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Cascade and Triangular Source Coding with

Side Information at the First Two Nodes
Haim Permuter and Tsachy Weissman

Abstract

We consider the cascade and triangular rate-distortion problem where side information is known to the source

encoder and to the first user but not to the second user. We characterize the rate-distortion region for these problems.

For the quadratic Gaussian case, we show that it is sufficientto consider jointly Gaussian distributions, a fact that

leads to an explicit solution.

Index Terms

Cascade source coding, empirical coordination, quadraticGaussian, Pareto frontier, source coding, side informa-

tion, rate distortion, triangular source coding

I. I NTRODUCTION

Yamamoto [1] considered the cascade source coding problem,where a source sends a message to User 1, and

then User 1 sends a message to User 2. In this paper, we extend Yamamoto’s cascade source coding problem to

the case where side information is known to the source and to User 1, but not to User 2. The problem is depicted

in Fig. 1.

aX Encoder User 2R1 User 1
R2

Y

X̂1

X̂2

Fig. 1. A cascade rate distortion problem with three nodes (encoder, User 1, User 2), where the first two nodes have side informationY . User

1 and User 2 need to reconstruct the sourseX, within distortion criteria.

More recently, Vasudevan, Tian and Diggavi [2] considered the cascade source coding problem, where side

information,Y , is known to the source encoder and to User 1, additional sideinformationZ is known to User 2,

and the Markov chainX−Z−Y holds. Vasudevan et al. [2] provided an inner and an outer bound and showed that
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TABLE I

LITERATURE OVERVIEW OF CASCADE SOURCE CODING WITH SIDE INFORMATION AS SHOWN IN FIG. 2

Switch a Switch b Switch c Gaussian quadratic case General case

open open open Solved [1] Solved [1]

open open closed Solved [2] Upper and lower bounds [2]

open closed open Upper and lower bounds [3] Upper and lower bounds [3]

open closed closed Solved [2] Upper and lower bounds [2]

closed open open Solved [1] Solved [1]

closed open closed Solved [2] Upper and lower bounds [2]

closed closed open Section IV Section II

the bounds coincide for the Gaussian case. Cuff, Su and El-Gammal [3] considered the cascade problem where the

side information is known only to the intermediate node and provided an inner and an outer bound. An additional

related problem, which was considered and solved in [4], is that of cascade source coding when side information

is known to all nodes with a limited rate. Table I summarizes the literature on cascade source coding with side

information.

  aX Encoder User 2R1

a b c

User 1 R2

Y

X̂1

X̂2

Fig. 2. A cascade rate distortion problem with several options of side information. Table I summarizes the lietrtaure onthis problem.

Of special interest in lossy source coding is the Gaussian case with quadratic distortion, which in many source

coding problems results in an analytical solution such as inthe Wyner-Ziv problem [5] where side information is

available to the decoder, the Heegard-Berger problem [6] where side information at the decoder may be absent,

Kaspi’s problem [7], [8] where side information is known to the encoder and may or may not be known to the

decoder, the multiple description problem [9], [10], the two-way source coding problem [11], the multi-terminal

problem [12] [13], the CEO problem [14]–[16], rate distortion with a helper [17], [18], and successive refinement

[19] and its extension to successive refinement for the Wyner-Ziv problem [20].

Our main result in this paper is that the achievable region for the problem depicted in Fig. 1 is given by

R(D1, D2), which is defined as the set of all rate-pairs(R1, R2) that satisfy

R2 ≥ I(Y,X ; X̂2), (1)
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R1 ≥ I(X ; X̂1, X̂2|Y ), (2)

for some joint distributionP (x, y)P (x̂1, x̂2|x, y) for which

Edi(X, X̂i) ≤ Di, i = 1, 2. (3)

An extension of the cascade source coding problem is the triangular setting [21], where there is an additional

direct link from the source encoder to User 2. We solve this problem where side information exists at the source

encoder and User 1, but not at User 2.

The remainder of the paper is organized as follows. In Section II, we formally define the cascade problem and

present the theorem establishing the achievable region. InSection III, we provide a converse and achievability

proofs of the theorem, and in Section IV we explicitly compute the rate region for the Gaussian case. In Section V

we extend our result to the triangular case (cf. Fig. 5), and in Section VI we further extend the results to multiple

users and discuss the corresponding empirical coordination problem.

II. CASCADE RATE DISTORTION: PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the cascade rate-distortion problemwhere side information is known to the source

encoder and to User 1. We present a single-letter characterization of the achievable region. We use the regular

definitions of rate distortion, and we follow the notation of[22]. The source sequences{Xi ∈ X , i = 1, 2, · · · },

and the side information sequence{Yi ∈ Y, i = 1, 2, · · · } are discrete random variables drawn from finite alphabets

X andY, respectively. The random variables(Xi, Yi) are i.i.d.∼ P (x, y). Let X̂1 and X̂2 be the reconstruction

alphabets, anddi : X × X̂i → [0,∞), i = 1, 2, are single letter distortion measures. Distortion between sequences

is defined in the usual way

di(x
n, x̂n

i ) =
1

n

n
∑

j=1

di(xj , x̂i,j), i = 1, 2. (4)

LetMi denote a set of positive integers{1, 2, ..,Mi} for i = 1, 2.

Definition 1 (Cascade rate distortion code with side information at the first two nodes):An

(n,M1,M2, D1, D2) code for sourceX and side informationY consists of two encoders

f1 : Xn × Yn →M1

f2 : Yn ×M1 →M2 (5)

and two decoders

g1 : Yn ×M1 → X̂
n
1

g2 : M2 → X̂
n
2 (6)

such that

E

[

1

n

n
∑

i=1

dj(Xi, X̂j,i)

]

≤ Dj, j = 1, 2 (7)
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The rate pair(R1, R2) of the (n,M1,M2, D1, D2) code is defined by

Ri =
1

n
logMi; i = 1, 2. (8)

Definition 2: Given a distortion pair(D1, D2), a rate pair(R1, R2) is said to beachievableif, for any ǫ > 0,

and sufficiently largen, there exists an(n, 2nR1 , 2nR2 , D1+ ǫ,D2+ ǫ) code for the sourceX with side information

Y .

Definition 3: The (operational) achievable regionRO(D1, D2) of cascade rate distortion is the closure of the

set of all achievable rate pairs.

Theorem 1 is the main result of this work.

Theorem 1:For the cascade rate distortion problem with side information at the source and User 1, as depicted

in Fig. 1, the achievable region is given by

RO(D1, D2) = R(D1, D2), (9)

where the regionR(D1, D2) is defined in (1)-(3).

III. PROOF OFTHEOREM 1

Achievability: The proof follows classical arguments, and therefore the technical details will be omitted. We

describe only the coding structure and justify why the indicated region is achievable. We fix a joint distribution

P
X,Y,X̂1,X̂2

for which (3) holds, and anǫ > 0, and we show that there exists a code with rates

R2 = I(Y,X ; X̂2) + ǫ, (10)

R1 = I(X ; X̂1, X̂2|Y ) + 3ǫ, (11)

complying with the distortion constraints.

Generate randomly2n(I(X,Y ;X̂2)+ǫ) codewords using an i.i.d.∼ P
X̂2

. Then bin the codewords into

2n(I(X;X̂2|Y )+2ǫ) bins. In each bin, there are2n(I(X,Y ;X̂2)−I(X;X̂2|Y )−ǫ) = 2n(I(Y ;X̂2)−ǫ) codewords. In addi-

tion, for any typical sequencesyn, x̂n
2 generate2n(I(X;X̂1|Y,X̂2)+ǫ) codewords using the pmfP (x̂n

1 |y
n, x̂n

2 ) =
∏n

i=1 PX̂1|Y,X̂2
(x̂1,i|yi, x̂2,i).

The source-encoder receives the sequencesxn, yn and first looks for a codeword̂xn
2 that is jointly typical with

xn, yn. If there is such a codeword, the source encoder sends the index of the bin that includes this codeword to

User 1. User 1 looks which codeword in the received bin is jointly typical with the side informationyn. Since there

are less than2n(I(Y ;X̂2) in the bin, with high probability only one codeword will be jointly typical with yn and it

would be the codeword sent by the encoder. User 1 then forwards the codeword to User 2.

Now we can think of a new problem where the source-encoder andUser 1 have side informationY n, X̂n
2 and

hence a rateI(X ; X̂1|Y, X̂2) + ǫ is needed to generatêXn
1 that is jointly typical with(Xn, Y n, X̂2). Therefore, a

total rate to User 1 ofR1 = I(X ; X̂2|Y ) + 2ǫ + I(X ; X̂1|Y, X̂2) + ǫ = I(X ; X̂1, X̂2|Y ) + 3ǫ is needed, and an

additional rateR2 = I(Y,X ; X̂2) + ǫ is needed from User 1 to User 2.
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Converse: Assume that we have an(n,M1 = 2nR1 ,M2 = 2nR2 , D1, D2) code as in Definition 1. We will show

the existence of a joint distributionP
X,Y,X̂1,X̂2

that satisfies (1)-(3). DenoteT1 = f1(X
n, Y n) ∈ {1, ..., 2nR1}, and

T2 = f2(T1, Y
n) ∈ {1, ..., 2nR2}. Then,

nR2 ≥ H(T2)

≥ I(Xn, Y n;T2)

=

n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|T2, X
i−1, Y i−1)

(a)
=

n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|X̂2,i, T2, X
i−1, Y i−1)

≥

n
∑

i=1

I(X,Y ; X̂2,i), (12)

where equality (a) follows from the fact that the reconstruction at timei, X̂2,i, is a deterministic function ofT2.

Now consider

nR1 ≥ H(T1)

≥ H(T1|Y
n)

(a)
= H(T1, T2|Y

n)

≥ I(Xn;T1, T2|Y
n)

=
n
∑

i=1

H(Xi|Yi)−H(Xi|Y
n, T1, T2, X

i−1)

(b)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Y
n, T1, T2, X

i−1, X̂1,i, X̂2,i)

≥

n
∑

i=1

H(Xi|Yi)−H(Xi|Yi, X̂1,i, X̂2,i)

=

n
∑

i=1

I(Xi; X̂1,i, X̂2,i|Yi), (13)

where equality (a) follows from the fact thatT2 is a deterministic function ofT1 andY n, and, similarly, equality

(b) follows from the fact thatX̂1,i andX̂2,i are deterministic functions of(T1, Y
n) andT2, respectively.

The proof is concluded in the standard way by lettingQ be a random variable independent ofXn, Y n, uniformly

distributed over the set{1, 2, 3, .., n}, and considering the joint distribution ofXQ, YQ, X̂1,Q, X̂2,Q. For this joint

distribution, inequalities (12) and (13) imply that (1) and(2) hold, respectively, and (7) implies that (3) holds.

IV. CASCADE RATE DISTORTION: THE GAUSSIAN CASE

In this section we explicitly calculate the rate regionR(D1, D2) for the cases whereX andY are jointly Gaussian

and the distortion is the square-error distortion. The converse and the achievability in the previous sections are proved

for the finite alphabet case, but it can be extended to the Gaussian case [5].
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Our first step in finding the achievable region for the quadratic Gaussian case is to show that it suffices to consider

only jointly Gaussian distributionsP
X,Y,X̂1,X̂2

in order to exhaust the rate region. Then we solve an optimization

problem to find the achievable rate-region explicitly.

Lemma 2 (Optimality of jointly Gaussian distributions):For the quadratic Gaussian cascade rate-distortion prob-

lem with side information known to the source-encoder and toUser 1, i.e.,X,Y are jointly Gaussian and

d1(x, x̂1) = (x− x̂1)
2, d2(x, x̂2) = (x− x̂2)

2, it suffices to consider only jointly Gaussian distributionsP
X,Y,X̂1,X̂2

in order to exhaust the rate regionR(D1, D2) given in (1)-(3).

Proof: Let us fix a point(R1, R2, D1, D2) in the rate region and letP
X,Y,X̂1,X̂2

be a joint distribution that

satisfies (1)-(3). Such a distribution must exist since Inequalities (1)-(3) define the rate region (Theorem 1). Let

K denote the covariance matrix induced byP
X,Y,X̂1,X̂2

and let P̃
X,Y,X̂1,X̂2

denote a normal joint distribution

with mean zero and covariance matrixK. Now let us show that (1)-(3) also hold where the joint distribution is

P̃X,Y,X̂1,X̂2
. Inequality (3) is automatically satisfied, since it depends on the distribution of(X,Y, X̂1, X̂2) only

through the covariance matrixK. Consider,

R1 ≥ I(X ; X̂1, X̂2|Y ),

= h(X |Y )− h(X |X̂1, X̂2, Y ),

(a)
= h(X |Y )− h(X − (α1X̂1 + α2X̂2 + α3Y )|X̂1, X̂2, Y ),

(b)

≥ h(X |Y )− h(X − (α1X̂1 + α2X̂2 + α3Y ))

(c)

≥ h(X |Y )− hP̃ (X − (α1X̂1 + α2X̂2 + α3Y ))

(d)
= IP̃ (X ; X̂1, X̂2|Y ), (14)

equality (a) is true for any set of scalars(α1, α2, α3) and in particular if we choose those that are the linear estimator

of X givenX̂1, X̂2, Y . Note that the coefficients(α1, α2, α3) and the varianceE(X−(α1X̂1+α2X̂2+α3Y ))2 are

a function only of the covariance matrixK. Inequality (b) follows from the fact that conditioning reduces entropy,

and (c) follows from the fact that, given a variance, the Gaussian distribution maximizes the differential entropy.

The termIP̃ (X ; X̂1, X̂2|Y ) denotes the mutual information induced by the Gaussian distribution P̃X,Y,X̂1,X̂2
, and

equality (d) follows from the fact that for the Gaussian distribution the error, i.e.,X − (α1X̂1 + α2X̂2 + α3Y ), is

independent of the observationŝX1, X̂2, Y .

Similarly, we have

R2 ≥ I(Y,X ; X̂2)

= I(Y ; X̂2) + I(X ; X̂2|Y )

≥ IP̃ (Y ; X̂2) + IP̃ (X ; X̂2|Y ), (15)

where the last inequality follows from the same steps as (14).

The next theorem provides an explicit expression for the Gaussian case. The proof is provided in Appendix A

and is based on Lemma 2 and on solving an optimization problemwith quadratic constraints and a linear objective.
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Theorem 3 (Cascade Gaussian case):The rate region of the cascade source coding with side information at the

first two nodes, where the sourceX and the side informationY = X + Z are jointly Gaussian distributed, where

X andZ are mutually independent, and the distortion is quadratic,is given by

R1(D1, D2, R2) =
1

2
max

(

log
σ2
X|Y

σ2
X|W,Y

, log
σ2
X|Y

D1
, 0

)

, (16)

whereσ2
X|W,Y

is given by the following four cases

σ2
X|W,Y (D1, D2, R2) =



































(

22R2D2−σ2

X

σ2

Z
σ2

X
α2

+ σ−2
X|Y

)−1

, if D2 ≤ σ2
X|Y and σ2

X

D2

≤ 22R2 ≤
σ2

Z(σ2

X−D2)

σ2

Z
σ2

X
−D2σ

2

Z
−D2σ

2

X

σ2

X

D2

D2, if D2 ≤ σ2
X|Y and22R2 ≥

σ2

Z (σ2

X−D2)

σ2

Z
σ2

X
−D2σ

2

Z
−D2σ

2

X

σ2

X

D2
(

22R2D2−σ2

X

σ2

Z
σ2

X
α2 + σ−2

X|Y

)−1

, if D2 ≥ σ2
X|Y and σ2

X

D2

≤ 22R2 ≤
σ4

X

σ2

X
D2+σ2

Z
D2−σ2

X
σ2

Z

σ2
X|Y , if D2 ≥ σ2

X|Y , and22R2 ≥
σ4

X

σ2

X
D2+σ2

Z
D2−σ2

X
σ2

Z

(17)

andα =

(

σZ

σX

√

σ2

X
−D2

D2−σ2

X
2−2R2

− 1

)−1

.

Fig. 3 depicts the regions for two specific values ofD1 andD2 such that it captures all four cases of Eq. (17).

1 1.5 2

0.25

0.3

0.35

0.4

0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12Case (a) Case (b) Case (c) Case (d)

R
1

R
1

R2R2

↓↓↓↓
1
2 log

σ2

X

D2

1
2 log

σ2

X

D2

1
2 log

σ4

X

σ2

X
D2+σ2

Z
D2−σ2

X
σ2

Z

1
2 log

σ2

Z (σ2

X−D2)

σ2

Z
σ2

X
−D2σ

2

Z
−D2σ

2

X

σ2

X

D2

1
2 max

(

log
σ2

X|Y

D2

, log
σ2

X|Y

D1

)

−→
←− 1

2 max

(

log
σ2

X|Y

D2
, log

σ2

X|Y

D1

)

Fig. 3. The Gaussian quadratic rate region. The graph on the left hand side shows the rate region for the case whereσ2

X
= σ2

Z
= 1, D2 = 0.35

andD1 = 0.4. SinceD2 < σ2

X|Y
, the rate region is given by Cases (a) and (b) in Eq. (17). The right hand side graph shows the rate region

for the case whereσ2

X
= σ2

Z
= 1, D2 = 0.65 andD1 = 0.5. SinceD2 > σ2

X|Y
, the rate region is given by Cases (c) and (d) in Eq. (17)

Now, let us consider several extreme cases that can be easilysolved using Theorem 3.

1) Side information is independent of the sourceX ⊥ Y : This means thatσ2
X|Y = σ2

X andσ2
Z =∞. For such

a case (17) becomes

σ2
X|W,Y (D1, D2, R2) =



















σ2
X , if D2 ≤ σ2

X and σ2

X

D2
≤ 22R2 ≤

σ2

X

D2

D2, if D2 ≤ σ2
X and22R2 ≥

σ2

X

D2

∞, if D2 ≥ σ2
X , and22R2 ≥ 0

(18)
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and this implies that

R1(D1, D2, R2) =
1

2
max

(

log
σ2
X

D2
, log

σ2
X|Y

D1
, 0

)

, (19)

recovering a result that appears in the successive refinement source coding paper [19].

2) Side information equals the source, i.e.,X = Y : For this case,σ2
X|Y = 0; henceR1 = 0 and22R2 ≥

σ2

X

D2
,

consistent with the well known rate distortion function of the Gaussian source.

3) R2 →∞: If D2 ≤ σ2
X|Y then

R1(D1, D2, R2) =
1

2
max

(

log
σ2
X|Y

D2
, log

σ2
X|Y

D1
, 0

)

, (20)

and if D2 ≥ σ2
X|Y

R1(D1, D2, R2) =
1

2
max

(

log
σ2
X|Y

D1
, 0

)

. (21)

Note that for this case we can assume that the side information Y is known to all three nodes; hence onlyσ2
X|Y

is manifested in the expression.

4) The message that User 2 receives depends only on the side information: In this extreme case, the rateR2 and

the distortionD2 are large enough so that the message that User 2 receives depends only on the side information.

This case is depicted in Fig. 4.

a

  X

Encoder

Encoder

User 2

R1 User 1

R2

Y

X̂1

X̂2

Fig. 4. An extreme case where the rateR2 and the distortionsD2 are large enough so that the message that User 2 receives depends only on

the side information.

For this extreme, the rate region is simply

R1 ≥ I(X ; X̂1|Y ),

R2 ≥ I(Y ; X̂2), (22)

for all joint Gaussian distributions that satisfyσ2
X|Y,X̂1

≤ D1 andσ2
X|X̂2

≤ D2.

More explicitly, this region is given by

D2 ≥
σ2
X(σ2

X2−2R2 + σ2
Z)

σ2
X + σ2

Z

(23)

R1 ≥
1

2
max

(

log
σ2
X|Y

D1
, 0

)

. (24)
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Indeed, if (23) holds, then according to Theorem 3,R1(D1, D2, R2) =
1
2 max

(

log
σ2

X|Y

D1

, 0

)

.

V. TRIANGULAR SOURCE CODING WITH SIDE INFORMATION

In this section, we extend the cascade source coding discussed in previous sections by adding a direct link from

the encoder to the second user, as depicted in Fig. 5. The definition of the code(n,M1,M2,M3, D1, D2) is similar

to the one given in Def. 1 for the cascade case, with an additional messageM3 at rateR3 sent from the source to

User 2.

aX Encoder

User 2

R1 User 1

R2
R3

YY

X̂1

X̂2

Fig. 5. A triangular rate distortion problem with three nodes (encoder, User 1, User 2), where side informationY is known to the encoder

and User 1, but not to User 2. User 1 and User 2 need to reconstruct the sourseX to within distortion criteria.

A. Main theorem and its proof

Theorem 4 (The achievable rate region for the triangular case): The achievable region for the problem depicted

in Fig. 5 is given byR∆(D1, D2), which is defined as the set of all rate-triples(R1, R2, R3) that satisfy

R1 ≥ I(X ; X̂1, U |Y ), (25)

R2 ≥ I(Y,X ;U), (26)

R3 ≥ I(X ; X̂2|U), (27)

for some joint distributionP (x, y)P (x̂1, x̂2, u|x, y) satisfying

Edi(X, X̂i) ≤ Di, i = 1, 2, (28)

where the cardinality of the auxiliary variableU may be bounded by|U | ≤ |X ||Y||X̂1||X̂2|+ 2.

Lemma 5 below shows that one can restrict the joint distribution P (x, y)P (x̂1, x̂2, u|x, y) to

P (x, y)P (x̂1, u|x, y)P (x̂2|x, u) without affecting the region.
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Proof of Converse Part of Theorem 4:Assume that we have an(n, 2nR1 , 2nR2 , 2nR3 , D1, D2) code. We will show

the existence of a joint distributionP
X,Y,U,X̂1,X̂2

that satisfies (25)-(28). DenoteT1 = f1(X
n, Y n) ∈ {1, ..., 2nR1},

andT2 = f2(T1, Y
n) ∈ {1, ..., 2nR2}, andT3 = f3(X

n, Y n) ∈ {1, ..., 2nR3}. Then,

nR1 ≥ H(T1)

≥ H(T1|Y
n)

(a)
= H(T1, T2|Y

n)

≥ I(Xn;T1, T2|Y
n)

=

n
∑

i=1

H(Xi|Yi)−H(Xi|Y
n, T1, T2, X

i−1)

(b)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Y
n, T1, T2, X

i−1, X̂1,i, Ui)

≥

n
∑

i=1

H(Xi|Yi)−H(Xi|Yi, X̂1,i, Ui)

=

n
∑

i=1

I(Xi; X̂1,i, Ui|Yi), (29)

where equality (a) follows from the fact thatT2 is a deterministic function ofT1 andY n, and, similarly, equality (b)

follows from the fact thatX̂1,i is a deterministic function of(T1, Y
n) and from definingÛi , (T2, X

i−1, Y i−1).

Now, consider

nR2 ≥ H(T2)

≥ I(Xn, Y n;T2)

=

n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|T2, X
i−1, Y i−1)

(a)
=

n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|Ui)

≥

n
∑

i=1

I(X,Y ;Ui), (30)

where equality (a) follows from definition ofUi = (T2, X
i−1, Y i−1). In addition, consider

nR3 ≥ H(T3)

≥ H(T3|T2)

≥ I(Xn, Y n;T3|T2)

=

n
∑

i=1

H(Xi, Yi|T2, X
i−1, Y i−1)−H(Xi, Yi|T2, T3, X

i−1, Y i−1)

(a)
=

n
∑

i=1

H(Xi, Yi|Ui)−H(Xi, Yi|X̂2,i, Ui)
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≥

n
∑

i=1

I(X,Y ; X̂2,i|Ui)

≥

n
∑

i=1

I(X ; X̂2,i|Ui), (31)

where equality (a) follows from the definition ofUi = (T2, X
i−1, Y i−1) and the fact thatX̂2,i is a deterministic

function of (T2, T3).

The proof is concluded in the standard way by lettingQ be a random variable independent ofXn, Y n, uniformly

distributed over the set{1, 2, 3, .., n}, and considering the joint distribution ofXQ, YQ, UQ, X̂1,Q, X̂2,Q. For this

joint distribution, Inequalities (29), (30), (31) imply that (25), (26) and (27) hold, respectively, and the fact that the

code we have fixed satisfies the distortion constraints implies that (28) holds.

To prove the cardinality bound ofU , we invoke the support lemma [23, pp. 310]. The external random variable

U must have|X ||Y||X̂1||X̂2| − 1 letters to preserveP (x, y, x̂1, x̂2) plus three more to preserve the expressions

I(X ; X̂1, U |Y ), I(Y,X ;U), I(X ; X̂2|U). Note that preservingP (x, y, x̂1, x̂2) implies thatEdi(X, X̂i) ≤ Di for

i = 1, 2 is also preserved.

For the achievability part, we first establish the following:

Lemma 5 (Optimality of̂X2 − (X,U)− (X̂1, Y )): The rate regionR∆(D1, D2), which is defined by (25)-(28),

does not decrease by restricting the joint distribution to the formP (x, y)P (x̂1, u|x, y)P (x̂2|x, u).

Proof: For a fixed (D1, D2), let the rate-triple(R1, R2, R3) ∈ R∆(D1, D2). Then there exists a joint

distribution

P (x, y, u, x̂1, x̂2) = P (x, y)P (x̂1, x̂2, u|x, y), (32)

for which (25)-(28) hold. Let P (x̂1, u|x, y) and P (x̂2|x, u) be the conditional distribution induced by

P (x, y, u, x̂1, x̂2). We now claim that (25)-(28) are satisfied under the joint distribution

P̃ (x, y, u, x̂1, x̂2) = P (x, y)P (x̂1, u|x, y)P (x̂2|x, u). (33)

This is true, since the expressions (25)-(28) depend onP (x, y, u, x̂1, x̂2) only through the marginalsP (x, y, u, x̂1)

andP (x, u, x̂2). Now notice that those marginals are the same whether the joint distribution isP (x, y, u, x̂1, x̂2)

or P̃ (x, y, u, x̂1, x̂2).

Sketch of proof of Achievability part of Theorem 4:The achievability proof follows directly from the

achievability of cascade source coding as given in Theorem 1. First, we fix a joint distribution of the form

P (x, y)P (x̂1, u|x, y)P (x̂2|x, u, y) such that (25)-(28) hold. SinceR1 > I(X ; X̂1, U |Y ) and R2 > I(Y,X ;U),

then according to Theorem 1, we can generate(X̂n
1 , U

n) that with high probability would be jointly typical with

(Xn, Y n) according to the distributionP (x, y)P (x̂1, u|x, y). Now, sinceUn is known both to the encoder and

to User 2, we need a rateR3 > I(X ; X̂2|U) to generateX̂n
2 such that with high probability it is jointly typical

with Xn, Un. Finally, because of the Markov relation̂X2 − (X,U)− (X̂1, Y ), we can invoke the Markov lemma,

and conclude that the sequencesXn, Y n, X̂n
1 , , X̂

n
2 , U

n are jointly typical and therefore the distortion criteria are

satisfied.
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B. The Gaussian triangular case

We now evaluate the rate region of the triangular network depicted in Fig. 5 for the quadratic Gaussian case,

i.e., X,Y are jointly Gaussian andd1(x, x̂1) = (x− x̂1)
2, d2(x, x̂2) = (x− x̂2)

2. We first show that it suffices to

consider only Gaussian joint distributions for exhaustingthe region, and then we show that by a small change in

the Gaussian cascade region we obtain the Gaussian triangular region.

Theorem 6 (Optimality of jointly Gaussian distributions):For the quadratic Gaussian triangular rate-distortion

problem with side information known to the source-encoder and to User 1, it suffices to consider only jointly

Gaussian distributionsPX,Y,U,X̂1,X̂2
in order to exhaust the rate regionR∆(D1, D2) given in (25)-(28).

Before proving the theorem, let us introduce the Pareto frontier [24] of a region and show that if two rate-regions

have the same Pareto frontier then they are identical. ThePareto frontier of a regionR, which we denote by

Par(R), is the set of all points for which there is no strictly betterpoint in the region. Formally,

Par(R) = {Rn ∈ R : ∄R̃n ∈ R s.t. R̃n ≺ Rn}, (34)

whereR̃n ≺ Rn denotes that̃Ri ≤ Ri for all 1 ≤ i ≤ n and for some1 ≤ i ≤ n, R̃i < Ri.

Lemma 7: If two rate-regions,R1 andR2, have the same Pareto frontier, then they are identical.

Proof: Let us show that the assumptionsR ∈ R1 andR /∈ R2 lead to a contradiction. IfR ∈ R1, then there

exists a pointRp ∈ Par(R1) that satisfiesRp ≺ R. SinceRp ∈ Par(R1), it follows thatRp ∈ Par(R2). Finally,

sinceRp ∈ R2 andRp ≺ R, thenR ∈ R2, which contradicts the assumption.

Proof of Theorem 6:As a result of Lemma 7, we conclude that it suffices to prove Theorem 6 only for the points

in the Pareto frontier. In addition, we notice that points that are Pareto optimal satisfy (25)-(27) with equality, which

may be also written as

R1 = I(X ; X̂1, U |Y ), (35)

R2 = I(Y,X ;U), (36)

R3 +R2 = I(Y,X ; X̂2, U). (37)

Finally, assuming without loss of generalityU is real-valued and using similar arguments as in Lemma 2, we

conclude that for any joint distributionP
X,Y,X̂1,X̂2,U

there exists a Gaussian joint distribution,P̃
X,Y,X̂1,X̂2,U

, with

the same covariance matrix asPX,Y,X̂1,X̂2,U
, for which the induced right hand sides of (35)-(37) do not increase.

Now, with a small change in the solution to the Gaussian cascade, we obtain the triangular Gaussian region. The

proof is deferred to Appendix B.

Theorem 8 (Triangle Gaussian case):The rate region of the triangular source coding with side information at

the first two nodes, where the sourceX and the side informationY = X + Z are jointly Gaussian distributed,

whereX andZ are mutually independent, and the distortion is quadratic,is given by Eq. (16)-(17), whereD2 is

replaced byD22
2R3 i.e., Rtriangle

1 (D1, D2, R2, R3) = Rcascade
1 (D1, D22

2R3 , R2).
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VI. EXTENSIONS

Here we present two further extensions. The first is obtainedby generalizing the triangular network results to

more users. The second is obtained by considering a more general problem of empirical coordination rather than

distortion criteria.

A. Multiple Users

aX Encoder User 2 Userk

Userk + 1

Userk + 2

Userk + l

R2R1 R3 Rk

Rk+1

Rk+2

Rk+l−1

Rk+l

YYYY

X̂2X̂1

X̂k

X̂k+1

X̂k+2

X̂k+l

Rk+l+1

User 1

Fig. 6. A triangular rate distortion problem withk + l users, where the side informationY is known to the encoder and to Users1, 2, ..., k,

but not to Usersk + 1, k + 2, ..., k + l.

The triangular problem depicted in Fig. 5 can be extended tok + l users, where the side information is known

to the source encoder and to Users1, 2, ..., k, but is not known to Usersk + 1, k + 2, ..., k + l. This problem is

depicted in Fig. 6, and its region is given by the next theorem.

Theorem 9:The achievable region for the problem depicted in Fig. 6 is given by the vector rates

(R1, R2, ..., Rk+l+1) that satisfy

Ri ≥ I(X ; X̂i, X̂i+1, ..., X̂k+l−1, U |Y ), 1 ≤ i ≤ k

Rj ≥ I(X ; X̂j , ..., X̂k+l−1, U), k + 1 ≤ j ≤ k + l

Rk+l+1 ≥ I(X ; X̂k+l|U),

(38)

for some distributionP (x, y)P (x̂1, x̂2, ..., x̂k, u|x, y) for which

Edi(X, X̂i) ≤ Di, 1 ≤ i ≤ k + l. (39)

where the cardinality of the auxiliary variableU may be bounded by|U | ≤ |X ||Y||X̂1||X̂2|...|X̂k+l|+ k + l.

The proof of Theorem 9 follows similar steps as the proof of Theorem 4 and is therefore omitted.
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B. Empirical coordination

In [25], two coordination problems were introduced: Empirical coordination, where the goal is to generate

sequences with a specific empirical distribution, and strong coordination, where the goal is to generate sequences

with a distribution that is close (in total variation) to a specific i.i.d. distribution. The empirical coordination problem

is a generalization of the rate distortion problem, since a distortion constraint defines a half-plane in the empirical

distribution space. Hence, if we find the optimal rate neededto generate a specific empirical distribution, we also

find the optimal rate needed to generate a specific distortionconstraint.

For the cascade rate distortion problem with side information at the first two nodes, the extension to the empirical

coordination problem is straightforward.

Theorem 10 (Rate coordination in the cascade problem):The rate coordination regionRP0
(P (x̂1, x̂2|x, y)) of

the cascade problem where side information is known to the first two nodes, whereX,Y ∼ P0(x, y), and an

empirical distributionP0(x, y)P (x̂1, x̂2|x, y) is desired, is given by

R2 ≥ I(Y,X ; X̂2),

R1 ≥ I(X ; X̂1, X̂2|Y ), (40)

where the joint distribution evaluating the mutual information expression isP0(x, y)P (x̂1, x̂2|x, y).

Proof: The achievability proof follows immediately from the achievability proof of Theorem 1, where we fixed

an empirical distribution and showed that it can be achievedusing the above rates. The converse also follows from

the converse of Theorem 1, but in the last step we need to invoke [25, Proposition 2], which states that the expected

empirical distribution equals the distribution of the random variables chosen uniformly over the time sequence

1, 2, ..., n, i.e.,E
[

P
Xn,Y n,X̂n

1
,X̂n

2

(x, y, x̂1, x̂2)
]

=P
XQ,YQ,X̂1,Q,X̂2,Q

(x, y, x̂1, x̂2).

However, the triangular coordination problem is an open problem, even without side information. The solution

here is heavily based on the fact that in the achievability proof it suffices to consider only a specific empirical

distribution (with a Markov structure), but for an arbitrary distribution the coordination problem remains open.

APPENDIX A

PROOF OFTHEOREM 3

Following Lemma 2 we can rewrite the rate region for the Gaussian case as:

R2 ≥ I(Y,X ;W ), (41)

R1 ≥ I(X ;V,W |Y ), (42)

where the vector(X,Y, V,W ) is jointly Gaussian distributed and satisfies

σ2
X|W ≤ D2 (43)

σ2
X|W,V,Y ≤ D1, (44)

whereσ2
A|B , E[(A− E[A|B])2].
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Without loss of generality let us choose the following structure

Y = X + Z,

W = X + αY + Z2 = (1 + α)X + αZ + Z2,

V = X + βY + γZ2 + Z1, (45)

where the random variablesX,Z,Z1, Z2 are jointly Gaussian and mutually independent, with variances

σ2
X , σ2

Z , σ
2
Z1
, σ2

Z2
, respectively, and the coefficients(α, β, γ) are real number scalars.

Equations (42)-(44) become

R2 ≥ I(X,Y ;W )

= H(W )−H(W |X,Y )

=
1

2
log

(1 + α)2σ2
X + α2σ2

Z + σ2
Z2

σ2
Z2

(46)

D2 ≥ σ2
X|W =

σ2
X(α2σ2

Z + σ2
Z2
)

(1 + α)2σ2
X + α2σ2

Z + σ2
Z2

(47)

R1 =
1

2
max

(

log
σ2
X|Y

σ2
X|W,Y

, log
σ2
X|Y

D1

)

, (48)

whereσ2
X|Y =

σ2

Xσ2

Z

σ2

X
+σ2

Z

andσ−2
X|W,Y

= σ−2
Z2

+ σ−2
X + σ−2

Z .

Inequalities (46) and (47) follow directly from (41) and (43), respectively. Eq. (48) follows from combining the

following two equations, (49)- (50). IfD1 ≥ σ2
X|W,Y

, then (44) is automatically satisfied, and thenV is not needed

(may be independent of anything else) and therefore

R1 ≥ I(X ;W |Y )

= H(X |Y )−H(X |Y,W )

= H(X |Y )−H(X |Y,W )

=
1

2
log

σ2
X|Y

σ2
X|W,Y

. (49)

If D1 ≤ σ2
X|W,Y

, then

R1 ≥ I(X ;V,W |Y )

= H(X |Y )−H(X |Y, V,W )

=
1

2
log

σ2
X|Y

D1
. (50)

The last equality is due to the fact that we can choose(β, γ, Z1) such thatσ2
X|W,V,Y

= D1.

Now let us fixD1 ≥ 0, D2 ≥ 0, andR2 ≥
1
2 log

σ2

X

D2

, and let us find the functionR1(D1, D2, R2), which defines

the rate region. (The condition onR2 is due to the fact that ifR2 < 1
2 log

σ2

X

D2
the rate will not be achievable for

anyR1). To find R1 we need to solve the following optimization problem
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maximize σ2
Z2

(51)

subject to (22R2 − 1)σ2
Z2
≥ (1 + α)2σ2

X + α2σ2
Z (52)

σ2
Z2
(σ2

X −D2) ≤ α2(σ2
XD2 + σ2

ZD2 − σ2
Xσ2

Z) + 2ασ2
XD2 +D2σ

2
X (53)

The objective (51) follows from the fact thatR1 depends only onσ2
Z2

and (52) and (53) follow from (46) and

(47), respectively. To solve this optimization problem, wedivide the problem into four cases, where each case has

a simple solution (each case corresponds to a line in (17)).

Case 1: For this case we assume that

σ2
XD2 + σ2

ZD2 − σ2
Xσ2

Z < 0⇒ D2 ≤
σ2
Zσ

2
X

σ2
Z + σ2

X

= σ2
X|Y , (54)

and

R2 ≥
1

2
log

σ2
Z(σ

2
X −D2)

σ2
Zσ

2
X −D2σ2

Z −D2σ2
X

σ2
X

D2
. (55)

Because of the assumption in (73), Eq. (53) holds with equality, since otherwiseσ2
Z2

can be increased until it

hits the boundary of (53).

−2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5

6

α

σ
2 Z

2

Constraint Eq. (52)

Constraint Eq. (53)

Fig. 7. Case 1: the maximum ofσ2

Z2
, where both constraints hold, is obtained at the maximum of Eq. (53).

The argument that achieves the maximum of a quadratic formaα2 + gα + c is −b
2a , hence the argument that

maximizes (53) is

α =
−σ2

XD2

σ2
XD2 + σ2

ZD2 − σ2
Xσ2

Z

, (56)

and the maximum is

σ2
Z2

= c−
b2

4a

=
σ2
xD2

σ2
ZD2 − σ2

Zσ
2
X

(σ2
X −D2)(σ

2
XD2 + σ2

ZD2 − σ2
Zσ

2
X)
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= ασ2
Z . (57)

Note that (57) can be also written as
1

σ2
Z2

=
1

D2
−

1

σ2
Z

−
1

σ2
X

. (58)

If (α, σ2
Z2
) satisfy Eq. (52), then the solution to the optimization problem is simplyσ2

Z2
and using (48) we obtain

R1 =
1

2
max

(

log
σ2
X|Y

D2
, log

σ2
X|Y

D1

)

. (59)

Now let us investigate when(α, σ2
Z2
) satisfies Eq. (52) (or equivalently (46))

R2 ≥
1

2
log

(1 + α)2σ2
X + α2σ2

Z + σ2
Z2

σ2
Z2

(a)
=

1

2
log

σ2
X(α2σ2

Z + σ2
Z2
)

σ2
Z2
D2

(b)
=

1

2
log

σ2
X(α2σ2

Z + ασ2
Z)

ασ2
ZD2

(c)
=

1

2
log

σ2
Z(σ

2
X −D2)

σ2
Zσ

2
X −D2σ2

Z −D2σ2
X

σ2
X

D2
, (60)

where (a) follows from Equality (47), (b) from (57) and (c) from (56).

Case 2: Assume that

D2 ≤
σ2
Zσ

2
X

σ2
Z + σ2

X

= σ2
X|Y , (61)

and

R2 ≤
1

2
log

σ2
Z(σ

2
X −D2)

σ2
Zσ

2
X −D2σ2

Z −D2σ2
X

σ2
X

D2
. (62)

Now if (60) is not satisfied, then the maximum ofσ2
Z2

should be on the boundary of the constraints, namely, both

(52) and (53) should hold with equality. This is because the upper part of the intersection should be either increasing

or decreasing. Such a case is shown in Fig. 8.
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3

4

5

α

σ
2 Z

2

Constraint Eq. (52)

Constraint Eq. (53)

Fig. 8. Case 2: the maximum ofσ2

Z2
, where both constraints hold, is obtained at the intersection of (52) and (53).
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Consider the case where (46) and (47) hold with equality. Then we obtain

22R2σ2
Z2

=
σ2
X(α2σ2

Z + σ2
Z2
)

D2
, (63)

which implies

σ2
Z2

=
σ2
Zσ

2
X

22R2D2 − σ2
X

α2. (64)

Now substitutingσ2
Z2

given by (64) into (52) we obtain

α2σ2
Zσ

2
X(22R2 − 1)

22R2D2 − σ2
X

= (1 + α)2σ2
X + α2σ2

Z , (65)

which simplifies to
α2σ2

Z(σ
2
X −D2)

D2 − σ2
X2−2R2

= (1 + α)2σ2
X . (66)

Taking the square-root on each side of the equation we obtaintwo possible solutions forα:

1

α
= ±

σZ

σX

√

σ2
X −D2

D2 − σ2
X2−2R2

− 1. (67)

Since we need to maximizeσ2
Z2

, which is proportional toα2 (see Eq. (64)), we choose the solution with the plus

sign.

Case 3: Assume that

D2 ≥
σ2
Zσ

2
X

σ2
Z + σ2

X

= σ2
X|Y , (68)

and

R2 ≥
1

2
log

σ2
Z(σ

2
X −D2)

σ2
Zσ

2
X −D2σ2

Z −D2σ2
X

σ2
X

D2
. (69)

−10 −8 −6 −4 −2 0 2 4
−10

−5

0

5

10

15

20

25

30

α

σ
2 Z

2 Constraint Eq. (52)

Constraint Eq. (53)

Fig. 9. Case 3: the maximum ofσ2

Z2
, where both constraints hold, is obtained at infinity, sincethere is a infinite overlap between the constraints.

If
(σ2

XD2 + σ2
ZD2 − σ2

Xσ2
Z)

σ2
X −D2

≥
σ2
X + σ2

Z

22R2 − 1
, (70)
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which is equivalent to

22R2 ≥
σ4
X

σ2
XD2 + σ2

ZD2 − σ2
Xσ2

Z

, (71)

then the maximum ofσ2
Z2

is obtained at infinity (as illustrated in Fig. 9), which implies that

R1 =
1

2
max

(

0, log
σ2
X|Y

D1

)

=
1

2
log

σ2
X|Y

D1
. (72)
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Fig. 10. Case 4: the maximum ofσ2

Z2
, where both constraints hold, is obtained at the intersection of (52) and (53).

Case 4: Assume that

D2 ≥
σ2
Zσ

2
X

σ2
Z + σ2

X

= σ2
X|Y , (73)

and

R2 ≤
1

2
log

σ2
Z(σ

2
X −D2)

σ2
Zσ

2
X −D2σ2

Z −D2σ2
X

σ2
X

D2
. (74)

If (71) does not hold, then the maximum ofσ2
Z2

should be at boundary of the constraint, namely, (52) and

(53) should hold with equality. This is because the upper part of the intersection should be either increasing or

decreasing. Such a case is shown in Fig. 10.

APPENDIX B

PROOF OFTHEOREM 6

Let us rewrite the rate region equations similarly to (42)-(44) as,

R1 ≥ I(X ;V,W |Y ), (75)

R2 ≥ I(Y,X ;W ), (76)

R3 ≥ I(X ;W ′|W ), (77)

where the vector(X,Y, V,W ) is jointly Gaussian distributed and satisfies

σ2
X|W,W ′ ≤ D2 (78)
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σ2
X|W,V,Y ≤ D1, (79)

Without loss of generality, we may assume thatX,Y,W, V have the same structure as in (45) andW ′ = X+ηW+Z ′

whereZ ′ ∼ N(0, σ2
Z′ is independent ofX,Y,W, V . Furthermore, we note that we can assume that (77) holds with

equality, since if not, we can changeη andZ ′ such that equality will hold, and the change will only decrease

σ2
X|W,W ′ - therefore (75)-(79) will continue to hold. Now, the equality in (77) implies that

σ2
X|W,W ′ = σ2

X|W 2−2R3 . (80)

Hence (78) becomes

σ2
X|W ≤ D22

2R3 . (81)

Now we note that we obtain the same optimization problem as in(46)-(48), just thatD2 is replaced byD22
2R3 .
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