
Approximations for the Entropy Rate of a Hidden
Markov Process

Erik Ordentlich∗ and Tsachy Weissman†1,
∗Hewlett-Packard Laboratories, Palo Alto, CA 94304, U.S.A., eord@hpl.hp.com

†Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA, tsachy@stanford.edu

Abstract— Let {Xt} be a stationary finite-alphabet Markov
chain and {Zt} denote its noisy version when corrupted by a
discrete memoryless channel. We present an approach to bound-
ing the entropy rate of {Zt} by the construction and study of a
related measure-valued Markov process. To illustrate its efficacy,
we specialize it to the case of a BSC-corrupted binary Markov
chain. The bounds obtained are sufficiently tight to characterize
the behavior of the entropy rate in asymptotic regimes that
exhibit a “concentration of the support”. Examples include the
‘high SNR’, ‘low SNR’, ‘rare spikes’, and ‘weak dependence’
regimes. Our analysis also gives rise to a deterministic algorithm
for approximating the entropy rate, achieving the best known
precision-complexity tradeoff, for a significant subset of the
process parameter space.

I. INTRODUCTION

Let {Xt} be a stationary Markov chain and {Zt} denote
its noisy version when corrupted by a discrete memoryless
channel. The components of these processes take values,
respectively, in the finite alphabets X and Z . We let K denote
the transition kernel of the Markov chain, i.e., the |X | × |X |
matrix with entries K(x, x′) = P (Xt+1 = x′|Xt = x). C
will denote the channel transition matrix, i.e., the |X | × |Z|
matrix with entries C(x, z) = P (Zt = z|Xt = x) . {Zt} is
known as a Hidden Markov Process (HMP). Its distribution
and, a fortiori, its entropy rate which we denote by H(Z),
are completely determined by the pair (K, C). However, the
explicit form of H(Z) as a function of this pair is unknown,
and is our interest in this work.

Hidden Markov Processes (HMPs) arise naturally in many
contexts, both as information sources and as noise (cf. [6]
and references therein). Key questions in lossless and lossy
compression [9], [10], and in channel coding [5], [16], [13],
reduce to finding the entropy rate H(Z) .

Let M(X ) denote the simplex of distributions on X and
βt be the M(X )-valued random variable defined by βt(x) =
P (Xt = x|Zt

−∞) , where βt(x) denotes the x-th component
of βt. We refer to {βt} as the “belief process”, as it represents
the “belief” of an observer of the HMP regarding the value of
the underlying state. Conditional independence of Xt+1 and
Zt
−∞ given Xt implies that P (Xt+1 ∈ ·|Zt

−∞) = βt · K, in
turn implying, by the memorylessness of the noise, P (Zt+1 ∈
·|Zt

−∞) = βt · K · C. With H(Q) denoting the entropy of a
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distribution Q on Z , we obtain

H(Z) = H(Zt+1|Zt
−∞) = EH (βt · K · C) . (1)

Evidently, the distribution of βt holds the key to the value
of the entropy rate. This distribution, however, shown by
Blackwell in [3] (cf. also [18, Claim 1]) to satisfy an integral
equation, remains elusive to date even for the simplest HMPs.
Additional perspectives by which the hardness of the problem
can be appreciated pertain to Lyapunov exponents [1], [21],
[12], [13] and to statistical physics [24], [15], [22].

Given the hardness of the problem, the predominant ap-
proach to the study of the entropy rate has been one of
approximation, via both deterministic bounds [4, Section 4.4],
and Monte Carlo simulation (cf. [12] and references therein).

Useful as these techniques may be from a numerical
standpoint, they lack the capacity to resolve basic questions
regarding the dependence of the entropy rate on the Markov
transition kernel and the channel parameters. First steps to-
wards the resolution of such questions have only recently been
taken: Continuity of the entropy rate in the parameters was es-
tablished by [12]. Expansions of the entropy rate for the BSC-
corrupted binary Markov chain in the “high SNR” regime,
where the channel crossover probability is small, have been
obtained in [14], [18], [24], [19]. Initial results on the behavior
in various additional asymptotic regimes such as “rare-spikes”,
“rare-bursts”, “low SNR”, and “almost memoryless”, were
obtained in [18]. In this submission we present tighter bounds
and finer characterizations of the entropy rate, by refining the
idea behind the bounds of [18].

The gist of our approach is the following, which is an
immediate consequence of (1):

Observation 1:

min
β∈S

H (β · K · C) ≤ H(Z) ≤ max
β∈S

H (β · K · C) ,

where S denotes the support of βt.
Trivial as this observation may seem, it was seen in [18] to
lead to useful bounds in cases where bounds on the support set
S are obtainable, and this set is significantly smaller than the
whole simplex M(X ), a situation referred to as “concentration
of the support”. We now note that the bounds of Observation
(1), which depend on the distribution of βt through its support
only, can be refined by partitioning S into subsets:



Observation 2: For any countable collection {Ii} of pair-
wise disjoint sets Ii ⊆ M(X ) covering S

∑
i

P (βt ∈ Ii) inf
β∈Ii

H (β · K · C) ≤ H(Z) ≤

∑
i

P (βt ∈ Ii) sup
β∈Ii

H (β · K · C) . (2)

Since the distribution of βt is unknown, P (βt ∈ Ii) will also
be unknown in general. However, for certain choices of {Ii},
and in certain regions of the space of parameters governing
the HMP, the bounds in (2) can be either explicitly evaluated
or closely bounded. This is done by constructing a Markov
process which is more tractable than the {βt} process. The
stationary distribution of this process is directly and simply
related to the distribution of βt. The fraction of times that this
new process visits the set Ii, for appropriately chosen Ii, is
computable, a computation that can then be directly translated
to give the value of P (βt ∈ Ii). Thus, in a nutshell, the two
new ingredients that our approach involves are the bounds
on the support of the belief process, and the construction of
an alternative more tractable Markov process as a tool for
analyzing the former.

For brevity in illustrating our main ideas, we restrict at-
tention in this extended abstract to the case where {Zt} is
a BSC-corrupted binary symmetric Markov chain. The more
general case, as well as all details and proofs omitted below,
are given in [20].

In Section II we start with a concrete description of the
problem setting, and the evolution of the log-likelihood process
(equivalent to the belief process but in a more convenient
form). We then detail the construction of an alternative Markov
process, and its relationship to the original log-likelihood
process. Section III gives some details regarding the form the
bounds in (2) assume in terms of the alternative Markov pro-
cess. Using these bounds, we then derive the behavior of the
entropy rate in various asymptotic regimes. In Section IV we
describe a deterministic algorithm, inspired by the alternative
Markov process, for approximating the entropy rate. We show
that its guaranteed precision-complexity tradeoff is the best
among the known deterministic schemes for approximation
of the entropy rate, for a significant subset of the process
parameter space. We close in Section V with some concluding
remarks.

II. THE ALTERNATIVE MARKOV PROCESS

Assume henceforth the case X = Z = {0, 1}, where
the Markov transition matrix and the channel matrix are,
respectively,

K =
(

1 − π π
π 1 − π

)
, C =

(
1 − δ δ

δ 1 − δ

)
. (3)

There is no loss of generality in assuming π < 1/2 since
the argument in [18, Subsection 4-C] implies that the entropy
rate when the Markov chain is symmetric with transition
probability 1 − π is the same as when it is π. Defining

li = log βi(1)
1−βi(1)

as the log-likelihood process, the standard
forward recursions [6] are readily verified to assume the form

li = (2Zi − 1) log
[
1 − δ

δ

]
+ f (li−1) , (4)

where f(x) = log ex(1−π)+π
exπ+(1−π) . Note that f is contractive since

sup
x

|f ′(x)| = f ′(0) = 1 − 2π < 1, (5)

a property that plays a key role in proofs of results such as
Theorem 1 and Theorem 6 below.

In terms of the log-likelihood process, (1) in this setting
becomes

H(Z) = Ehb

(
eli

1 + eli
∗ π ∗ δ

)
, (6)

where hb and ∗ denote, respectively, the binary entropy
function and binary convolution.

We now construct a Markov process which, as a process, is
more tractable than the log-likelihood process {li}, but whose
stationary distribution is closely and simply related to that of
li. The benefit is that the entropy rate, which was expressed
as the expectation in (6), will be expressible as a similar
expectation involving the new process.

Theorem 1: Consider the 1st-order Markov process
{Yi}i≥0 formed by letting Y0 = Y , and {Yi}i≥1 evolve
according to

Yi = ri log
1 − δ

δ
+ sif(Yi−1), (7)

where {ri} and {si} are independent i.i.d. sequences, inde-
pendent of Y , with

ri =
{ −1 w.p. δ

1 w.p. 1 − δ,
si =

{ −1 w.p. π
1 w.p. 1 − π.

(8)

Then:

1) [Existence and uniqueness of stationary distribution:]
There exists a unique (in distribution) random variable
Y under which {Yi}i≥0 is stationary.

2) [Connection to the original process:] L(Y ) =
L(li|Xi = 1), where L denotes the probability law.

The connection established in Theorem 1 between the HMP
and the process {Yi}, when combined with (6), can be shown
to yield:

Theorem 2: For the process constructed in Theorem 1

H(Z) = Ehb

(
eYi

1 + eYi
∗ π ∗ δ

)
. (9)

The bottom line is that we have transformed the calculation
of the entropy rate into an expectation of a simple function of
the variable Yi. It will be seen that the benefit in doing that
is that information on the distribution of Yi, which translates
via Theorem 2 to bounds on the entropy rate, can be inferred
by studying the dynamics of the process {Yi}.



III. BOUNDS ON THE ENTROPY RATE

Theorem 2 can now be used to bound the entropy rate,
by bounding the expectation on the right side of (9). The
following gives the general form of the bounds one obtains
in this way.

Theorem 3: Let {Yi} be the stationary Markov process
whose evolution is given by (7). Let {ai}M

i=1, {bi}M
i=1 be

strictly increasing sequences of nonnegative reals such that
ak ≤ bk and ak+1 > bk (i.e., the intervals [ak, bk] do not
intersect). Assume further that

⋃M
k=1[ak, bk]∪⋃M

k=1[−bk,−ak]
contains the support of Yi. Then the following are, respec-
tively, lower and upper bounds on H(Z)

M∑
k=1

P (Yi ∈ [−bk,−ak] ∪ [ak, bk])hb

(
ebk

1 + ebk
∗ π ∗ δ

)

M∑
k=1

P (Yi ∈ [−bk,−ak] ∪ [ak, bk])hb

(
eak

1 + eak
∗ π ∗ δ

)
.

Evidently, a bound of the type in Theorem 3 would be
applicable only in situations where: 1) the support of Yi is
contained in a set of the form

⋃M
k=1[ak, bk]∪⋃M

k=1[−bk,−ak]
and 2) the probabilities P (Yi ∈ [−bk,−ak] ∪ [ak, bk]) can be
computed (or bounded from above and below). To get an
appreciation for when this can happen, it is instructive to
consider first the case M = 1, for which Theorem 3 yields

Corollary 1: Let {Yi} be the process in (7). Let 0 ≤ b ≤ A
be such that [−A,−b]∪ [b, A] contains the support of Yi. Then

hb

(
eA

1 + eA
∗ π ∗ δ

)
≤ H(Z) ≤ hb

(
eb

1 + eb
∗ π ∗ δ

)
.

(10)
The lower bound of Corollary 1 is clearly optimized when
taking A to be the upper endpoint of the support of Yi. This
point is readily seen, by observation of the dynamics of the
process {Yi} in (7), to be the solution to the equation A =
f(A) + log 1−δ

δ , whose explicit form we omit. The obvious
symmetry of the support of Yi around 0 implies that −A is
the lower endpoint of the support of Yi. In particular, this
establishes that the support of Yi is contained in the interval
[−A,A]. Similarly, to optimize the upper bound, b should be
taken as the lower endpoint of this support in the positive half
of the real line. The value of this lower endpoint can similarly
be read from the dynamics of the process in (7). By symmetry,
−b is the upper endpoint of the support of Yi in the negative
half. This implies then that the support of Yi is contained in
[−A,−b] ∪ [A, b], and that we can easily explicitly compute
the smallest and largest values of A and b with this property.
Crude as the bound of Corollary 1 may seem, it was shown in
[18] to convey non-trivial information (when optimizing over
the values of A and b).

Taking one step of refinement beyond Corollary 1, when
specialized to the case M = 2, Theorem 3 can be shown to
yield:

Corollary 2: For all δ ≤ 1
2

(
1 − √

max{1 − 4π, 0}
)

,

H(Z) is lower and upper bounded, respectively, by

{(1 − δ)[π ∗ (1 − δ)] + δ[π ∗ δ]}hb

(
eA

1 + eA
∗ π ∗ δ

)
+

{(1 − δ)[π ∗ δ] + δ[π ∗ (1 − δ)]}hb

(
ea

1 + ea
∗ π ∗ δ

)
,

{(1 − δ)[π ∗ (1 − δ)] + δ[π ∗ δ]}hb

(
eB

1 + eB
∗ π ∗ δ

)

+ {(1 − δ)[π ∗ δ] + δ[π ∗ (1 − δ)]}hb

(
eb

1 + eb
∗ π ∗ δ

)
,

for all values of b ≤ a ≤ B ≤ A such that [b, a] ∪ [B,A]
contains the support of |Yi|.
The optimal values of (b, a,B,A) (smallest A, a and largest
B, b) can be obtained easily by observing the dynamics of {Yi}
in (7), similarly as detailed in the context of Corollary 1. In
fact, the optimum values of b and A are exactly those obtained
for Corollary 1, so when moving to the approximation of order
M = 2 from M = 1, it is only the new points a,B that need
be computed.

As can be expected, the bounds in Corollary 2 are consid-
erably tighter, in various asymptotic regimes, than those based
on Corollary 1. As a first example, in the “high SNR” regime
the analysis in [18, Section 5], which was based on Corollary
1, established H(Z) − hb(π) = Θ(δ), while the bounds of
Corollary 2 give, for π ≤ 1/2 and δ ↓ 0,

H(Z) = hb(π) +
[
2(1 − 2π) log

1 − π

π

]
· δ + o(δ),

a result first proved in [14], and subsequently derived in [19]
and [24].

For the “almost memoryless” regime, the bounds of Corol-
lary 2 lead to the following:

Theorem 4: For 0 ≤ δ ≤ 1/2, and π = 1/2 − ε, as ε ↓ 0

1 − H(Z) =
2

ln 2
ε2(1 − 2δ)4 + o(ε3).

This is also a refinement of a result in [18, Section 5], which
was based on Corollary 1. As a last example, in the “low SNR”
regime, Corollary 2 leads to the following:

Theorem 5: For 1/4 ≤ π ≤ 1/2, and δ = 1
2 − ε,

c(π) ≤ lim inf
ε→0

1 − H(Z)
ε4

≤ lim sup
ε→0

1 − H(Z)
ε4

≤ C(π),

(11)
where the constants c(π) and C(π) are explicitly identified as
functions of π. In particular, both c(π) and C(π) behave as
∼ 8

ln 2 (1 − 2π)2 for π → 1/2, implying that 1 − H(Z) ≈
32
ln 2 (1/2 − δ)4(1/2 − π)2 for π and δ close to 1/2.

We mention in this context that there are regimes in which
the Cover and Thomas bounds [4, Section 4.4], of any order,
will not capture the behavior of the entropy rate. For a simple
example note that, for any n,

H(Z0|Z−1
−n+1, X−n) ≤ H(Z0|X−n) = hb(π∗n ∗ δ), (12)

where π∗n denotes binary convolution of π with itself n
times. Thus, for example, in the “low SNR” regime where



π is fixed and δ = 1/2 − ε, H(Z0|Z−1
−n+1, X−n) ≤

hb(π∗n ∗ δ) = hb(1/2 − ε(1 − 2π∗n)) and, in particular,
1 − H(Z0|Z−1

−n+1, X−n) = Ω(ε2). In other words, using
H(Z0|Z−1

−n+1, X−n) to lower bound the entropy rate will give
an upper bound on the left side of (11) of order ε2, failing to
provide the true ε4 order established in Theorem 5.

The results above were given as examples for the kind
of results that are obtained via evaluation of the bounds of
Corollary 2 in the respective regimes. Corollary 2 is nothing
but a specialization of Theorem 3 to the case M = 2,
optimizing over the choice of constants ak and bk. Moving
from the bounds corresponding to M = 1 to those of M = 2
results, for various asymptotic regimes, in characterization of
higher order terms, and refinement of constants. The larger M
one takes, the finer will the bounds become, leading also to
finer characterizations in the various asymptotic regimes. The
development we have detailed for the case M = 2 scales to
any larger value of M . For example, M = 3 will correspond
to an outer bound on the support of Yi obtained by excluding
a subinterval from each of the four intervals associated with
Corollary 2 (namely [b, a], [B,A], [−a,−b], [−B,−A]). The
choice of these subintervals will be optimized analogously as
for Corollary 2 quite simply, via the dynamics of the process
{Yi} in (7). Note that it is only the endpoints of the new
subintervals that need be computed, the remaining endpoints
being identical to those evaluated for M = 2. More generally,
moving from the approximation corresponding to a value of
M to the value M +1 corresponds to discarding a subinterval
from each of the intervals constituting the outer bound of the
support obtained at the M -th level. Only the endpoints of the
subintervals that are being discarded need be computed, the
remaining ones coinciding with those already obtained in the
previous stage.

IV. A DETERMINISTIC APPROXIMATION ALGORITHM

In this section we propose a new entropy rate approximation
scheme, which is based on approximating the stationary distri-
bution of the alternative Markov process constructed in Section
II. Throughout ‘operations’ refers to arithmetic operations.

Since |f | ≤ log(1 − π)/π, from (7) it is clear
that the support of Yi is contained in the interval[
− log (1−π)(1−δ)

πδ , log (1−π)(1−δ)
πδ

]
. Let Q be an M -level

quantizer with the property that

max
x∈

[
− log

(1−π)(1−δ)

πδ ,log
(1−π)(1−δ)

πδ

] |Q(x) − x| ≤ ε. (13)

For example, a uniform quantizer with M ≥ 1
ε log (1−π)(1−δ)

πδ
levels has this property. Consider now the finite-state Markov
process (with M states) evolving with the process in (7)
according to

Ỹi = Q

(
ri log

1 − δ

δ
+ sif(Ỹi−1)

)
, (14)

initialized at time i = 0 jointly with Y0 such that the joint

process {(Yi, Ỹi)} is stationary. Then

|Ỹi − Yi| ≤ ε + |f(Ỹi−1) − f(Yi−1)|
≤ ε + (1 − 2π)|Ỹi−1 − Yi−1| (15)

≤ ε + (1 − 2π)[ε + |f(Ỹi−2) − f(Yi−2)|]
...

≤ ε
i∑

j=0

(1 − 2π)j + (1 − 2π)i|Ỹ0 − Y0|

≤ ε

2π
+ (1 − 2π)i|Ỹ0 − Y0|, (16)

where (15) follows from (5). Since this is true for all i,
stationarity implies

E|Yi − Ỹi| ≤ ε

2π
. (17)

This motivates the following approximation algorithm:
Algorithm 4.1:

Input: M,π, δ

1) Let Q denote the M -level uniform quantizer of the in-
terval

[
− log (1−π)(1−δ)

πδ , log (1−π)(1−δ)
πδ

]
and q1, . . . qM

denote the quantization levels. Let PM be the M × M
stochastic matrix whose (i, j)-th entry is given as


(1 − δ)(1 − π) if qj = Q
(
log 1−δ

δ + f(qi)
)

δ(1 − π) if qj = Q
(− log 1−δ

δ + f(qi)
)

(1 − δ)π if qj = Q
(
log 1−δ

δ − f(qi)
)

δπ if qj = Q
(− log 1−δ

δ − f(qi)
)

0 otherwise .
(18)

2) Compute stationary distribution of PM , i.e., the M -
dimensional row vector aM solving aM · PM = aM .

3) Compute entropy estimate

Ĥ =
M∑
i=1

aM (i) · hb

(
eqi

1 + eqi
∗ π ∗ δ

)
. (19)

Output: Ĥ .
Note that Ĥ in (19) is nothing but the expression
Ehb

(
eỸi

1+eỸi
∗ π ∗ δ

)
, where {Ỹi} is the quantized process

defined in (14) (initialized at its stationary distribution). One
brute force method [8] for finding the stationary distribution
of an M × M stochastic matrix is via Gaussian elimination
(2M3/3 operations), back substitution (M2 operations), and
normalization (M operations). Since the remaining steps in
the algorithm require O(M) operations, the overall number of
operations required is O(M3). The bound in (17) and the fact
that hb(ε) ∼ ε log(1/ε) can be seen to imply that the resulting

precision is O
(

log M
M

)
. In summary, we have established the

following:
Theorem 6: For fixed π, δ, Algorithm 4.1 requires O(M3)

operations and guarantees precision of O
(

log M
M

)
. In other

words, N operations buy precision O
(
N−1/3 log N

)
.

Theorem 6 was derived via a rather rough analysis. Two
ingredients that may significantly improve the bound on the



approximation-precision tradeoff are: 1) Using a non-uniform
quantizer, with finer resolution near 0 (where f is least
contractive) and coarser resolution towards the endpoints of
the quantized interval (where f is highly contractive). 2)
Capitalizing on the special structure of PM , a very sparse
matrix with the same 4 non-zero entries in each row, to
simplify the scheme for obtaining its stationary distribution.

Theorem 6 as is, however, suffices to make our main
point, which is the improved dependence of the bound on
the precision order on the process parameters (in this case
π and δ), relative to the best known precision-complexity
tradeoff among deterministic approximation schemes that are
obtained via the Cover and Thomas bounds. Specifically, the
difference between the upper and lower bounds in the Cover
and Thomas approximation, conveniently expressed as the
mutual information I(Z0;X−n−1|Z−1

−n), is known since [2]
to decay exponentially with n. The best known bounds have
been obtained in [11] and are in the form

I(Z0;X−n−1|Z−1
−n) ≤ C(π, δ)ρ(π, δ)n,

where C(π, δ), ρ(π, δ) are positive constants with ρ(π, δ) <
1. On the other hand, the number of operations required to
compute the Cover and Thomas bounds is exponential in n
(the exponential rate depending on the size of the alphabet).
When combined, these bounds imply precision O(N−η), for
η = η(π, δ) > 0. However, η(π, δ) is arbitrarily small for
appropriate values of the parameters, since in the known bound
(IV) ρ(π, δ) is arbitrarily close to 1 for appropriate values of
the parameters.

V. CONCLUSIONS AND DISCUSSION

We have presented an approach to approximating the en-
tropy rate of a hidden Markov process via approximations of
the stationary distribution of a related Markov process. It was
then illustrated how the approach is applied for characterizing
the behavior of the entropy rate in various asymptotic regimes.
We have also derived a deterministic algorithm for approxi-
mating the entropy rate of the HMP. This scheme, based on
approximating the stationary distribution of the related Markov
process, was shown to achieve the best known precision-
complexity tradeoff for a significant subset of the process
parameter space.

A key ingredient in the bounds developed in this work
is bounding the support of the belief process. As such, the
asymptotic regimes characterized via these bounds are ones
that exhibit a “concentration of the support”, meaning that the
conditional distribution of the state given the past and present
HMP components lies, with probability one, in a very small
subset of the simplex of possible distributions. For example, in
the ‘high SNR’ regime, this belief falls, with probability one,
in a region of the simplex corresponding to very high certainty
(that the value is either 0 or 1, depending primarily on the
present observation and very weakly on the remaining ones
from the past). In the ‘low SNR’ regime, as another example,
the belief falls, with probability one, in a small region of the
simplex corresponding to very low certainty.

Asymptotics of the entropy rate can be obtained also in
regimes that lack this concentration property via a more
delicate study of the dynamics of the alternative Markov
process constructed in Section II. One such example is the
‘rare transitions’ regime1 considered in [17].
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