
A Context Quantization Approach to Universal
Denoising

Kamakshi Sivaramakrishnan
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

ksivaram@stanford.edu

Tsachy Weissman
Department of Electrical Engineering

Stanford University
Stanford, CA 94305
tsachy@stanford.edu

Abstract— We revisit the problem of denoising a discrete-time
continuous-amplitude signal corrupted by a known memoryless
channel. By modifying our earlier approach to the problem, we
obtain schemes that are much more tractable than the original
ones, while retaining their universal optimality properties. The
schemes involve a simple preprocessing step of quantizing the
noisy symbols to generate quantized contexts which (accord-
ing to the quantized context value of each symbol) are then
used to partition the unquantized symbols to subsequences. A
universal context-free denoiser (of zero context length for the
unquantized sequences) is then separately employed on each
of the subsequences. We identify a rate in which the context
length and quantization resolution should be increased so that
the resulting scheme is universal in both the semi-stochastic
and fully stochastic settings. The proposed family of schemes
is computationally attractive, having linear complexity with a
proportionality constant that is independent of the context length
and the quantization resolution. Experimental results show that
these schemes are not only superior from a computational
viewpoint, but also achieve better denoising in practice.

I. INTRODUCTION

Consider the problem of estimating the clean signal
{Xt}t∈T, Xt ∈ [a, b] ⊂ R, from its noisy observations
{Yt}t∈T, Yt ∈ R, where {Yt} is the output of a known,
memoryless channel whose input is {Xt}. Recently, universal
denoising for continuous-valued signals and channels was
considered in [1], [2], [3], [4]. This approach was motivated by
the DUDE framework in [5], [6] and nonparametric techniques
in density estimation [7]. This framework is a “two-pass”
approach in which the first pass involves accruing the statistics
of the noisy sequence and using knowledge of the channel
to accrue statistics of the underlying clean signal itself. The
second pass is one where, having learned the statistics, denois-
ing is carried out to minimize a user-specified loss function,
which penalizes incorrect guesses of the underlying clean
signal. The denoising approach in [1] addresses the problem of
sparse statistics that affects its discrete counterpart in [5] using
natural context aggregation by resorting to nonparametric
density estimation techniques. Universal optimality of the
proposed denoisers in [1], [2] was established in a generality
that applies to arbitrarily distributed clean signals, arbitrary
memoryless channels and loss functions (with some benign
regularity conditions). The theoretical optimality results were
also translated to some encouraging practically implementable

schemes discussed in [2], [3]. However, this family of denois-
ers suffers from computational issues that could render the
schemes practically unattractive.

The context-free denoiser discussed in [2], where it is called
the symbol-by-symbol denoiser, is computationally very at-
tractive. However, greater advantage of this denoiser is gained
only by considering higher context lengths of the sliding
window denoiser which comes with increased computational
burden. One possible approach to reduce the computational
burden could be to quantize the continuous-valued noisy
symbols (as proposed in [6] for the discrete-input general
output setting) and then apply higher order sliding window
denoisers. This is going to necessarily do worse than learning
the statistics of the noisy sequence from the true unquantized
values. In this paper we propose a middle ground solution,
where for any order of the denoiser, we quantize the contexts
of every noisy symbol and apply the context-free denoiser of
[2] to each class of quantized contexts. This approach emulates
the higher order functionality of the sliding window denoisers
through the quantized contexts while still maintaining the
low complexity of the context-free denoiser of [2] as it is
applied within each context subsequence. The complexity of
the denoisers obtained in this way is not only linear in the data
size n for a fixed context length k and quantization resolution
M , but in fact is bounded with a proportionality constant that
does not depend on k and M . This is in stark contrast to
the complexity of the scheme in [2] which, although linear
in n, is exponential in k and is, consequently, impractical
for even moderate values of k. The question is whether the
new denoiser we propose, beyond its superiority over that of
[2] from a computational standpoint, preserves the asymptotic
universal optimality properties of the denoiser in [2]. In this
paper, we answer this question in the affirmative.

The remainder of the paper is organized as follows. In
section II, we discuss the problem setup and notations. This
is followed by a brief discussion of the denoiser in [2]
and some key technical results therein. Section IV details
the construction of the proposed denoiser and performance
guarantees for our suggested universal denoiser in the semi-
stochastic setting. The performance guarantee is proved by
comparing the proposed denoiser to the minimum possible
“symbol-by-symbol” loss incurred by a denoiser that chooses



from a set of experts that also make decisions based on
quantized contexts. We will be extending these results, with
diminishing quantization step-sizes, to eventually compare
our performance to that of the denoiser in [2] which would
establish the asymptotic optimality. Section V briefly mentions
some promising preliminary experimental results.

II. PROBLEM SETTING AND NOTATIONS

Similar to the problem setting in [1], let x = (x1, x2, · · · ) be
the individual noise-free source signal with components taking
values in [a, b] ⊂ R and Y = (Y1, Y2, · · · ), Yi ∈ R be the cor-
responding noisy observations, also referred to as the output of
the channel (corruption source). The channel considered here
is memoryless, specified by a family of distribution functions
C = {FY |x}x∈[a,b], where FY |x denotes the distribution of
the channel output symbol when the input symbol is x. We
assume the associated family of measures Υ = {µx}x∈[a,b]

to be tight in the sense that supx∈[a,b] µx([−T, T ]c) → 0 as
T →∞. We make some additional assumptions on the nature
of the channel which are elaborated in detail in [2]

An n-block denoiser is a measurable mapping taking Rn

into [a, b]n. We assume a loss function Λ : [a, b]2 → [0,∞)
and denote the normalized cumulative loss of an n-block
denoiser X̂n by

LX̂n(xn, yn) =
1
n

n∑

i=1

Λ(xi, X̂
n(yn)[i]) (1)

where X̂n(yn)[i] denotes the i-th component of X̂n(yn). We
denote Λmax = supx,y∈[a,b] Λ(x, y), and assume Λmax < ∞.
We also impose mild regularity conditions on the permissible
loss functions, Λ, which are detailed, again, in [2]. Define the
symbol-by-symbol minimum loss of xn by

D0(xn) = min
g

E

[
1
n

n∑

i=1

Λ(xi, g(Yi))

]
(2)

where the minimum is over all measurable maps g : R →
[a, b]. For xn ∈ [a, b]n define

Fxn(x) =
|{1 ≤ i ≤ n : xi ≤ x}|

n
, (3)

i.e., the CDF associated with the empirical distribution of xn.
It is shown in [1], the minimizer of (2) is achieved by gopt [Fxn ]
where, gopt is given by

gopt[F ](y) = arg min
x̂∈[a,b]

∫

[a,b]

Λ(x, x̂)fY |x(y)dF (x) (4)

III. UNIVERSAL DENOISING OF
CONTINUOUS-AMPLITUDE DATA

In this section, we briefly recap the construction of the
denoiser discussed in detail in [2],[1]. We also state the
important result bounding the deviation of the loss incurred
by our proposed denoiser from minimum possible symbol-by-
symbol loss, D(xn). We refer the reader to [2] for further
details and proofs of the result.

A. Construction of the Denoiser

Fxn and, hence, gopt[Fxn ] are not known to an observer of
the noisy sequence, Y n. For an input sequence xn, given the
memoryless nature of the channel, the output symbols will be
distributed as {FY |x1 , · · · , FY |xn

} and have the corresponding
density functions, {fY |x1 , · · · , fY |xn

}. Given the memory-
less nature of the channel, the sequence of output symbols,
Y1, Y2, · · · , Yn are independent random variables taking values
in R and have conditional densities, fY |x1 , fY |x2 , · · · , fY |xn

respectively. A density estimate is a sequence f1, f2, · · · , fn,
where for each n, fn

Y (y) = fn(y;Y1, · · · , Yn) is a real-valued
Borel measurable function of its arguments, and for fixed n,
fn

Y is a density estimate on R. The kernel estimate is given
by

fn
Y (y) =

1
nh

n∑

i=1

K

(
y − Yi

h

)
(5)

where h = hn is a sequence of positive numbers and K is a
Borel measurable function satisfying K ≥ 0,

∫
K = 1.

Once we have an estimate fn
Y = fn

Y [Y n] for this function,
we use it to estimate the input empirical distribution by

F̂xn [Y n] = arg min
F∈F [a,b]

n

d


fn

Y ,

∫
fY |xdF (x)

︸ ︷︷ ︸
[F⊗C]Y


 (6)

where F [a,b]
n ⊆ F [a,b] denotes the set of empirical distribu-

tions induced by n-tuples with [a, b]-valued components and
[F ⊗ C]Y denotes the marginal density induced at the output
of the channel by an input distribution F . The definition for
the norm, d, is

d (f, g) =
∫
|f(y)− g(y)| dy (7)

A two-stage quantization of both, the support of the under-
lying clean symbol, [a, b], and the levels of the estimate of its
empirical distribution function, F̂xn , itself is carried out to give
the corresponding quantized probability mass function that has
mass points only at the quantized symbols. The quantization
of the interval [a, b] is depicted in Fig. 1 below.

Fig. 1. Quantization of the support of a distribution function, F ∈ F [a,b],
A∆ = {ai = a + i∆, i = 0, · · · , N(∆) − 1}, N(∆) is the number of
points in the interval [a, b] corresponding to a quantization step-size of ∆

Applying this quantization of the support of the underlying
clean symbol to the estimate, F̂xn , we construct now, the



corresponding probability mass function, P̂∆
xn

P̂∆
xn(ai) = F̂xn(ai)− F̂xn(ai−1) (8)

where, ai ∈ A∆. The quantization of the values P̂xn is carried
out using a uniform quantizer, Qδ

P̃ δ,∆
xn = Qδ(P̂∆

xn) (9)

The minimizer of the Bayes envelope in (4) is then con-
structed from the quantized probability mass function, P δ,∆

xn ,as
gopt

[
P δ,∆

xn

]
, where gopt for the quantized clean symbol is,

gopt[P ](y) = arg min
x̂∈A∆

∑

a∈A∆

Λ (a, x̂) · fY |x=a(y) · P (X = a)

(10)
Equipped with P δ,∆

xn , the n-block context-free denoiser is now
given by,

X̃n,δ,∆[yn](i) = gopt[P̃
δ,∆
xn [yn]](yi), 1 ≤ i ≤ n (11)

where, gopt is given in (10).
The extension of the symbol-by-symbol scheme in (11)

to the kth-order sliding window case is carried out by sub-
sequencing [1],[2] and is given by,

X̃n,δ,∆,k = {X̃ni,δ,∆,k}1≤i≤2k+1 (12)

where, the denoiser for each of the subsequences, i, is

X̃ni,δ,∆,k[yn](j) = gopt

[
P̃ δ,∆,k

xni [yni ]
] (

yj+k
j−k

)
,

j ∈ {k + i, 3k + 1 + i, · · · dn− 2k − i− 1
2k + 1

e} (13)

with P̃ δ,∆,k
xn being the kth-order equivalent of P δ,∆

xn and

gopt[P ]
(
yk
−k

)
= arg min

x̂∈A
Λ(·, x̂)T [P ⊗ C]X|yk

−k

= arg min
x̂∈A

∑

â∈A
Λ (a, x̂)·





∑

xk
−k∈A2k+1:x0=a

[
k∏

i=−k

fY |x=xi
(yi)

P
(
Xk
−k = xk

−k

)]}
(14)

B. Analysis
We state the important result derived in detail in [2] that, for

a given sequence xn, bounds the deviation of the cumulative
incurred by the denoiser in (11) from the minimum possible
symbol-by-symbol loss, D0(xn). An important consequence
of this result is Lemma 1 in section IV-B which gives a similar
result for the proposed Modified Denoiser.

Theorem 1: For all ε > 0, δ > 0, ∆ > 0 there exist
ζ = ζ (C, λ, ∆), ψ = ψ (C, ε, δ,∆, Λ,∆), A = A (Λ, ε, δ,∆)
n0 (C,K, {h}, ε, ∆,Λ) s.t.

P (|LX̃n,δ,∆(xn, Y n)−D0(xn)| > ε + δΛmax + ζ)

≤ Ae−nψ, ∀n > n0 (C,K, {h}, ε, ∆,Λ) and xn ∈ [a, b]n

where, and lim∆→0 ζ (C, Λ,∆) = 0. The precise functional
forms of ζ, ψ and χ can be inferred from Theorem 4 in [2].
Analogous result is derived for the kth-order sliding window
denoiser in [2].

IV. THE MODIFIED UNIVERSAL DENOISER

The kth-order sliding window denoiser discussed in section
III is in principle an elegant approach to the problem of uni-
versal denoising of continuous-amplitude data. This denoiser
systematically approaches the problem using nonparametric
techniques to learn a quantized version of the aposteriori
distribution of the underlying clean symbol given its observed
noisy context, [P̃ δ,∆

xn ⊗ C]X|yk
−k

induced by the channel C.
As discussed in the introduction this scheme is, however,
computationally intensive with increasing context lengths, k.
Motivated, primarily, by the need to reduce computational
burden of the scheme in section III, we propose and study
the modification shown in Fig. 2. In words, we are proposing
the following,
Fix, a window size k and number of levels of quantization,
M

• Quantize the 2k-length contexts,
(
y−1
−k, yk

1

)
, using an M -

level vector quantizer to give M possible 2k-length
tuples,

(
ŷ−1
−k, ŷk

1

) ∈ YM . For a given M , YM =
{Y1, · · · ,Ym, · · · ,YM} denotes the sequence of M ,
2k-tuples in which the quantized contexts,

(
ŷ−1
−k, ŷk

1

)
,

can take values. Let nm be the number of 2k-tuples at
quantization level, m.

• For each, m, collect all the unquantized middle symbols
that have quantized contexts,

(
ŷ−1
−k, ŷk

1

)
= Ym to form

yn,m
0 =

{
yj :

(
ŷj−1

j−k, ŷj+k
j+1

)
= Ym

}
. Apply the symbol-

by-symbol scheme discussed in section III to this collec-
tion of middle symbols. This corresponds to a bank of
M context-free denoisers as shown in Fig. 2.

• Collect the denoised estimates x̂n,m
0 , (in appropriate

order) from all the quantization levels, m ∈ {1, · · · ,M}
to give the denoised sequence x̂n.

The specifics of the construction of this Modified Denoiser is
discussed in the following subsection.

A. Construction of the Denoiser

The application of the density estimator in (5) at each of
the M branches of the Modified Denoiser gives an estimate
of the quantity, fn

Y0|Ym
(y). Thus, for a quantization level, m,

(5) becomes

fn
Y0|Ym

(y) =
1

nmh

∑

j:(Ŷ −1
j−k,Ŷ j+k

1 )=Ym

K

(
y − Yj

h

)
,

m ∈ 1, · · · ,M (15)

where, Yj are such that
(
Ŷ j−1

j−k , Ŷ j+k
j+1

)
= Ym, the quan-

tized 2k-tuple at level m. Additionally, application of (6) to
fn

Y0|Ym
(y) now gives

F̂m
x0|Ym

[Y n,m
0 ] = arg min

F∈F [a,b]
nm

d


fn

Y0|Ym
,

∫
fY |xdF (x)

︸ ︷︷ ︸
[F⊗C]Y




(16)



Channel
Estimate

th

order statistics

˜

opt

h
˜

i
( )

ˆ

Second passFirst pass

Continuous Context-free(Symbol-by-Symbol) Denoiser [1]

Continuous context-free

denoiser

ˆ
11

{ : ({
1 +

+1 }) = }
{ = 1 · · · }

2

1

c
o
lle
c
t

ˆ
2

ˆ
1

ˆ

Continuous context-free

denoiser

ˆ

Channel

Continuous context-free

denoiser

Continuous context-free

denoiser

Modified Denoiser

Fig. 2. Proposed modification to the Denoiser of [1]

which is an estimate of Fm
x0|Ym

, the true empirical distribution
of the underlying clean symbol given the observed noisy
context quantized to level m. Finally, the two-stage quanti-
zation for step-sizes, δ and ∆, corresponding to the support
of the underlying clean symbol, [a, b] and distribution function
levels respectively, gives P̃m,δ,∆

x0|Ym
. For a given M , k, δ, ∆ the

denoiser candidate is now given by the sequence,

X̃n,M,δ,∆,k = {X̃nm,δ,∆,k}1≤m≤M (17)

where

X̃nm,δ,∆,k[yn,m](j) = gopt[P̃
m,δ,∆
x0|Ym

[yn,m]](yn,m
j )

yn,m = {yn,m
j }, j = 1, · · · , nm and gopt is given by (10). The

cumulative loss of the proposed denoiser is then given by,

LX̃n,M,δ,∆,k (xn, Y n) =
M∑

m=1

LX̃nm,δ,∆,k (xn,m, Y n,m) (18)

where, xnm is the underlying clean sequence corresponding
to ynm .

B. Analysis

Let, DM
k (xn) be the minimum possible kth-order sliding

window loss corresponding to an underlying clean sequence,
xn and noisy sequence Y n with M -level quantization of noisy
contexts. Specifically,

DM
k (xn) = min

g
E

[
1

n− 2k

n−k∑

i=k+1

Λ(xi, g(Ŷ i−1
i−k , Ŷ i+k

i+1 , Yi))

]

(19)
where, g : YM × R→ R,

(
Ŷ −1
−k , Ŷ k

1

)
= QM

((
Y −1
−k , Y k

1

))
(20)

with, QM : R2k → YM . Simultaneously, we also define
Dm

k which is the same as (19) except the minimum is over
all g : Ym × R → R, m ∈ 1, · · · ,M . In other words,
Dm

k is the minimum possible kth-order sliding window loss
corresponding to an underlying clean sequence, xn,m and (the
corresponding) noisy sequence Y n,m. From the construction
of the denoiser, note that

Dm
k (xn) = D0 (xn,m)

Using the result in Theorem 1 we can state the following
Lemma which, for a sequence xn, bounds the deviation of
the cumulative loss incurred by the proposed denoiser at
quantization level m from Dm

k (xn,m),
Lemma 1: For all ε > 0, δ > 0, ∆ > 0, 1 ≤ k ≤ bn

2 c, at
each quantization level, m ∈ {1, · · · ,M} , ∃ ζk, ψk, Ak, nm

0

s.t.

P (|LX̃nm,δ,∆,k(xn,m, Y n,m)−D0(xn,m)| > ε + δΛmax

+ζk
) ≤ Ake−nmψk

, ∀nm > nm
0

and xn,m ∈ [a, b]nm

where, ζk, ψk, Ak are kth-order equivalents of ζ, ψ, A (also
functions of C, δ,∆, Λ and ε) in Theorem 1 whose precise
forms can again be deduced from Theorem 12 in [2]. nm

0

has the same functional form as the n0 in Theorem 1 but,
also depends on the quantization level m through the induced
distribution of the quantized noisy symbols and k through
the conditional distribution, Fx0|Ym

, induced by the kth-order
contexts.

The following Lemma formalizes the fact that, for any
sequence, by performing optimally within every quantized
context, wherein we allow the denoiser candidate to be dif-
ferent for every quantization level, we will be doing at least



as well as the scheme which fixes one denoiser for all the
quantization levels.

Lemma 2: For any sequence, xn and M > 0

DM
k (xn) ≥ 1

M

M∑
m=1

Dm
k (xn) (21)

Using this fact, we state the following theorem which,
for a given number of quantization levels, M of the
noisy contexts bounds the cumulative loss incurred by the
proposed sequence of denoisers from DM

k (xn) defined in (19).

Theorem 2: For every M > 0, ε > 0, δ > 0, ∆ > 0,
1 ≤ k ≤ bn

2 c, ∃ ζk, ψk, Ak,M

P
(
LX̃n,M,δ,∆,k(xn, Y n)−DM

k (xn) > ε + δΛmax + ζk
)

≤ Ak,Me−nψk

,

where, ζk, ψk are (as before) functions of C, δ, ∆, ε, Λ and
k and Ak,M is additionally also a function of M . As with
the denoiser in [2], for a given number of quantization levels,
M , growth rates of k = kn, δ = δn, ∆ = ∆n as in [2], and
X̂n,M

univ = X̃n,M,δ,∆,k it can be shown that,

Theorem 3: For all x ∈ [a, b]∞ and M > 0

lim
n→∞

[
LX̂n,M

univ
(xn, Y n)−DM

kn
(xn)

]
= 0 a.s. (22)

Additionally, for appropriate growth rates of M = Mn, it is
also true that,

Theorem 4: For all x ∈ [a, b]∞

lim
n→∞

[
LX̂n,Mn

univ
(xn, Y n)−DMn

kn
(xn)

]
= 0 a.s. (23)

Finally, our results also imply optimality for the stochastic
setting when the underlying clean signal is now a stationary
process, X, with distribution FX. Define

D(FX, C) = lim
n→∞

min
X̂n

ELX̂n (Xn, Y n) (24)

where the expectation is assuming Xn are the first n symbols
of the source with distribution FX and the limit is guaranteed
to exist by sub-additivity. Assuming Mn → ∞ at a rate for
which Theorem 4 holds and a quantization scheme, QM , that
for any block length, n, and context length, k, partitions the
space R2k in a symbol-by-symbol fashion, in such a way that
the resulting partition P = P1×· · ·×P2k, {P}2k

i=1 being par-
titions in R corresponding to symbol-by-symbol quantization
of each element in the 2k-tuple context is asymptotically fine
[8], we have

Theorem 5: For all stationary X,

lim
n→∞

ELX̂n,Mn
univ

(Xn, Y n) = D (FX, C) (25)

Fig. 3. Top-left: Original image, top-right: Noisy image (corrupted by an
AWGN, σ = 15), bottom-left: Denoised image using the scheme in [2] (2k+
1 = 13) RMSE = 9.441, bottom right: Denoised image using the proposed
scheme RMSE = 8.913 (M = 10, 2k + 1 = 13)

V. EXPERIMENTAL RESULTS

Results of applying the proposed scheme to a natural
test image, shown in Fig. 3. The image is corrupted by an
AWGN source with σ = 15. In addition to the significant
computational advantages, we achieve better denoising per-
formance than the denoiser of [2] by considering higher order
contexts, which are computationally far more tractable with
this modified denoiser.
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