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Abstract— We consider the problem of optimal control of a
Kth order Markov process so as to minimize long-term average
cost, a framework with many applications in communications
and beyond. Specifically, we wish to do so without knowledge of
either the transition kernel or even the order K. We develop and
analyze two algorithms, based on the Lempel-Ziv scheme for data
compression, that maintain probability estimates along variable
length contexts. We establish that eventually, with probability 1,
the optimal action is taken at each context. Further, in the case
of the second algorithm, we establish almost sure asymptotic
optimality.

I. INTRODUCTION

A large number of practically important control problems
may be formulated as stochastic control problems. Very
broadly, such problems require that one control some stochas-
tic process so as to optimize an objective. In this work, we re-
strict our attention to Markov Decisions Problems, specifically
the control of Kth order Markov processes, where we seek to
optimize a cost function that decomposes linearly over time.
Other than a knowledge of the function being optimized, the
algorithms we study do not require knowing either the value
of K, or the dynamics of the underlying process a priori. Such
a setting is extremely general and applies to a broad variety of
problems that arise in communications; we will subsequently
present such an example. We begin, however, by clarifying
our model:

Consider a system consisting of observations {Xt} and
actions {At} that evolve as a random process over time.
Observations and actions take values in the finite sets X and
A, respectively. Denote by Ft the σ-algebra generated by
(Xt, At). We assume that

Pr (Xt = xt| Ft−1) = P (xt|Xt−1
t−K , At−1

t−K).

In other words, at time t−1, the next observation Xt is Marko-
vian with transition kernel P , given the last K observations
and actions.

A policy µ is a sequence of mappings {µt}, where for each t
the map µt : X

t×A
t−1 → A determines which action shall be

chosen at time t given the history of observations and actions
observed up to time t. In other words, under policy µ, actions
will evolve according to the rule At = µt(Xt, At−1). We will
call a policy stationary, if there exists T > 0 and L > 0 so
that

µt(Xt, At−1) = µ(Xt
t−L, At−1

t−L), ∀ t ≥ T.

Define a cost function g : X
K × A

K → [0, gmax]. Given a

policy µ, we can define the long-term expected cost as

lim sup
T→∞

Eµ

[
1
T

T∑
t=1

g(Xt
t−K+1, A

t
t−K+1)

]
. (1)

We wish to discover the policy µ that minimizes this long-
term expected cost. We will make the following technical
assumption.

Assumption 1: There is a unique optimal stationary policy
µ∗.

An important problem in joint source-channel coding may
be cast in the above formalism.

Example 1: Let X and Y be source and channel alphabets,
respectively. Consider transmitting a sequence of symbols
Xt ∈ X

t across a memoryless channel. Let Yt represent our
choice of encoding at time t. Let Ŷt represent the tth encoded
symbol corrupted by the memoryless channel. For all t, let
d : Y

L → X be some fixed decoder that decodes the tth
symbol based on the past L − 1 symbols and Ŷt. Given a
single letter distortion measure ρ : X× X→ R and letting

g(xL, yL) � E

[
ρ

(
d(Ŷ L), XL

)
|XL = xL, Y L = yL

]
,

we define as our optimization objective, finding a sequence of
encoders µt : X

t → A minimizing:

lim sup
T→∞

Eµ

[
1
T

T∑
t=1

g(Xt
t−L+1, Y

t
t−L+1)

]
.

Assuming the source to be M th order Markov, and setting
K = max(M,L), it is clear that the optimal coding problem
at hand is amenable to our formulation with observation space
X and action space Y.

Versions of this problem have been considered in [1], [2]. In
those works, the assumption of a known source, channel, and
decoder translates into a priori knowledge of the transition
kernel itself (and, of course, K). To contrast, our methods
will require knowledge of the channel and decoder in order to
evaluate the cost function g, but will not require knowledge
of the source.

Various related problems have also been considered: [3]
presents an asymptotically optimal algorithm for learning that
can be applied when the transition kernel P is unknown
but the order K is known. The algorithm relies on explicit
exploration/exploitation stages and asymptotic optimality is
guaranteed. Recently, [4] presented an algorithm for the prob-
lem of finding optimal Markov policies (in the class of all kth
order policies for fixed k) for ‘POMDPs’ (processes wherein
only some function of the state of the underlying Markov



process is observable). The guarantees presented there are
in expectation and again asymptotic. Work presented in [5]
considers an optimal control framework where the dynamics
of the environment are not known and one wishes to select the
best of a finite set of policies (or ‘experts’). In contrast, our
work can be thought of as one of competing with the set of
all possible policies. The prediction problem for loss functions
with memory and a Markov-modulated source considered in
[6] is essentially a Markov Decision Problem as the authors
point out; again, in this case, knowing the structure of the loss
function implicitly gives the order of the underlying Markov
process.

Our algorithms are inspired by the Lempel-Ziv algorithm
for data compression [7]. This type of algorithm has been
considered in a wide variety of contexts that also fall within
our framework. In [8] (and references therein), a Lempel-Ziv
inspired scheme is used for the prediction of unknown Markov
sources of arbitrary order with memoryless loss functions. This
problem is essentially again a special case of our formalism
(wherein the choice of action has no impact on transitions).
In [9], a Lempel-Ziv inspired scheme is used for the problem
of cache prefetching. This problem, also, can be placed in our
framework.

The remainder of this paper is organized as follows: In
Section II we briefly discuss the classical solution to a Markov
Decision Problem (that is, our problem, with full knowledge
of the transition kernel). In Sections III and IV we present and
analyze a candidate algorithm for universal learning. Section
V discusses a modification of this algorithm that, at the cost
of some extra exploration, achieves asymptotic optimality. We
conclude with a discussion of interesting future directions.

II. CLASSICAL SOLUTION

We assume from this point on that the cost function g
depends on only the current observation. As we discuss in
Section VI, the algorithms and results we present carry over
to the case of a general cost function.

It is well known that given a discount factor α ∈ (0, 1)
sufficiently close to 1, the an policy µ∗ that optimizes the
discounted cost criteria

Eµ

[ ∞∑
t=1

αt−1g(Xt)

]
, (2)

also optimized the long-term expected average cost. (See, for
example, [10, Proposition 4.2.2].)

Noting that the process (Xt, At) is Markovian when the
state space is augmented to include the past K observations
and actions, the optimal policy can be discovered as follows.
First, let J∗ : X

K × A
K−1 → R be the unique solution to

Bellman’s Equation,

J∗(xK , aK−1) =

g(xk) + α min
aK

∑
xK+1

P (xK+1|xK , aK)J∗(xK+1
2 , aK

2 ). (3)

J∗ is referred to as the value function. Let µ∗ be the policy
that is greedy with respect to J∗. In other words, for t ≥ K,

set

µ∗
t (x

t, at−1) =

argmin
at

∑
xt+1

P (xt+1|xt
t−K+1, a

t
t−K+1)J

∗(xt+1
t−K+1, a

t
t−K+2).

Then, µ∗ will be optimal under both the discounted and
average cost criteria. Note, in particular, that µ∗

t (x
t, at−1)

depends only on (xt
t−K+1, a

t−1
t−K+1).

III. A UNIVERSAL SCHEME

Solution of Bellman’s Equation (3) requires knowledge of
the transition kernel P . We would like to present an algorithm
that requires no knowledge of P , or even of K. Inspired by the
Lempel-Ziv algorithm for data compression [7], Algorithm 1
uses variable length contexts to dynamically adjust to the
true order of the underlying process. Algorithm 1 proceeds
as follows.

Time is parsed into intervals, or phrases, with the property
that if the cth phrase covers time τc ≤ t ≤ τc+1 − 1, then
the observation/action sequence (Xτc+1−1

τc , A
τc+1−2
τc ) will not

have occurred as the prefix of any other phrase before time
τc. At any point in time t, if the current phrase started at
time τc, the context (Xt

τc
, At−1

τc
) is considered. Probability

distributions for Xt+1 given all choices of actions At are
estimated using a Bayesian estimator based on a Dirichlet
prior and past experience in the same context. Value function
estimates are made by iterating the dynamic programming
operator from (3) backwards over possible future contexts.
Finally, a sequence of numbers {γe} controls the probability
that the algorithm attempts to exploit, that is take an optimal
action at a context given current probability and value function
estimates, or whether it chooses to explore, and take a random
action in order to improve its estimates.

Note that Algorithm 1 can be implemented easily using
a tree-like data structure. Nodes at depth � correspond to
contexts of the form (x�, a�−1) that have already been visited.
Each such node can link to at most |X||A| child nodes of the
form (x�+1, a�) at depth �+1. Each node maintains a count of
how many times it has been seen as a context and maintains
a value function estimate. Each phrase interval amounts to
traversing a path from the root to a leaf, and adding an
additional leaf. After each such path is traversed, the algorithm
moves backwards along the path and updates only the counts
and value function estimates along that path.

IV. ANALYSIS

We start with a lemma. The proof of this lemma can be
found in [11]. It follows in a straightforward fashion from
the fact that the dynamic programming operator in (3) is a
contraction mapping (see [10]).

Lemma 1: Under Algorithm 1, their exist constants K̄ > 0
and ε̄ > 0 such that, for any context (xs, as−1) with s ≥ K,
if all contexts (x�, a�) with s ≤ � ≤ s + K̄ have been visited
by time τc and for all � with s ≤ � ≤ s + K̄,

‖P̂c(·|x�, a�)− P (·|x�
�−K+1, a

�
�−K+1)‖1 ≤ ε̄,



Algorithm 1 A Lempel-Ziv inspired algorithm for learning.
1: t← 1, c← 1 {time and phrase indexes}
2: τc ← 1 {start time of the cth phrase}
3: Nc(·)← 0 {context counts accumulated by time τc}
4: P̂c(·)← 1/|X| {transition probabilities estimated by time

τc}
5: Ĵc(·)← 0 {value function estimated by time τc}
6: for time t do
7: observe Xt

8: if Nc(Xt
τc

, At−1
τc

) > 0 then {are in a context that we
have seen before?}

9: with probability γNc(Xt
τc

,At−1
τc ), pick At uniformly

over A {explore}
10: otherwise, pick At greedily according to P̂c, Ĵc:

At ∈
argmin

at

∑
xt+1

(
P̂ (xt+1|Xt

τc
, (At−1

τc
, at))

Ĵ((Xt
τc

, xt+1), (At−1
τc

, at))
)

{exploit}
11: else {we are in a context not seen before}
12: pick At uniformly over A

13: Nc+1(·)← Nc(·), P̂c+1(·)← P̂c(·), Ĵc+1(·)← Ĵc(·)
14: for s with τc ≤ s ≤ t, in decreasing order do
15: update context count

Nc+1(Xs
τc

, As−1
τc

)← Nc(Xs
τc

, As−1
τc

) + 1

16: update probability estimate

P̂c+1(xs|xs−1, as−1)←
Nc+1(xs, as−1) + 1∑

x′ Nc+1((xs−1, x′), as−1) + |X|
17: update value function estimate

Ĵc+1(Xs
τc

, As−1
τc

)← g(Xs)+

α min
as

∑
xs+1

(
P̂c+1(xs+1|Xs

τc
, (As−1

τc
, as))

Ĵc+1((Xs
τc

, xs+1), (As−1
τc

, as))
)

18: end for
19: c← c + 1, τc ← t + 1 {start the next phrase}
20: end if
21: t← t + 1
22: end for

then the action selected by acting greedily with respect to P̂c

and Ĵc at the context (xs, as−1) is optimal.
Lemma 1 suggests that if all the estimated distributions up to

K̄ levels below a given context are ε̄ accurate, then an optimal
decision can be made at a particular context. By the Strong
Law of Large Numbers, if a context is visited infinitely often
and explores at that context infinitely often, it will eventually
have ε̄ accurate probability estimates almost surely. To ensure
that this happens, we require two assumptions.

Assumption 2: There exists pmin > 0 so that

P (xK+1|xK , aK) > pmin,

for all sequences xK+1 ∈ X
K+1, aK ∈ A

K .
Assumption 3: The sequence {γe} satisfies γe ↓ 0 as e→∞,

and
∑∞

e=1 γe =∞.
With these assumptions, we can establish the following

lemma. The proof relies on induction on the context length
and the Second Borel-Cantelli Lemma. It can be found in [11].

Lemma 2: Under Algorithm 1, every context is visited
infinitely often with probability 1.

Define τ
(xs,as−1)
e to be the time of the eth visit to the context

(xs, as−1). Using our two lemmas, we can immediately reach
the following result, whose proof can be found in [11].

Theorem 1: Under Algorithm 1, for any context (xs, as−1)
with s ≥ K,

lim
e→∞

1
e

e∑
i=1

I
{

A
τ
(xs,as−1)
i


= µ∗(xs
s−K+1, a

s−1
s−K+1)

}
= 0,

with probability 1. In other words, the fraction of time that a
non-optimal decision is made at a context tends to 0 almost
surely.

V. LIMITING CONTEXT LENGTH

The analysis provided by Theorem 1 is incomplete. It tells
us that the fraction of time a non-optimal decision is made at
a single context tends to zero almost surely. We would like
to show, however, that the asymptotic average cost achieved
by our algorithm tends to that of the optimal policy. For
this, we need that the fraction of time non-optimal decisions
are made to tend to zero. To see the distinction, note that
although we might be performing better and better over time
at any given context, as the depth of the tree increases we
may be introducing many new contexts that have not been
visited many times and, hence, at which we make non-optimal
decisions.

In particular, imagine the state of the algorithm after some
long interval of time. Short contexts, specifically those with
length less than K, are not meaningful because they are
not estimating real transition probabilities. Referring to the
caricature in Figure 1, this is the upper-most triangle. Contexts
of moderate length will have been visited many times and are
likely to have estimates leading to optimal decisions—these
are the mid-section of the tree in Figure 1. Contexts that are
very long, however, will not have been visited many times and
are likely to be non-optimal. We need to control the amount



of time the algorithm spends in such contexts and insure that
it is vanishing. That is, we need to control the size of the
bottom-most section of the tree in Figure 1. We present here
an algorithm that maintains a size of at most O(log d) for this
bottom-most section, where d is the depth of the tree.

} O(log d)

} K

d

Fig. 1. Context tree for Algorithm 2

In Algorithm 2, at any given time, a maximum context
length d is maintained, and d is only incremented whenever
every context of length d has been visited at least once.
At such points in time, the algorithm also updates transition
probability and value function estimates. Note that the analyses
of Lemma 1, Lemma 2, and Theorem 1 continue to hold for
this modified algorithm. In particular, since every node will
be visited infinitely often, it is clear that d ↑ ∞ almost surely.

Note that the design of Algorithm 2 guarantees that the
number of visits to a fixed context (xs, as−1) grows exponen-
tially as the depth of the tree is increased. In particular, if the
depth of the tree is d, then every context of depth d− 1 must
have been visited at least once. Since a fixed context with
length s < d has (|X||A|)d−s−1 such descendants, it will have
been visited at least (|X||A|)d−s−1 times. This fact allows us
to prove the following lemma.

Lemma 3: Let C > 1 be a constant. Under Algorithm 2,
there exists a random variable D such that D < ∞ with
probability 1 and if the d ≥ D,

‖P̂d(·|x�, a�)− P (·|x�
�−K+1, a

�
�−K+1)‖1 ≤ ε̄,

∀ K ≤ � ≤ d− C log d.

In other words, all probability estimates are ε̄ accurate except
those in the first K and last O(log d) levels of the tree.

Proof: We present a very brief outline of the proof; see
[11] for details. Consider a time at which the tree has depth d,
and let (x�, a�) be some sequence of observations and actions
with K ≤ � ≤ d− log d. For any choice of x�+1, the context
(x�+1, a�) will have been visited at least (|X||A|)d−�−2 times.
Hence, the distribution P̂d(x�, a�) will have been estimated
by at least |X|d−�−1|A|d−�−2 samples. Let P e

d (·|x�, a�) be the
empirical distribution of those samples. Via Sanov’s Theorem
and the union bound one may then show:

Pr
(
‖P̂d(·|x�, a�)− P (·|x�

�−K+1, a
�
�−K+1)‖1 > ε̄

)
≤ exp(−|X|d−�−1|A|d−�−2ε̄2/8 + |X| log(|X|d|A|d + 1)).

Algorithm 2 A variant of the learning algorithm with depth
limitation.

1: t← 1, c← 1, τc ← 1
2: d← 1 {current depth of the tree}
3: Nc(·)← 0 {context counts}
4: P̂d(·) ← 1/|X|, Ĵd(·) ← 0 {transition probability/value

function estimates}
5: for each time t do
6: observe Xt

7: if Nc(Xt
τc

, At−1
τc

) > 0 and t− τc < d then
8: with probability γNc(Xt

τc
,At−1

τc ), pick At uniformly
over A

9: otherwise, pick At greedily according to P̂c, Ĵc:

At ∈
argmin

at

∑
xt+1

(
P̂ (xt+1|Xt

τc
, (At−1

τc
, at))

Ĵ((Xt
τc

, xt+1), (At−1
τc

, at))
)

10: else {we are in a context not seen before or a context
that is too long}

11: pick At uniformly over A

12: Nc+1(·)← Nc(·)
13: for each s with τc ≤ s ≤ t, in increasing order do
14: Nc+1(Xs

τc
, As−1

τc
)← Nc(Xs

τc
, As−1

τc
) + 1

15: end for
16: c← c + 1, τc ← t + 1 {start the next phrase}
17: if every context (xd, ad−1) has been visited at least

once then
18: P̂d+1(·)← P̂d(·), Ĵd+1(·)← Ĵd(·)
19: for each � with 1 ≤ � ≤ d, in decreasing order do
20: for each (x�, a�−1 do
21:

P̂d+1(x�|x�−1, a�−1)

← Nc+1(x�, a�−1) + 1∑
x′ Nc+1((x�−1, x′), a�−1) + |X|

22:

Ĵd+1(x�, a�−1)
← g(x�)+

α min
a�

∑
x�+1

P̂d+1(x�+1|x�, a�)Ĵd+1(x�+1, a�)

23: end for
24: end for
25: d← d + 1 {increase the depth of the tree}
26: end if
27: end if
28: t← t + 1
29: end for



Let Ad be the event that there is some (x�, a�) with K ≤
� ≤ d− C log d and

‖P̂d(·|x�, a�)− P (·|x�
�−K+1, a

�
�−K+1)‖1 > ε̄.

Using essentially the union bound and our above estimates,
one may then show:

∞∑
d=1

Pr(Ad) <∞.

Then, by the First Borel-Cantelli Lemma, the events {Ad} can
occur at most finitely many times, and the theorem is proved.

Using Lemma 3, we can establish the following theorem.
The proof can be found in [11].

Theorem 2: In addition to Assumption 3, suppose that

γe ≤ a1

(log e)1+a2
,

for some constants a1, a2 > 0. Under Algorithm 2, the fraction
of time non-optimal decisions are made is asymptotically 0.
In other words, with probability 1,

lim
T→∞

1
T

T∑
t=1

I
{
At 
= µ∗

t (X
t, At−1)

}
= 0.

Theorem 2 suggests that as time goes on, the fraction of
errors is getting smaller and smaller. Assumption 2 guarantees
that the process is ergodic under the optimal policy, hence
there is a λ∗ such that under the optimal policy, with proba-
bility 1,

lim
T→∞

1
T

T∑
t=1

g(Xt) = λ∗.

As Algorithm 2 follows the optimal policy correctly over
longer and longer intervals, it becomes possible to prove the
following result, a proof of which may be found at [11].

Theorem 3: Given the assumption of Theorem 2, under
Algorithm 2, with probability 1,

lim
T→∞

1
T

T∑
t=1

g(Xt) = λ∗.

Hence, Algorithm 2 does as well as the optimal policy
asymptotically.

VI. FUTURE DIRECTIONS

We have presented and analyzed two Lempel-Ziv inspired
algorithms for learning. The algorithms we presented apply
when the cost is only a function of the current observation.
They can, however, easily be extended to the more general
framework where the cost depends on the last K observations
and actions. To see this, note that Bellman’s Equation (3)
can be modified to handle this case, and the corresponding
appropriate dynamic programming operator can be used in
the value function estimation steps in Algorithms 1 and 2.
Lemma 1 will continue to hold, and all the rest of the analysis
will follow.

A number of interesting questions remain.

1) Can Assumption 2 be relaxed? This was important for
our analysis, but does not hold in many real systems.

2) Can asymptotic optimality be established for an algo-
rithm similar to Algorithm 1? In particular, Algorithm 2
requires that we limit depth in order to wait to explore
contexts that are both unlikely and that may penalize us
heavily. An algorithm without such restrictions is likely
to converge to λ∗ far quicker.

3) One interesting special case is when the next observation
is Markovian given the past K observations and only the
latest action. In this case, a variation of Algorithms 1 or
2 that uses contexts of the form (xs, a) could be used.
Here, the resulting tree would have exponentially fewer
nodes and would be much quicker to converge to the
optimal policy. Indeed, for systems where there are few
likely paths, it might be possible to prove bounds on the
rate of convergence.
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