31)

(32)

(33)

where we can switch the and in (31) to get (32) since the
objective is convex in the minimization variable and concave
in , the variable over which the supremum is taken. Equality
(33) follows by setting

so that the binary divergence term is minimized. We could have
obtained (33) directly from (23) but we re-derived it here be-
cause we use the form of (32) in the following.

Since only the SWYS and ONES denoisers can be optimal,
the problem reduces to comparing the exponents of these two
denoisers. That is, we use (33) and substitute either the SWYS or
ONES function for . We use a Matlab program to search the
space of channels in terms of and the range of thresholds, , to
determine for which channels and threshold values symbol-by-
symbol denoising is strictly suboptimal. Although the region of
such pairs is computed numerically, each point in the
region can be verified analytically to show the suboptimality
of symbol-by-symbol denoising. The details of our method and
an explanation of why each point in the region can be verified
analytically can be found in Appendix II. Fig. 8 shows a plot of
the region of for which symbol-by-symbol denoising is
suboptimal. This concludes the proof of Theorem 2.

D.

We derive an expression for the exponent of the probability of
excess loss for the -finite block denoiser and show that the best
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-finite block denoiser does no better than the best symbol-by-
symbol denoiser.

For simplicity, assume that , for integer . Since
we take , it will be clear that this
does not affect the validity of the derivation. We index
the set of denoising functions by

to get . Note that
for fixed , this set is finite. Now, given , the
most general deterministic scheme will use a certain frac-
tion of each type of denoising function. Denote the fraction
of time denoiser is used by .
Since the are i.i.d., for a par-

ticular are i.i.d. So,

is an AVS. Thus

where for each has the same distribu-
tion as . We can therefore use Lemma 1 on the AVS

to compute

where as . Since we are concerned about
the behavior for fixed as , we have . So, we
can neglect the term and optimize over
instead of over the . We can rewrite this as

To maximize this expression, we should set for

and else, since this minimizes for
each . So, the best denoiser uses the time-invariant, symbol-by-
symbol function

where achieves the above supremum. Since the function is
continuous in , starts at for and tends to as

, the supremum is achieved and so our definition of
the optimal function is valid. Letting denote this choice of
denoising function, we thus have
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Fig. 9. Illustration for sliding-window denoiser proof.

Clearly, the value of that maximizes this expression coincides
with the value of that maximizes the symbol-by-symbol
denoiser rate function (25). Therefore, finite block denoisers
have the same performance as symbol-by-symbol denoisers,
i.e., , giving the third part of Theorem
1 and the first part of Theorem 4.

E.

We show that, given a -finite sliding-window denoiser, we
can find a sequence of finite block denoisers of increasing order
whose performance is a lower bound on for the

-finite sliding-window denoiser. Consider a -finite block de-
noiser, where and and are integers.
It is straightforward to extend the argument to general . We
now show that

This latter expression is the probability of excess loss of a -fi-
nite block denoiser with threshold and uses the nota-
tion for block denoisers defined in Section II-A. Fig. 9 illustrates
the reason for the inequality. The inequality follows from the
fact that the -finite block denoiser has more information than
the -finite sliding-window denoiser for all indices except those
of the form . So the best block

denoiser does at least as well as the sliding-window denoiser for
indices that are not of this form. Furthermore, the loss for indices
that are of this form cannot exceed . Since there are
such indices, increasing by to get
gives the lower bound. We know the -finite block denoiser can
do no better than the optimal symbol-by-symbol denoiser with
the same threshold, i.e., . Since the exponent is con-
tinuous in the threshold parameter and was arbitrary, taking

gives us a tighter lower bound on the exponent asso-
ciated with the probability of excess loss of a sliding-window
denoiser. This lower bound is the probability of excess loss for
an optimal symbol-by-symbol denoiser with parameter .

It is obvious that the best finite sliding-window denoiser is no
worse than a symbol-by-symbol denoiser of the same threshold.
Thus, the performance of the best finite sliding-window de-
noiser is the same as the performance of the best symbol-by-
symbol denoiser, i.e., . So we have
another part of Theorem 1 and of Theorem 4.

F. Filtering

1) Infinite Memory Filters: Explicit characterization of the
performance of the infinite memory filter appears to be difficult.
This characterization shares some intricacies with the charac-
terization of the exponent of zero-delay, infinite memory source
codes, which is mentioned but left open in [5]. It is not clear how
to use the AVS lemma (Lemma 1) since the single-letter losses at
different times are dependent on the infinite memory filter. This
was also the case with the finite sliding-window denoiser, but
because the memory and look-ahead were finite, we could get a
handle on the rate function by using a series of finite block de-
noisers to upper-bound it. We are, however, able to characterize
the performance of the finite memory filter, by sandwiching its
performance between schemes whose performance we already
know.

2) : The analysis of finite memory filters is
greatly simplified by the preceding results for denoisers. We
observe that the set of -finite sliding-window denoising func-
tions includes the set of -finite memory filtering functions
which includes the set of symbol-by-symbol denoising/filtering
functions. The equivalence of the best -finite sliding-window
filter and the best symbol-by-symbol denoiser/filter thus implies
the performance of finite memory filters is the same as that of
symbol-by-symbol filters, i.e., . This
gives the remaining parts of Theorems 1 and 4.
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V. CONCLUSION AND FUTURE WORK

We have studied the effect of limiting the domain of denoising
and filtering functions under the probability of excess loss cri-
terion. We established Theorems 1–4, which we now rephrase.

Symbol-by-symbol denoising of a DMC-corrupted memory-
less source is found to be suboptimal using a general single-
letter loss function, under the probability of excess loss crite-
rion. In the case of Hamming loss, symbol-by-symbol denoising
is optimal. In general, the best denoising and symbol-by-symbol
denoising schemes are time invariant.

A region of suboptimality for a Bern( ) source passing
through a under an asymmetric loss function was
found numerically. Each point of the region can be verified
analytically, but an analytical characterization of the region of
suboptimality is yet to be found and may be of interest.

We have shown that finite memory filters, finite sliding-
window denoisers, and finite block denoisers all do no better
than time-invariant symbol-by-symbol denoisers/filters.

We note that the case where the filter has unbounded memory
is also of interest. An open question is how to characterize the
performance of these infinite memory filters, or even to deter-
mine whether/when the performance is strictly better or worse
than that of symbol-by-symbol filters and optimal denoisers, re-
spectively.

APPENDIX I
PROOF OF THE AVS LEMMA

We use the notation given in the statement of Lemma 1. We
also define the following quantities which are used in the proof.
We let

and .
We start by showing the following.

Claim 6: is concave in .
Proof: Since is log convex in and log convexity is

preserved under sums, is a log-convex function of . This
implies that is convex in . Claim 6 follows.

Clearly, is when . If

since . Also,

So, if , the derivative is nonnegative for
near zero and the function goes to as . Thus, since
the function is concave by Claim 6, the is achieved for in

. Conversely, , then the supremum is achieved
by and has value .

Thus, we have the following lemma:

Lemma 5: The of is always achieved for
and is the solution of

when . It is otherwise.

We note that we will be using the variable in what follows.
This is not the same as the parameter of the BSC mentioned
in the body of this paper. We reuse the variable here to simplify
the notation. There should be no ambiguity since this appendix
is self-contained.

Lemma 5 implies the existence of

the achiever of , for .
Define . Now, we have the following

claim.

Claim 7: is concave in .
Proof: This follows easily since is con-

cave.
Now, is at and, if

we get the expression at the bottom of the page. Also
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So, if , the derivative is nonnegative near zero
and the is achieved for in . Conversely, if ,
the supremum is zero and is achieved by .

Thus, we have the following lemma.

Lemma 6: The achiever
always exists for and is the solution of

(34)

when . It is 0 otherwise.

We thus have the existence of , the achiever of
, for . We are now ready to prove

the upper bound of Lemma 1.

Proof: We first assume that . Then, using
to denote the indicator function, for all

Thus

If

where we use the notation to denote indepen-
dent random variables distributed according to , respec-
tively. Thus, for .

Since for , the upper bound holds.
Finally, for and since

, the upper bound holds. This concludes the proof of the
upper bound.

We prove the lower bound of Lemma 1 by first showing a
restricted version of the lemma.

Lemma 7: Fix such that . Choose so
that . Choose an such that .

For

Proof: Define the events

and

Define a new set of probability measures, , by

.
Since , by Lemma 6, the

achiever of exists. We denote it by . By Lemma
6, satisfies

(35)

so that

Now

(36)

(37)

Letting , and substituting in the
modified probability measure, (37) becomes

(38)
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(39)

(40)

(41)

where (38) follows from the fact that .
Now

(42)

(43)

since . To proceed, we need the
following.

Lemma 8: For all , if achieves and
achieves , then .

Proof:

(44)

(45)

and implies .
Similarly, if achieves and achieves ,

then .

It is straightforward to see that is continuous, and that,
as , for all . For a fixed
and is independent of . Thus, achieves
all for some collection such that, for
each . We thus have that

(46)

where the last equality follows by the choice of the , which
implies that achieves (46).

Now, by (46)

and . Thus

And so, by Lemma 8, we have

Also, and , so

Thus

We use this in (42) to get

(47)

which is a lower bound on the first part of (40). We now bound
the second part of (40)

(48)

(49)

(50)

Also, note that from (36).
Thus, we have

(51)

(52)

(53)
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where (51) follows from the union bound, (52) follows from the
Hoeffding bound, and (53) follows from the facts that
and .

Similarly, we have

Thus

(54)

when . Since we assumed , the proof
is valid when

So we require

(55)

Thus, combining (47) and (54) yields

Fig. 10. Comparing two convex functions. The solid dots represent max-min
or min-max points. The shaded dots represent the minimum of a function. The
vertical lines connect the minimum of a particular function to the corresponding
point on the other function. We see that when the max-min is strictly less than
the min-max, the difference between each minimum point and the corresponding
point on the other function is negative. When this does not hold, the max-min
and min-max are equal. Of course, this is just an intuitive argument. Rigorous
reasoning is given in the text.

concluding the proof of the restricted form of the lemma, with

and .
We thus have the lower bound of Lemma 1 for
since was arbitrary.

We now prove the lower bound of Lemma 1.

Proof: Observe that for .
Since for such , the lemma is true for all and
with .

For , for
some found in the manner described in the preceding
proof. For such , so the lemma is true. This
concludes the proof of the lower bound.

APPENDIX II
DETAILS OF THE METHOD TO COMPUTE THE REGION OF

SYMBOL-BY-SYMBOL SUBOPTIMALITY

We have shown that the only candidates for the optimal
denoiser and optimal symbol-by-symbol denoiser are the
SWYS and ONES denoisers. So, in order to determine whether
symbol-by-symbol performance is optimal, we must determine
when minimizing the rate function over all types and then
maximizing over the choice of denoiser, SWYS or ONES, is
equivalent to maximizing the rate function over the choice of
denoiser, SYWS or ONES, and then minimizing over the type

. We have also demonstrated that the rate function for a
particular denoiser is a convex function of .

So the question, illustrated in Fig. 10, becomes: when is the
max (over the two schemes SWYS and ONES) of the min (over

) of the two convex functions of strictly less than the min
(over ) of the max (over SWYS and ONES)? We need only
compute the value of the exponents at two points each in order
to determine when the min-max equals the max-min since the
functions are convex in the minimizing variable. We will soon
show that the only way the min-max is not equal to the max-min
is if the value of each function at its minimizing is less than
the value of the other function at that same (see Fig. 10).

Although the region of such pairs is computed numer-
ically, each point in the region can be verified analytically to
show the suboptimality of symbol-by-symbol denoising.
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Specifically, the program is used to compute the that mini-
mizes the exponent for each denoiser. This is easy to determine
given the expression (32). We find the maximizing for (33)
and then set so the divergence term in (32) is zero. At this
point, we need the following simple fact.

Claim 8: The minimizing of the exponent for a particular
denoiser is unique.

Proof: This follows from the fact that the divergence of
two discrete distributions is zero if and only if the distributions
are everywhere equal.

The minimum value of the exponent for a given denoiser
is compared to the value of the exponent using the same
in the other denoiser. If the minimum exponent for each de-
noiser is strictly less than the exponent using that in the
other denoiser, then symbol-by-symbol is strictly suboptimal by
the uniqueness of the minimizers of the exponents of the de-
noisers, the continuity of the exponent, and the mean value the-
orem. These imply that the two exponent functions must cross
for some value of that lies strictly in between the minimizers
of the two exponent functions. The value of the functions at this

is the min-max and is strictly greater than the max-min since
the minimizers of the exponents of the denoisers are unique.

The value of the supremum over is computed by taking a
derivative and setting it equal to zero. We solve the resulting
equation numerically by using the roots function in Matlab.
Since the functions are continuous in , the roots function will
give an accurate value for . Each point in the region can be ver-
ified by computing the values of analytically and substituting
into the corresponding rate function expressions.

1) Sample Calculation of Symbol by Symbol Suboptimality:
We now provide an example of a particular channel and
threshold where symbol-by-symbol denoising is suboptimal. In
fact, we compute the max-min and min-max values and show
the strict inequality.

Use the above problem setup and set and .
Fixing the denoiser to be SWYS, (33) becomes

(56)

Differentiating with respect to and setting the result equal to
zero, we get

(57)

Now, substituting the values for and and scaling, we get

(58)

Thus, the expression is maximized by the nonnegative root of
this equation, so and . This yields a
value of for the objective. Now, as described above, (32)
is minimized by setting

We now compute the value of the objective for this value of
in the ONES denoiser. We use (26) to get

We take a derivative, set it to zero, set , and simplify to
get

We substitute the values for , and to get

(59)

So that and the objective is .
This is greater than the value of the objective for the SWYS
denoiser.

Now, we find the optimal value of (33) for the ONES de-
noiser. We have

(60)

Differentiating with respect to and substituting leads
to

(61)

That is, and . Then, the objective is .
Furthermore, . We now compute the value of (32)
for the SWYS denoiser and this value of . (32) becomes

Differentiating with respect to and substituting leads
to

Substituting the and values and simplifying yields

(62)

Thus, the objective is maximized by , i.e.,
. The value of the objective is , which is greater

than that for the ONES denoiser.
By the results of this appendix, since the minimum value of

the rate function of each denoiser is less than that of the other
denoiser for the minimizing , the rate functions must cross
and thus max-min min-max. So, we have a concrete example
of the suboptimality of symbol-by-symbol denoising schemes.
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