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Abstract- We consider a family of channels, collectively re-
ferred to as the 'chemical channel', which generalizes the trap-
door channel. We show that the feedback capacity of the chemical
channel can be cast as the solution to a dynamic programming
(DP) problem. We obtain numerical values for the feedback
capacity of the chemical channel by approximating the solution
of the DP problem using value iteration. For the special case of
the trapdoor channel, by solving the DP problem analytically,
we prove that the feedback capacity of the trapdoor channel is
the logarithm of the golden ratio. Further, we describe a simple
scheme that achieves the capacity of the trapdoor channel. The
scheme has zero probability of error, which allows us to conclude
that the logarithm of the golden ratio is also the zero error
capacity of the chemical channel.

I. INTRODUCTION

The trapdoor channel, depicted in Figure 1, was introduced
by Blackwell in 1961 [1] as a "simple two-state channel". This
channel is discussed in detail in the book by Ash [2], which
features it on its cover.
The channel behaves as follows. Balls labeled 'O' or '1' are

used to communicate through the channel. The channel starts
with a ball already in it. To use the channel, a ball is inserted
into the channel by the transmitter, and the receiver receives
one of the two balls in the channel with equal probability. The
ball that does not exit the channel remains inside for the next
channel use. Simple as it may be to describe, the capacity of
the trapdoor channel remains an open problem after more than
45 years [1].
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Fig. 1. The trapdoor(chemical) channel.

The chemical channel has the same structure as the trapdoor
channel but, rather than being equal to 1/2, the exit probability
of a ball depends on whether it was the first of the two balls
to enter the channel, and on its color (a precise description of
this channel is given in the next section).
The name "chemical channel" suggests a physical sys-

tem in which the concentrations of chemicals are used to
communicate, such as might be the case in some cellular

biological systems as shown by Berger [3]. The transmitter
adds molecules to the channel, and the receiver samples
molecules randomly from the channel. The trapdoor channel
is the most basic realization of this type of channel: it has
only two types of molecules, all the molecules in the channel
are equally likely to exit, and the concentration can only be
one of {0, 0.5, 1 } or, equivalently, only one molecule remains
in the channel between uses.

In this paper we study the capacity of the chemical channel
with perfect feedback. After concretely describing the channel
model and some preliminaries in Section II, we develop
in Section III a dynamic programming (DP) framework to
evaluate the capacity. We then use this framework in Section
IV to obtain numerical values for the feedback capacity of
the chemical channel by approximating the solution of the
DP problem using value iteration. For the special case of
the trapdoor channel, we solve the DP problem analytically
in Section V, thereby proving that the feedback capacity of
the trapdoor channel is the logarithm of the golden ratio.
In Section VI we describe a simple scheme that achieves
the capacity of the trapdoor channel. The scheme has zero
probability of error, which we argue in Section VII to imply
that the logarithm of the golden ratio is also the zero error
capacity of the chemical channel. We conclude in Section VIII
with a summary of our findings and a related future research
direction.
A preliminary account of some of our results was given

in [4], where we have shown that the feedback capacity of
the trapdoor channel is the logarithm of the golden ratio. The
novelty of the present paper is on several levels. For one thing,
we extend the scope of consideration to the chemical channel,
of which the trapdoor channel is a special case. No less
importantly, unlike the scheme in [4], the capacity achieving
scheme for the trapdoor channel that we describe here is error
free (zero probability of decoding error), while neither encoder
nor decoder need to know the initial state. This scheme allows
us establish the logarithm of the golden ratio as the zero error
capacity not only of the trapdoor channel, but of the chemical
channel as well.

II. CHANNEL MODELS AND PRELIMINARIES

The chemical channel can be represented as a finite state
channel (FSC). An FSC [5, ch. 4] is a channel that, for each
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time index, has one of a finite number of possible states,
st-1, and has the property that p(yt,stxt,st l,yt1) =

p(yt,stXt,st-j). The state of the chemical channel, which
is shown in Figure 1, is the ball, 0 or 1, that is in the channel
before the transmitter transmits a new ball. Let xt C {0, 1}
be the ball that is transmitted at time t and st-, C {0, 1}
be the state of the channel when ball xt is transmitted. The
probability of the output Yt given the input xt and the state
of the channel st-, is shown in table I. For the case that
P1 = P2 = 0.5 the chemical channel is the trapdoor channel
as defined by Blackwell [1].

TABLE I

THE PROBABILITY OF THE OUTPUT Yt IN THE CHEMICL CHANNEL GIVEN

THE INPUT xt AND THE STATE st-1

11 Xt St-1T P(Yt = Olxt,st- ) P(Yt = IlXt,st-1)I)
o o 1 0
o 1 Pi 1 -p
I1 0 P2 1 -P2
I1 1 0 1

The chemical channel has the property that the next state
st is a deterministic function of the state st-1, the input xt,
and the output Yt. For a feasible tuple, (Xt, Yt, st 1), the next
state is given by the equation

St = st_1 XXt yyt, (1)

where e denotes the binary XOR operation.
Because of this property, we consider only the family of

FSCs known as unifilar channels, as considered by Ziv [6]. A
unifilar FSC has the property that the state st is deterministic
given (st 1, xt, yt). We also define a strongly connected FSC,
as follows.

Definition 1: A finite state channel is strongly connected if
for any state s there exists an integer T and an input distri-
bution of the form {p(Xt st_1)}fT such that the probability
that the channel reaches state s from any starting state s', in
less than T time-steps, is positive. I.e.

T

ZPr(St = s|So = s') > 0, Vs C S,Vs' C S. (2)
t=l

We assume a communication setting that includes feedback.
The transmitter (encoder) knows at time t the message m and
the feedback samples yt-1. The output of the encoder at time
t is denoted by xt and is a function of the message and the
feedback. The channel is a unifilar FSC and the output of the
channel Yt enters the decoder (receiver). The encoder receives
the feedback sample with one unit delay.

III. FEEDBACK CAPACITY AND DYNAMIC PROGRAMMING

Based on the upper and lower bounds on the feedback
capacity of FSCs derived in [7], the following is proved in
[8].
Theorem 1: The feedback capacity of a strongly connected

unifilar FSC when initial state so is known at the encoder and
decoder can be expressed as

CFB
N

sup lirninf {EI(Xt,St- 1; Yt Yt-1)
{p(xtlst 1,yt 1)}t> 1 -~00N

=

(3)
where {p(xt st- 1 yt-1)}t> 1 denotes the set of all distribu-
tions such that p(xtlyt 1 t-1St-1) = P(xt st t- ) for
t= 1,2,....
By using this theorem we can formulate the feedback

capacity problem as an average-reward dynamic program.

A. Dynamic Programs

Here we introduce a formulation for average-reward dy-
namic programs. Each problem instance is defined by a
septuple (Z, U, W, F, P , Pw, g). We will explain the roles of
these parameters.
We consider a discrete-time dynamic system evolving ac-

cording to zt F(Zt 1z_, Ut, Wt), t > 1, where each state zt
takes values in a Borel space Z, each action ut takes values
in a compact subset U of a Borel space, and each disturbance
wt takes values in a measurable space W. The initial state zo
is drawn from a distribution Pz. Each disturbance wt is drawn
from a distribution Pw( zt-1, ut) which depends only on the
state zt-1 and action ut. All functions considered in this paper
are assumed to be measurable, though we will not mention this
each time we introduce a function or set of functions.
The history ht = (zo, wo, ... , Wt- ) summarizes informa-

tion available prior to selection of the tth action. The action ut
is selected by a function /1t which maps histories to actions.
In particular, given a policy w = {,ui, 12,....}, actions are
generated according to ut = Ht(ht).
We consider an objective of maximizing average reward,

given a bounded reward function g: Z x U -> . The average
reward for a policy w is defined by

p= liminf N{E {(ZZt t+±l(ht+±))}

where the subscript w indicates that actions are generated by
the policy = (/1, /12,...). The optimal average reward is
defined by p* sup, p,.

B. The Bellman Equation

An alternative characterization of the optimal average re-
ward is offered by the Bellman Equation. This equation offers
a mechanism for verifying that a given level of average
reward is optimal. The following encapsulation of the Bellman
equation, which can be found in [9], will be of later use.

Theorem 2: If p C R and a bounded function h Z3 - R
satisfy for all z C Z

p + h(z) = sup (g(z, U) + J PW(dw z, u)h(F(z, u, w)))
tlEU

(4)
then p = p*. Further, if there is a function p, Z iiU such
that ,u(z) attains the supremum for each z then p- = p* for
X = (p.,op, ....) with/t(ht) = /(zt-1) for each t.
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It is convenient to define a dynamic programming operator T
by

(Th)(z) = sup g(z, u) + J P (dw z, u)h(F(z, u, w))

for all functions h. Then, Bellman's equation can be written
as pl+h=Th.

C. Feedback Capacity as a Dynamic Program

We will now formulate a dynamic program such that the op-
timal average reward equals the feedback capacity of a unifilar
channel as presented in Theorem 1. This entails defining the
septuple (Z, U, W, F, Pz, P, g) based on properties of the
unifilar channel and then verifying that the optimal average
reward is equal to the capacity of the channel.

Let St denote the IS -dimensional vector of channel state
probabilities given information available to the decoder at time
t. In particular, each component corresponds to a channel state
st and is given by dt(st) Ap(st yt). We take states of the
dynamic program to be zt =t. Hence, the state space Z is
the IS -dimensional unit simplex. Each action ut is taken to
be the matrix of conditional probabilities of the input xt given
the previous state st-, of the channel. Hence, the action space
U is the set of stochastic matrices of dimension S x X.
The disturbance wt is taken to be the channel output Yt. The
disturbance space W/V is the output alphabet Y.
The initial state distribution Pz is concentrated at the

prior distribution of the initial channel state so. Note that
the channel state st is conditionally independent of the past
given the previous channel state st-1, the input probabilities
ut, and the current output Yt. Hence, dt(st) = p(styt)
p(st dt-1, ut, Yt).

The distribution of the disturbance Wt is
P(Wt z` 1, wt- 1 Ut) p(wt zt- 1, ut). Conditional
independence from zt- 2 and wt-1 given zt-1 is due to
the fact that the channel output is determined by the previous
channel state and current input.
We consider a reward of I(Yt; Xt, St-,1yt-'). Note that the

reward depends only on the probabilities p(xt, Yt, st- i yt 1)
for all xt, Yt and st-1. Further,

p(xt, Yt, St-i Y-1)
Recall that p(yt Xt, st-1) is given by the channel model.
Hence, the reward depends only on !3t-i and ut.

Given an initial state zo and a policy w = (p1i /P2,*)
Ut and St are determined by yt- 1. Further, (Xte St-1, Yt) is
conditionally independent of yt-1 given St-l as shown in (5).
Hence,

g(zt- , tut) = I1(Yt; Xt: St_l lyt- 1) = I1(Xt, St-l1; Yt |l1t-1, ut).
(5)

It follows that the optimal average reward is

p*= sup limNiEf1 l I(Xt, St 1;Yt yt 1) CFBN 7 )

The dynamic programming formulation that is presented
here is an extension of the formulation presented in [10] by
Yang, Kav6ic and Tatikonda. In [10] the formulation is for
channels with the property that the state is deterministically
determined by the previous inputs, whereas here we allow the
state to be determined, in addition to the previous inputs, also
by the previous outputs.

IV. COMPUTING THE FEEDBACK CAPACITY

In this section we briefly describe some results of computing
the feedback capacity of the chemical channel by solving
the dynamic program using value iteration. This computation
generates a sequence of iterates according to

Jk+l = TJk, (6)

initialized with Jo = 0. For each k and z, Jk (z) is the maximal
expected reward over k time periods given that the system
starts in state z. Since rewards are positive, for each z, Jk (Z)
grows with k. For each k, we define a differential reward
function hk (z) A Jk (z) -Jk (0). These functions capture
differences among values Jk (z) for different states x.

Figure 2 shows the capacity of the chemical channel as a
function of two parameters. The left plot depicts the capacity
as a function of the parameter Pzero, which is the probability
that the ball of type 'O' will exit if in the channel the other
ball is of type '1'. The parameter Pzero implies that the
probabilities P1, P2 in Table I both equal pzero-
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Fig. 2. Capacity of the chemical channel as function of two parameters.

The right plot depicts the capacity as a function of the
parameter Pswitch, which is the probability that the ball that
just entered will exit. The parameter Pswitch implies that the
probabilities P1,P2 satisfy P1 = 1 -P2 = Pswitch. If we
interpret the chemical channel as a permutation channel [11],
as seen in Figure 3, then Pswitch is the probability of switching
two adjacent balls.

Pswttch Pswttch Pswttch Pswttch Pswttch Pswttch

VIV v~ VV V

10 0 1 0 1 0
Fig. 3. The chemical channel as a permuting channel. Going from left to
right, there is a probability Pswitch that two adjacent bits switch places.
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V. FEEDBACK CAPACITY OF THE TRAPDOOR CHANNEL

For the case where Pzero = Pswitch = 0.5, which is the
trapdoor channel, the results in the previous section, obtained
from value iteration, gave an approximate value of 0.694,
which is suspiciously close to logo 0.6942, whereq=
s2 the golden ratio [12]. One context in which the golden

ratio comes up is the entropy rate of the binary Markov chain
with transition matrix

p [-P p] (7)

The entropy rate of this chain is given by H(p) It is readily1±p.
checked that max0<p< H( log q, the maximizing value

being p = 22
We will now show that log q is indeed the capacity of the

trapdoor channel by analytically solving the dynamic program.
Consider the following policy associated with the Markov
chain in (7): The state of the Markov process indicates whether
the input to the channel will be the same or different from the
state of the channel. In other words, if at time t the binary
Markov sequence is '0' then the input to the channel is equal
to the state of the channel, i.e. xt = st-1. Otherwise, the
input to the channel will be the complement to the state of the
channel, i.e. xt = st-,1 1. This scheme uniquely defines the
distribution p(xt St- 1 t- 1):

PCXt = St-i iSt- Ytt-1) 1 if St-1 # Yt-1.

(8)
This policy led us to the construction of the function h(z) for
z C [5 -2, 3 - 5] described as follows:

H(z) -pz +C2,

1,

H(z) +pz +-cl,

5 - 2 < z <
3 -\5/

5- 2<z<3_

2
3 --f5- f5 -1

2 2
-f5-

<z< 3 -V'5
2

functions satisfying ho(z) = h(z) for z C [/5- 2, 3- v5],
where h(z) is defined in (9). Let hk+l(z) = (Thk)(z) -p,
and

h* (z) A lim sup hk (Z). (10)

It can be shown that the limit supremum is in fact a limit and
that the convergence is uniform. These facts, along with the
definition of h, allow to verify the following.

Theorem 3: The function h* and scalar p satisfy p1+ h*
Th*, where p = log Q.
By Theorem 2, this proves that log X is the trapdoor channel
feedback capacity.

VI. ERROR-FREE CAPACITY-ACHIEVING SCHEME

We begin with a description of a simple encoder and
decoder pair that provides error-free communication through
the trapdoor channel with feedback and known initial state,
at any rate below capacity. We will then enhance it to a zero
error scheme where neither encoder nor decoder need to know
the initial state.

A. Encoding

Each message is mapped to a unique binary sequence of
N actions, XCN, that ends with 0 and has no occurrences of
two l's in a row. The input to the channel is derived from the
action and the state as Xk = rk k -1-

B. Decoding

The channel outputs are recorded differentially as, Yk
Yk e Yk -1, for k = 2, ..., N. Decoding of the action sequence
is accomplished in reverse order, beginning with xCy = 0 by
construction. It can be verified, by exhaustively considering all
the possibilities, that if k±+1 is known to the decoder, xk can
be correctly decoded. Since sN iS known by the decoder (to
be 0), this implies that, going in reverse, the decoder obtains
the whole channel input sequence error free.

Decoding example. Table II shows an example of decoding
a sequence of length N = 4.

where cl = log(3 -5), c2 = log(5 -1) andp log 1+2N.
The function h is continuous and symmetric around z = 0.5.

A. Verification
According to Theorem 2, to verify that the trapdoor feed-

back capacity is indeed log , it will suffice to establish the
existence of h(z) that solves the Bellman equation (4) for
the trapdoor channel with p* = logo. The main obstacle
for making this verification is the fact that h(z) exists only
for z C [5- 2, 3 - ], and in order to verify Bellman
equation we need a candidate function defined for the whole
range z C [0, 1].
We solve the problem by constructing a sequence of func-

tions hk(z), k = 0, 1, 2... that has the property that hk(z) =

h(z) for all k > 0, z C [5- 2, 3 - ], and that converges

uniformly to a function h*(z) that solves the Bellman equa-

tion. Let ho(z) be the pointwise maximum among concave

TABLE II

DECODING EXAMPLE

Variable Value

Yn o1110
Un *001

10

010
0010

Reason

Channel output
Differential output
Given
X4 = 0 and y4 = I
X3 zh 0 (or y3 zh 1)
Y2 0 1

C. Rate

Evidently, the number of sequences between which this
scheme can distinguish error free is the number of binary
sequences of length N -1 that have no repeating l's. Ex-
ponentially, this is readily seen to be equivalent to ON, where
q is the golden ratio. In other words, rates arbitrarily close to
log q are achievable without error.

1869

h(z)

h(z)

h(z)



ISIT2007, Nice, France, June 24 - June 29, 2007

D. Unknown Initial State

We now modify the scheme to establish error-free commu-
nication that still achieves capacity without knowledge of the
initial state.

1) Encoding: Encoding is done in three phases. Phase 1
uses the channel N times, phase 2 uses the channel three
times, and phase 3 uses the channel an additional (deter-
ministic) number of times 0(N), where 0(N) is derived
from the Fibonacci sequence and is roughly 1 s logN (i.e.

0(N) logwherIMN logI log N = 1), where b is the golden ratio. Each
message is mapped to a unique action sequence, xZk, that will
be used in phase 1.

Phase 1. The encoder assumes the initial state of the channel
is 0 and communicates according to the scheme in section
VI-A. At some point during phase 1 it is possible that the
encoder will discover that the initial state assumption was
wrong. This will happen if a ball labeled '1' leaves the channel
when according to the encoders calculation there were two
balls labeled '0' in the channel. We will call this event a
'contradiction.' If a contradiction occurs then the correct state
is known to the encoder from that point on and the encoding
continues based on the correct state.

Phase 2. If a contradiction did not occur in phase 1, then
the encoder sends three 0's. Otherwise, the encoder sends three
l's.
Phase 3. If a contradiction did not occur in phase 1, then the

encoder sends all zeros in phase 3. If a contradiction did occur
in phase 1, then the encoder knows the initial state for phase
3, so it uses the scheme from Section VI-A to communicate
the index of the contradiction. The indices 1 through N are
assigned to unique admissible action sequences.

2) Decoding: Decoding begins with phase 2 and finishes
with phase 1, where the message is discovered. In the case of
no contradiction, phase 3 is skipped and phase 1 is decoded
according to section VI-B.
Phase 2. The decoder notes that a contradiction occurred

(three 1's were sent) if and only if two or more 1's were
received at the output in phase 2.

Phase 3. If a contradiction occurred, then the index of the
contradiction is decoded as explained in section VI-B.

Phase 1. It is not hard to show that if a contradiction
occurred at index m, then xZk can be correctly decoded by first
changing ym to its complement and then decoding according
to Section VI-B.

3) Rate: The number of unique input sequences distin-
guishable with zero-error is as in the original scheme. The
number of channel uses is now N + 3 + 1 log N, which is
still N + o(N) so this scheme too asymptotically achieves the
rate log Q.

VII. ZERO-ERROR CAPACITY OF THE CHEMICAL
CHANNEL

The zero error feedback capacity is the same for all chemical
channels with parameters 0 < P1 < 1 and 0 < P2 < 1,
since they all share the same set of channel realizations that

have positive probability. Denote this capacity by CZE. Note
that on the one hand CZE < log q since log q was seen
in Section V to be the Shannon (as opposed to zero-error)
feedback capacity of the trapdoor channel which cannot be
smaller than its zero error capacity. On the other hand, the
scheme of the previous Section achieves rates arbitrarily close
to log q with zero probability of error, implying CZE > log Q.
We conclude then that CZE = log Q.

VIII. CONCLUSION AND FURTHER WORK

The feedback capacity of the chemical channel was shown
to be expressible as an average-reward dynamic program,
which allowed us to evaluate it by using a value iteration
algorithm. For the trapdoor channel, which is a special case
of the chemical channel, by analytically solving the dynamic
programming problem we showed that the feedback capacity
is the logarithm of the golden ratio. A simple scheme that
achieves this capacity with zero decoding error probability
was described, and allowed us to deduce that the logarithm
of the golden ration is also the zero-error feedback capacity
of the chemical channel.

Perhaps most imminent among the several directions in
which this work can be extended is that of finding an analytic
solution for the Shannon feedback capacity of the chemical
channel at values of (P1, P2) other than (1/2, 1/2).
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