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Abstract-We consider the problem of causal estimation, i.e.,
filtering, of a real-valued signal corrupted by zero mean, i.i.d.,
real-valued additive noise under the mean square error (MSE)
criterion. We build a competitive on-line filtering algorithm whose
normalized cumulative MSE, for every bounded underlying
signal, is asymptotically as small as the best linear finite-duration
impulse response (FIR) filter of order d. We do not assume any
stochastic mechanism in generating the underlying signal, and
assume only the variance of the noise is known to the filter. The
regret of our scheme is shown to decay in the order of O(log n/n),
where n is the length of the signal. Moreover, we present a
concentration of the average square error of our scheme to that
of the best d-th order linear FIR filter. Our analysis combines
tools from the problems of universal filtering and competitive
on-line regression.

I. INTRODUCTION

Estimating a real-valued signal corrupted by zero mean real-
valued additive noise is a fundamental problem in signal pro-
cessing and estimation theory. When the underlying signal is a
stationary process, the usual criterion for the estimation is the
mean square error (MSE), and much work on minimum MSE
(MMSE) estimation has been done since Wiener [1]. Also, due
to the ease of implementation, linear MMSE estimation has
been popular for many decades [2]. There are noncausal and
causal version of linear MMSE estimation, and in the signal
processing literature, the termfiltering is used for both cases.
However, in this paper, we will only use that term for causal
estimation and call that causal estimator a filter. The most
common form of the linear MMSE filter is the finite-duration
impulse response (FIR) filter, since the stability issue is not a
problem and it is easy to implement.

In practice, there are two limitations in building the linear
MMSE estimators. One is that we need a prior knowledge of
the first and second moment of the signal which we usually
do not have, and the other, which may be more stringent,
is that we need stationarity assumptions on the underlying
signal, whereas in practice it may be nonstationary, or even
non-stochastic in many cases. In this paper, we will focus on
the linear FIR MMSE filters, and try to tackle these limitations
jointly.
A robust minimax approach [3][4][5] and adaptive filter

approach [6] are the efforts that have been dedicated to
deal with either of above limitations. The former aims to
optimize for the worst case in the signal uncertainty set, to
get a robust estimator. However, this approach ignores the fact
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that we can learn about the signal, and most of them allow
large delay in estimation, i.e., noncausal estimation, which
is not applicable in filtering problem that has strict causality
constraint. On the other hand, the latter tries to build an FIR
filter that sequentially updates its filter coefficients by learning
from the noisy observation and a desired response, which the
filter output needs to be close to. However, this is also not
directly applicable to the case of filtering the underlying signal,
since the desired response is not available to the filter. The
unsupervised adaptive filtering [7] considered the case where
there is no desired response, but certain statistical assumptions
on the underlying signal were needed. Hence, when there is
no knowledge about the statistical property of the underlying
signal or when the underlying signal is not even a stochastic
process, it is not clear how we can apply above two approaches
for filtering the underlying signal.

Instead, we take a competitive on-line learning approach,
whereby we do not assume any stochastic mechanism in
generating the underlying signal. We additionally assume that
the additive zero mean noise is i.i.d., bounded, and only the
variance of the noise is known to the filter. This assumption
on the noise is not too stringent because, in reality, it is easy to
estimate the noise variance at the receiver. Since the underlying
signal is not assumed to be random, we use the normalized
cumulative MSE as a performance criterion. Then, we try to
build a filter that performs essentially as well as the best linear
FIR filter which is tuned to the actual underlying sequence, as
the length of the observation increases regardless of what the
underlying signal may be. By doing so, we can overcome the
two limitations mentioned above while guaranteeing uniformly
good performance for every possible underlying individual
signal. A more precise problem formulation will be given in
Section II.
Our competitive on-line learning approach for linear FIR

MMSE filtering is intimately related to two lines of research in
information theory and learning theory. One is the universal fil-
tering problem, a.k.a. sequential compound decision problem,
which is the problem of causally estimating the finite alphabet
individual sequence based on the Discrete Memoryless Chan-
nel (DMC) corrupted noisy observation. This problem has
been initiated and was the focus of much attention in 1950's
and 1960's [8][9][10]. Recently, there has been resurgent
interest in this area, and notable work was done in [11] where
the connection of the universal filtering problem and universal
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prediction problem [12] was established. The other related
problem area is the competitive on-line regression problem
for real-valued data, which is the problem of estimating next
signal component based on the past side information-signal
pairs and current side information. [13] has developed on-
line regressors for square error loss that compete with finite
order linear regressors, and [14] extended this to the universal
linear least squares prediction problem for real-valued data.
Our work is an extension to both problems, i.e., an extension
to the universal filtering problem to the case of real-valued
individual sequences with square loss and linear experts, and
an extension to the competitive on-line regression problem to
the case where the clean signal is not available for learning,
and yet to estimate that signal. Naturally, we try to merge
the methods of [11] and [13] in developing our competitive
on-line linear FIR MMSE filtering scheme.

In the rest of the paper, the formulation of the problem and
the main result is in Section II, the proof in Section III, and
conclusion and future follows in Section IV.

II. PROBLEM FORMULATION AND MAIN RESULT

Let {xt}t>i denote the real-valued signal that we want to
estimate, and assume that for all t, xt takes value in D =

[-K, K] c R, for some K < oc. We denote the signal with
lower case, since we do not make any probabilistic assumption
on the generation of xt. Hence, {fxt}t> 1 can be any arbitrary
bounded individual sequence, even chaotic and adversarial.
Suppose this signal goes through an additive channel, where
the noise {NtLt>l is i.i.d., and E(Nt) = 0, E(NJ2) J2 for
all t. Additionally, we assume that the noise is bounded, i.e.,
there exists an M < oc, such that NtL < M for all t, with
probability one. This assumption simplifies our analysis but is
not essential. We denote {Yt}t>l as the corresponding output
of {fx}t>l from the additive channel, i.e.,

Yt = xt + Nt, t = 1, 2,

The boldface notations will denote the d-dimensional
column vector of d recent symbols, e.g., Yt
[Yt, Yt- ,. Yt-(d- 1)]T, where (.)T is a transpose operator.
For completeness, we assign zeros to the elements of vectors
whose indices are less than or equal to zero. Also, denote
c [or2,0... , O]T C Rd, and I as a d-by-d identity matrix.

denotes the Euclidean norm for vectors, and the operator
norm (i.e., maximum singular value) for matrices. Also, for
matrices, i11 1 denotes fl-norm, i.e., ||A||1 = i,j lajj
A1 (.) and Ad (.) denote maximum and minimum eigenvalues
of d-by-d matrices, respectively.

Generally, a filter Xt(Yt) is defined to be a causal estimator
of xt based on the noisy observations yt = (y1, Y2, ... , Yt).
The performance of a filter for x' is measured by the normal-
ized cumulative MSE

n

E(E (ZXLtXt(Yt))2)' (1)
t=l

where the expectation is with respect to the channel noise, Nt.
Now, a linear FIR filter of order d, the focus of this paper, can

be denoted as Xk,t(Yt) = UTyt, where u C Rd is a vector of
filter coefficients. We can also interpret u as a linear mapping
that maps Rd to R. Then, for each individual sequence xn,
there exists an optimal coefficient vector u that achieves

In
minE(- ZXt uTYt)2),
LiEd

(2)

and it is given by the well-known least squares solution, u =
(72I + 1 En XtXT) ( 1 En xtxt). It is clear that this

optimal u depends on the entire unobserved sequence Xn.
Our goal is to construct a competitive filter whose nor-

malized cumulative MSE asymptotically achieves (2) as n
increases, uniformly for every possible individual sequences

eDC . We will show that our competitive filter that meets
this goal also has a form of linear mapping,

Xt*(Yl) = W[TlYt,

where wt- 1 is defined to be
t-1

Wt-1 =(I+YIY )
i=l

(3)

(4)
iil

(3) is not linear in the noisy sequence {Yt}'s, but we say it has
a form of linear mapping, since the coefficient vector, that is
updated sequentially, linearly combines the noisy observations
to estimate xt. Note that only yt-l 1 and ur2 are needed in
defining wtL1, a coefficient vector for xt, and neither the
bound nor the distribution of the noise is required. The form
of wtL1 resembles that of the RLS adaptive filter [6, Ch. 9],
or the on-line ridge regressor [13]. The difference is that (4)
is solely expressed with yt-l, whereas the other two need the
desired response or the clean past signal components as well.

In addition to showing that (3) achieves (2), we can also
show a much stronger concentration result. A precise statement
of our result is summarized in the following theorem.

Theorem 1: Let x12 e Dfi be an arbitrary real-valued
sequence with components in D. Then, for all e > 0 and
all u e Rd, the filter Xt (Yt) defined in (3) satisfies

1) E( (-X tL(Y)) E 1(XtL UTYt))
Li Li~~~~

{otg h), and
n

2) Pr ( Z(xt-
Ln

Xt (YL))2 -1 L(t
t=l

uTY t)2

>c+0O(g )) < a,exp( na2)

where Ca1,Ca2 are positive and depend on c,M,K, and d.

III. PROOF OF THE MAIN RESULT

The first part of the theorem implies that, as n increases,
our scheme can perform essentially as well as any d-th order
linear filter, including u, and thus achieves the benchmark (2).
Moreover, the second part implies that the probability of our
scheme's (time) average square error exceeding that of any

'Also, 0(.) term in the theorem is independent of xl.
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d-th order linear filter is exponentially small in n. Although
the second result is much stronger, we will focus on proving
the first part, since the proof of the second part follows from
the ingredients developed in this section. The detailed proof
of the second part will be given in [19].
To prove the first part, we need three lemmas as intermediate

steps. The main idea is to convert the problem into a prediction
problem as in [11], and then upper bound the regret, i.e., the
performance difference between our scheme and any fixed d-th
order linear FIR filter. Lemma 1 enables this conversion with
a parallel argument as in [11]. Lemma 2 and Lemma 3 give
the explicit upper bound on the regret. Lemma 2 resembles
the steps in [13] and [16, Chapter 11.7], and the use of the
law of large numbers in Lemma 3 is similar to [10].

Before proceeding, we make following definition.
Definition 1: For any u e Rd, define

(a) =t(U)A (Yt uTYt)2 + 2uTc
(b) Lo(u) = U 2, Lt (u) = LtL 1 (u) + ft (u)
We can interpret ft (u) as a loss incurred by a mapping u at
time t. Then, consider our first lemma.
Lemma 1: For all x° e D', and for any weight vector

Wt- 1 Rd, which is or(yt 1)-measurable,
n n

{(Xt -w[TYt) Z- LLt(Wt_) 2}}
~~~L1 Lin>

is a {Yn}-martingale
Proof: Fix Xn C Dn. Then, for all 1 < t < n, 2

E[(xt- wT Yt)2yt 1]

=E[(X2 -2xtwT 1Yt + wT 1YLYtWt_L ) Y ]

E[{(Y WT1Yt)2 + 2wT 1C _ 2 }yt-1] (5)

where (5) follows from the independence of Yt and yt-1,
and wt-1 e o(yt-L1). The condition wtL 1 or(Yt-L1) is
crucial to have the above equality. From (5), we can see that
the sequence {(Qt wTYt)2 -{t(Wt 1) _ o2}1}t> is a
martingale difference sequence with respect to {Yt}t> , and
the lemma is proved. m
From Lemma 1, for any filter of the form Xt (yt)

w[T Yt, where wt-,1 o(yLt-1),

Now, viewing from a prediction perspective as in [11], wt 1
can be thought of as a prediction of a linear mapping for time
t based on yt-1, and ft(wtL1) is the corresponding loss.
Continuing this view, Et= 1 {t (wt 1) -ft (u) } is a differ-
ence between the cumulative loss incurred by the predictor
{wttj1t>j and a constant predictor u. Hence, for fixed u C
Rd, if we find some specific predictor {wtil}t>1 to bound
the expectation of the difference, i.e., (7), with O(log n), then
we are done. To do this, we consider

Lt (u)
t t t

u (I+ YiY )u-2u (Z{YiY, c})+zY
i=l i=l i=l

which we can easily get from Definition 1. Lt(u) is a strictly
convex function in u for all t, since the Hessain matrix

t

A A (I+ZYcY) CRdxd, for t >O,
i=l

is positive definite for all t. Then, define our filtering coeffi-
cient wt, or the prediction for time (t + 1), as

wtL- arg min Lt(u) = AtL(Y{YiY
uC Rd \L

iil
(8)

which is the same as (4).3 This looks similar to the follow-the-
leader in the prediction literature [9][10] except for the ridge
term I in At, which prevents AL-1 from diverging. With this
definition, here is the next step to bound (7).
Lemma 2: Consider the filtering coefficient in (8). Then,

(a) wt satisfies the recursion

Wt Wt 1-AL{-(wA' 1Yt

(b) For all u CRe, we have
n

LWt(wt-Li) - tL(U)}
t=l

-Yt)Yt + C}.

n

< IU 12 + 1(Wt_l Wt)TAt(Wt-L
t=l

wt).

n

t=l

n

._t(yl))2) = E I:fft(wt-1)
t=l

721}) (6)

holds. Since Lemma 1 will also hold for any constant weight
vector u C Rd, we have for any wt-L C o (yt 1),

n

E ( (xL
t=l
n

-E(Z{L(Wt- i)
t=l
n

-E(Z{L(wt- i)
t=l

n

Xt(Yl))2) -E((xt
t=l

u 7

n

a2}) -E(Z{ t (u)
t=l

YL) 2)

_ 2})

(7)

2Throughout the paper, equalities and inequalities between random vari-
ables should be understood in almost sure sense.

(c) Let Rt = wT Yt- Yt. Then,

lRtl < (1 + (t 1)cI2)A1(AL 11) lYtL
Proof:
(a) This follows from the definition (8) and simple algebra.
(b) From Definition 1, ft (u) Lt (u) -Lt 1 (u) = {Lt (u)-
Lt(wt)}+{Lt(wt)-LtL 1(u)} and t(Wt-L 1) L{t(Wt- 1)-
Lt(wt)} + {Lt(wt) -LtL 1(wt )}. Hence,

ft(wt-L ) -t(U)

={Lt(wt ) -Lt(wt)} {Lt(u) -Lt(wt)}
+{Lt-L(u) -Lt-L(Wt-L)},

3Calculating At-1 will take complexity of O(d2), not O(d3), due the
matrix inversion lemma At = A-', - (A-_lYt)(AIjYt)T /(1 +
YTA11Yt)
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which leads to
n

Ef t (wt- 1 ) - ft (u)}
t=1

{o (u) Lo(wo) Ln (u) -Ln(w2n)} (9)
n

+ {Lt(wt- ) -Lt(wt)}
t= 1

n

<llul2 + Z{Lt(wt-i)-Lt(Wt)} (10)
t=1

The inequality in (10) holds since Ln(wn) < Ln(U) for all
u e Rd. Now, since Lt(u) is convex, and wt is its minimizing
argument, VLt (wt) = 0. Following some algebra, we obtain

Lt(Wt- 1) -Lt(Wt)
=Lt(wt-i) -Lty(Wt) _(Wt_ 1_ Wt)T VLt(wtL )
=(Wt1 -Wt)TAt(wt --wt),

which proves the lemma.4
(c) The bound can be obtained by following inequalities.

Rt = 1(wt-el)Yt
t-1

= (A- 11 ( ZYiYFT _ 72_}
i=l

< (1 + (t 1)(72) )A-ljel * II

=(1 + (t -)cr2)Ai(At-1) .11

-At-,)el) Yt|

llYt

Ytl,

(1 1)

(12)

(13)

(14)

where (11) is from the definition (8), (12) is from Cauchy-
Schwartz inequality, (13) is from the definition of matrix norm,
and (14) is from the fact that A-' is a symmetric matrix. U

Using Lemma 2, we can upper bound (7) for wt in (8) as,
n

(7) <1lUll2 + E( E(Wt_-iwt)TAt(wt_-1 wt))
t=1
n

U 2+E({RtYt + C 1TAl{RtYt + c})
t=L

Pr(tPr('EYiYi - ('
iil

<2d2 exp -t C)

where C = M2(M+2K)2d4

j72 i+Z T> )

1=

Proof:
(a) This follows immediately from the interlacing inequality
for eigenvalues [18, Theorem 4.3.1], and the fact that Y,YT
is a rank-i, positive semidefinite matrix.
(b) By the choice of the vector, every element in each vector
Yi is independent of every other element within the vector and
also independent of elements in vectors with different indices
i. Thus, we can apply the law of large numbers for each

element of the matrix l/t Eil YiYf, and use Hoeffding's
inequality [16] to get an explicit probability bound.

Denoting the matrix
it t

we have

Pr(|Wtt' 1> I) < E Pr( (Wt')ab > d2)'
1<a,b<d

where (Wt')ab
Define also Ni

t

i=1

(16)

denotes the ab-th entry of the matrix Wte.
= Nl+di. Then,
I t t 2 t

iil iil iil

and by the law of large numb

(t, ENiNi')aj
ii1

ers,

72 a.s.,if a= b
0 a.s., if a b J

It
Qt ZXiNT) ->0 a.s. for all a,b

i=1

Since xt's and Nt's are all assumed to be bounded, we can
apply Hoeffding's inequality to get the bound,

I tn

<K Ull2 + E(Z(RtYtl + (72)2Al(At ))
t=l

(15)

Since llu l2 is a constant for fixed u, now our goal becomes
to show that the expectation in (15) is upper bounded by
O(logn). By the inspection of (15), and from Lemma 2(c)
and Yt < d(K + M), we can see that this will be true
if A1(At 1) behaves in the order of 1 with sufficiently high
probability. To get this, we need following lemma.
Lemma 3: Denote Kt = YY[T, and Ktld
Z-1 Yl+diY±+di. Then,

(a) Ad(Kt) > Ad(Kt/d) a.s.
(b) Let t = Lt/di, Y, = Yl+id, and xi Xl+id. Then, for

any e > 0,

4The argument for this part almost coincides with that of [16, Chapter 11.7]
which uses Bregman divergence and potential functions. The difference is the
constant vector c in the definition of ft (u), but it hardly affects the argument.

Pr( ((t ZNN[ + 2XiN })ab
i=i

((7 1)ab > d2)

<2exp (-M2(M+2K)2d4t)'
which, combined with (16), gives

S Pr (|(Wt/)ab > d) < 2d2 exp (
1<a,b<d

t'c)

and completes the proof. U
This lemma is helpful not only in getting the upper bound

on the regret, but also in showing that, like [10] and unlike
[11], the randomization of the filter is not necessary. Finally,
we can prove our main theorem.
Proof of Theorem 1: In [17, (2.2)], we can find the inequality

max min Aj
Q.

- d < d+2 Glid lA-B,-d GAB AB
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where {Aj}l<j<d and {ii}1<i<d are the e
d-by-d matrices A and B, respectively, a
maxi,j( aij bijl). From this, we can deduce t

lAd(A) -Ad(B)| < FAB IA -B 11

where FAB = d+2 A , i.e., the minimum e
Lipschitz continuous function of the elements
Now, let us denote the event Et { :

Then, if w e Etl, we have

1 1

t-Ad( >Ad ( 2I + t Tiitl
1 t=

>a2 _ EF

where F d±+2 {max(K2 + -2, M2)}1 1- ld,
(17), and (19) is from the fact that l/t' EZt xi
semidefinite. Since F is finite, we can always m
0 by choosing E sufficiently small. Consequ(
continue the chain of inequalities for the expec

n

E J(( Rt |IYt 11 + g2)2>A(At-1)
t=1
n2

<E (Z( Yt11 (I + t72)2A(A-1) +1) 2) l

t=o

E(Zo ytY~ ( + t(72) 21
tt=O I1+Ad(Kt) I++Ad(KI
n~yt~~(1+Ltu2) }2+d(K<E {: 1 + Ad(Kt/d) } I + AdZ(KIt=o

Ln/dj
< S (2d {o2 + Yt (1 + d(72t )}2) exp(
to=
Ln/dj ~ Yt~(1+ du72t') 2

+ 5 d{72 + I+ (Or2+EF)t fI +(?2
to0

where (20) is from Lemma 2(c), Amax(At-11)
and adding one more term in the end, (21) is
3(a), and (22),(23) is from Lemma 3(b), (19)
Since Yt < d(K + M), and >Z7°-o tke-t,
k > 0,oa > 0, (22) is upper bounded by a c

En (b±Ct)2 nbthe fact tn=O (1+at)3 < b + fjl 1+ax)3dx <

a, b > 0, upper bounds (23) by O(log n). The
u e Rd, we have

n

E (X (S- (Yt )2t=i
< ~u 2 +O0(logn),

n
E ( L(x-
t=l

and by dividing both sides of (24) by n, the fi
theorem is proved.
The second part of the theorem can also

careful application of the above lemmas, i.e,
the concentration of bounded martingales in I

igenvalues of
ilnd GAB =

hat

'~ (17)

.igenvalue is a
Df the matrix.

the exponential decaying probability of Lemma 3. From the
second part, we can also deduce

n 1 n

lirnsup (.(xt Xt (yt))2 minm (xt Tyt)2 < O

almost surely. The details will appear in [19]. U

IV. CONCLUSION AND FUTURE WORK

l <cJl6 * We have constructed a competitive on-line filtering algo-
rithm that competes with the best linear FIR MMSE filter
for every bounded individual underlying signal with regret

EF (18) decaying in the order of O(log n/n). The concentration result
of average square error of our scheme has also been estab-

(19) lished. Future work will be dedicated to extend our scheme
to compete with a broader expert class, e.g., piecewise linear

(18) is from filters as in [15]. Also, seeking a more general relationship

ixT is positive between filtering and prediction as in [11] for the case of
ake a22_ F > real-valued observations is another natural direction for future

ently, we can work.
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