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Denoising

• Xn = (X1, . . . , Xn) is a noise-free signal of interest corrupted by a channel

• Observe a noise-corrupted sequence Zn = (Z1, . . . , Zn)

• Objective is to estimate Xn from Zn

• Λ measures goodness of reconstruction X̂n : 1
n

∑n

t=1 Λ(Xt, X̂t)



Discrete Denoising

• Xi, Zi, X̂i take values in the finite alphabet A = {0, . . . ,M − 1}

For concreteness, we focus on:

• Modulo-Madditive noise Zi = Xi ⊕ Ni

• Channel characterized by noise process {Ni}



Applications

• Text Correction

• Image Denoising

• Reception of Uncoded Data

• DNA Sequence Analysis and Processing

• Systematic Source/Channel Decoding

• Pattern Recognition

• Separation of Superimposed Signals

• Computer Memory with Defects

...



Example

• Binary source sequence: 0001111100001111100

• Channel: BSC, i.e., {Ni} ∼ Bernoulli(δ)

0001000001000001010

• Corrupted Sequence: ⇒ 0000111101001110110

• Loss Function: Λ is Hamming loss

• Objective: Minimize Bit Error Rate given the observation of n-block.



Universality Setting

• Noiseless Source unknown

• Channel known



Previous Approaches to Universal Discrete Denoising

(for memoryless channels)

• Hidden Markov process modelling: EM + Forward-Backward (aka BCJR, Baum-
Welch, Discrete-time Wonham Filtering)

• Compression-based denoising:

– Occam Filters [Natarajan ’95]
– ...
– ∗ Kolmogorov Sampler [Donoho ’02]
∗ Empirical Dist. of R-D Codes [Weissman & Ordentlich ’04]

Question:

In this setting, can optimum source-dependent performance be attained?



DUDE Algorithm: General Idea

(Weissman, Ordentlich, Seroussi, Verdú & Weinberger ’05)

• Fix context length k. For each letter to be denoised, do:

• Find left k-context (ℓ1, . . . , ℓk) and right k-context (r1, . . . , rk)

ℓ1 ℓ2 · · · ℓk • r1 r2 · · · rk

• Count all occurrences of letters with left k-context (ℓ1, . . . , ℓk) and right k-
context (r1, . . . , rk).

• Make decision using

– the loss function
– the channel transition matrix
– the count vector
– the observed letter to be denoised.

• Note: Decision rule does not depend on n, k, nor on (ℓ1, . . . , ℓk) and (r1, . . . , rk)



Example: DUDE for BSC + Hamming loss (error rate)

For each bit b , count how many bits that have the same left and right k-contexts
are equal to b and how many are equal to b̄. If the ratio of these counts is below

2δ(1 − δ)

(1 − δ)2 + δ2

then b is deemed to be an error introduced by the BSC.



Properties of the DUDE

• Universally achieves asymptotically optimum performance

• Linear complexity in time and space

• Does well in practice



Some follow-up work on DUDE

• (Dembo & Weissman ’04)
“Universal Denoising for the Finite-Input-General-Output Channel”

• (Gemelos, Sigurjónsson & Weissman ’04)
“Universal Minimax Discrete Denoising Under Channel Uncertainty”

• (Ordentlich, Weissman, Weinberger, Somekh-Baruch & Merhav ’04)
“Discrete Universal Filtering Through Incremental Parsing”

• (Ordentlich, Weinberger & Weissman ’04)
“Efficient pruning of multi-directional context trees with applications to universal
denoising and compression”

• (Ordentlich, Seroussi, Verdú, Viswanathan, Weinberger & Weissman ’04)
“Channel Decoding of Systematically Encoded Unknown Redundant Sources,”

• (Chen, Diggavi, Dusad & Muthukrishnan ’05)
“Efficient String Matching Algorithms for Combinatorial Universal Denoising,”

• (Yu & Verdú ’05)
“Schemes for Bi-Directional Modeling of Discrete Stationary Sources,”

All consider memoryless channels



Our Focus: Channels with Memory

Assumption 1. Noise process, {Ni} , is

• stationary

• α-mixing with
∑∞

t=1 αt < ∞

where the α-mixing coefficients are defined as:

αt = sup
{k≤l≤m≤n: m−l≥t}

max
ul

k
,nm

∣

∣P (N l
k = ul

k, N
n
m = un

m) − P (N l
k = ul

k)P (Nn
m = un

m)
∣

∣



Channels with Memory (cont.)

Define the M2k+1 × M2k+1 channel transition matrix as

Πk
−k(x

k
−k, z

k
−k) = P (Nk

−k = zk
−k ⊖ xk

−k)

Assumption 2. Πk
−k is non-singular for every k.

Note the relation
PT

Zk
−k

= PT

Xk
−k

· Πk
−k, (1)

which implies, with Assumption 2,

PT

Xk
−k

= PT

Zk
−k

·
(

Πk
−k

)−1



Optimum Denoising: Known Source

X̂opt
i (zn) = argmin

x̂∈A
E[Λ(Xi, x̂)|Zn = zn]



Motivating Derivation

• Optimum kth order sliding-window denoiser (source distribution known )

X̂
opt
0 (z

k
−k) = arg min

x̂
E[Λ(X0, x̂)|Zk

−k = z
k
−k]

= arg min
x̂

∑

a

Λ(a, x̂)









∑

xk
−k

:x0=a

P
Xk
−k

(x
k
−k)PNk

−k
(z

k
−k ⊖ x

k
−k)









• Motivated by PT

Xk
−k

= PT

Zk
−k

·
(

Πk
−k

)−1
, we take

X̂i(z
i+k
i−k) = arg min

x̂

∑

a

Λ(a, x̂)









∑

xk
−k

:x0=a

[

P̂
T

Zk
−k

·
(

Π
k
−k

)−1
]

(x
k
−k)PNk

−k
(z

i+k
i−k ⊖ x

k
−k)









Let X̂n,k denote the overall denoiser obtained.



Computation of (Πk
−k)

−1

Note that Πk
−k

(

xk
−k, zk

−k

)

= Πk
−k

(

x̃k
−k, z̃k

−k

)

whenever zk
−k ⊖ xk

−k = z̃k
−k ⊖ x̃k

−k.

Theorem 1. Let FM denote the M × M Fourier matrix

FM(l, m) =
1√
M

exp

{

−j
2π

M
lm

}

and

Hn = F⊗n
M .

(a) H2k+1 diagonalizes Πk
−k, i.e., Πk

−k = HH
2k+1ΓH2k+1, where Γ is diagonal M2k+1 ×M2k+1.

(b) diag(Γ) = H2k+1 · P
Nk
−k

.

Thus we get

• P̂
Xk
−k

=
(

Πk
−k

)−T · P̂
Zk
−k

= H2k+1 ·
[(

H∗
2k+1 · P̂

Zk
−k

)

⊘
(

H2k+1 · P
Nk
−k

)]

,

• Computation is O(kM2k) , compared with O(M6k) of direct computation.

Example: in case M = 2, each Πk
−k is diagonalized by the Hadamard transform

(Iordache, Tăbus & Astola ’02) and (Giurcăneanu & Yu ’05)



Complexity

M = Alphabet size; k = Order of sliding-window denoiser; n =Data block length

• Pre-processing.

(Πk
−k)

−1 : O(kM2k)

• Computation of counts.
P̂

Zk
−k

[zn] : O(kn)

• Computation of decoding rule.
P̂

Xk
−k

: O(M4k)
{

X̂0(z
k
−k)

}

zk
−k

: O(M4k)

• Denoising.

X̂i(z
i+k
i−k

) : O(kn)

Total number of operations: O(kn + M4k) = O(n log n) provided kn = c log n

Total space: O(n)



Selection of k

• Complexity:

– We have seen that kn = c log n gives O(n log n) complexity

• More basic tradeoff:

– k too short 7→ suboptimum performance
– k too long (⇔ too short n ) 7→ counts are unreliable



Performance Criterion

Formally, a denoiser X̂n is a mapping An → An . For any xn, zn let

LX̂n(x
n, zn) =

1

n

n
∑

t=1

Λ(xt, X̂t(z
n)),

where Λ is the given loss function.



Universal Asymptotic Optimality

Theorem 2. Let X̂n
univ , X̂n,kn where kn → ∞ and satisfies

1

n
knM12kn

∥

∥

∥

∥

(

Πkn
−kn

)−1
∥

∥

∥

∥

2

−→ 0 as n → ∞.

1. Stochastic Setting : For any stationary process X = (X1, X2 . . .)

lim
n→∞

ELX̂n
univ

(Xn, Zn) = lim
n→∞

min
X̂n

ELX̂n(X
n, Zn)

where the minimization on the right side is over all denoisers.

2. Semi-Stochastic Setting : For all {xn}n≥1, xn ∈ An,

LX̂n
univ

(xn, Zn) − Dkn(x
n, Zn) −→ 0 in probability

where Dk(x
n, zn) = minf :A2k+1→A

[

1
n−2k

∑n−k

i=k+1 Λ
(

xi, f(zi+k
i−k)

)

]

.



Example 1: Memoryless Noise

• For a memoryless channel, Πk
−k = (Π0

−0)
⊗(2k+1)

• Therefore,
∥

∥

∥

(

Πk
−k

)−1
∥

∥

∥
=

∥

∥

∥

(

Π0
−0

)−1
∥

∥

∥

2k+1

• kn = c log n suffices for

1

n
knM12kn

∥

∥

∥

∥

(

Πkn
−kn

)−1
∥

∥

∥

∥

2

−→ 0 as n → ∞

Remarks:

1. Can be shown using ideas similar to those in [Dembo & Weissman ’04] that our
scheme coincides with the DUDE in this case

2. Bounds in DUDE paper allow kn = C log n, for C > c



Example 2: Binary Noise Modulated by An Arbitrarily

Distributed State Process

• Let {Si} be an arbitrarily distributed state process and {Ni} be a binary
process whose components are independent when conditioned on {Si} , where
Ni|Si = s ∼ Bernoulli(δs) for every s ∈ S

• Let δ = sups∈S δs and assume δ < 1/2

• It can be shown that
∥

∥

∥

(

Πk
−k

)−1
∥

∥

∥
≤ 1/(1 − 2δ)2k+1

• kn = c log n suffices for

1

n
knM12kn

∥

∥

∥

∥

(

Πkn
−kn

)−1
∥

∥

∥

∥

2

−→ 0 as n → ∞



Example 3: Contagion Channels

• Contagion channels (F. Alajaji & T. Fuja ’94) are binary additive noise channels,
where the noise process is an M -th order Markov process with transition

probabilities characterized by P (Nt = 1|N t−1
t−M = nt−1

t−M) =
ε+w(nt−1

t−M
)δ

1+Mδ
, where

w denotes Hamming weight, ε = P (Nt = 1)

• Can show

∥

∥

∥

(

Πk
−k

)−1
∥

∥

∥
≤

(

1 − 2ε

1 + Mδ

)−(2k+1)

• kn = c log n suffices for

1

n
knM12kn

∥

∥

∥

∥

(

Πkn
−kn

)−1
∥

∥

∥

∥

2

−→ 0 as n → ∞



Proof Sketch: Semi-stochastic Setting

• To show

LX̂n
univ

(x
n
, Z

n
) − Dkn(x

n
, Z

n
) −→ 0 in probability

• Define

qk(z
n
, x

n
)[a, u

k
−k] =

1

n − 2k
|{k + 1 ≤ i ≤ n − k : xi = a, z

i+k
i−k = u

k
−k}|

q̂k(z
n
)[a, u

k
−k] =

∑

xk
−k

:x0=a

[

P̂
Zk
−k

[z
n
]
T ·

(

Π
k
−k

)−1
]

(x
k
−k)PNk

−k
(u

k
−k ⊖ x

k
−k)

• With the following fact

|L
X̂n,k(x

n
, z

n
) − Dk(x

n
, z

n
)| ≤ ΛmaxM

2k+2‖qk(z
n
, x

n
) − q̂k(z

n
)‖

• It is sufficient to show

P (‖q̂k(Z
n
) − qk(Z

n
, x

n
)‖ ≥ ǫ) ≤ M

8k+2

(

4k + 1 + 2
∑∞

t=1 α
(N)
t

)
∥

∥

∥

(

Πk
−k

)−1
∥

∥

∥

2

ǫ2(n − 2k)



Proof Sketch: Stochastic Setting

• To show

lim
n→∞

ELX̂n
univ

(X
n
, Z

n
) = lim

n≥∞
min
X̂n

ELX̂n(X
n
, Z

n
)

• It follows from the proof for semi-stochastic setting:

P
(

LX̂n
univ

(X
n
, Z

n
) ≥ Dk(X

n
, Z

n
) + ε

)

≤ ε

ELX̂n
univ

(X
n
, Z

n
) ≤ EDk(X

n
, Z

n
) + ε + εΛmax = EDk(X

n
, Z

n
) + ε(1 + Λmax)

• Together with

EDk(X
n
, Z

n
) ≤ E

[

min
x̂∈A

E
[

Λ(X0, x̂)|Zk
−k

]

]

lim
k→∞

E

[

min
x̂∈A

E
[

Λ(X0, x̂)|Zk
−k

]

]

= inf
n≥1

min
X̂n

ELX̂n(X
n
, Z

n
)

• It follows that

lim sup
n→∞

ELX̂n
univ

(X
n
, Z

n
) ≤ inf

n≥1
min
X̂n

ELX̂n(X
n
, Z

n
)



Extension 1: General Stationary Channels

Consider a general channel characterized by {P (·|x∞
−∞)}x∞

−∞ and satisfying

1. stationarity

2. P (zk
−k|x

∞
−∞) = P (zk

−k|x̃
∞
−∞) whenever xk

−k = x̃k
−k, ∀k

[ then take Πk
−k(x

k
−k, z

k
−k) = P (zk

−k|x
k
−k) , and right side will make sense ]

3.
∑∞

t=1 αt < ∞,

where α-mixing coefficients are now defined as:

αt = sup
x∞
−∞

sup
{k≤l≤m≤n: m−l≥t}

max
ul

k
,nm

∣

∣P (zl
k, z

n
m|xl

k, x
n
m) − P (zl

k|x
l
k)P (zn

m|xn
m)

∣

∣

Scheme and its performance guarantees carry over verbatim
[replacing PNk

−k
(zi+k

i−k ⊖ xk
−k) by P (Zk

−k = zi+k
i−k|x

k
−k) ]



Example of Family of Non-Additive Stationary Channels

Satisfying Assumptions

• {Nt} is stationary noise process as before

• Channel input-output relationship is

Zi = f(xi, N
i+l
i−l )



Extension 2: Non-Stationary Channels

In stationary case P̂T

Zk
−k

·
(

Πk
−k

)−1
was good estimate of (2k+1) th-order empirical

distribution of input sequence. So now replace

P̂T

Zk
−k

·
(

Πk
−k

)−1
= 1

n−2k

∑n−k

i=k+1 1
T

{Zi+k
i−k

=·}
·
(

Πk
−k

)−1

by the more general form
1

n−2k

∑n−k

i=k+1 1
T

{Zi+k
i−k

=·}
·
(

Πi+k
i−k

)−1
, leading to X̂i(z

i+k
i−k) =

arg min
x̂

∑

a

Λ(a, x̂)















∑

xk
−k

:x0=a





n−k
∑

j=k+1

1
T
{

Z
j+k
j−k

=·
} ·

(

Π
j+k

j−k

)−1



 (x
k
−k)Π

i+k
i−k(x

k
−k, z

i+k
i−k)















Semi-stochastic performance guarantees carry over: For all {xn}n≥1, xn ∈ An,

lim sup
n→∞

in probability
[

LX̂n
univ

(x
n
, Z

n
) − Dkn(x

n
, Z

n
)
]

≤ 0.

growth condition for kn now being

1

n
knM

12knsup
i

∥

∥

∥

∥

(

Π
i+kn
i−kn

)−1
∥

∥

∥

∥

2

−→ 0 as n → ∞.



Extension 3: Multi-dimensional Index

• Replace contexts by neighborhoods

• Analogous assumptions on α-mixing and non-singularity of channel

• Analogous performance guarantees in both stochastic and semi-stochastic setting



A Variation

• Considered also the following modified denoiser:

1. Set k , the order of the sliding-window denoiser to be used

2. Select a value k′ , k′ < k , and obtain P̂
Xk′
−k′

= (Πk′
−k′)

−T · P̂
Zk′
−k′

3. Obtain P̂
Xk
−k

through left- and right-extension of P̂
Xk′
−k′

by assuming X is a Markov

process of order no greater than 2k′ , i.e.,

P̂
Xk
−k

(x
k
−k) = P̂

Xk′
−k′

(

x
k′
−k′

)

k−k′
∏

i=1

[

P̂
Xk′
−k′

(

xk′+i|xk′+i−1
−k′+i

)

P̂
Xk′
−k′

(

x−k′−i|xk′−i

−k′−i+1

)

]

,

4. Do the denoising assuming P̂
Xk
−k

• The modified denoiser attains:

– Observed that P̂
Xk
−k

thus obtained is closer to P
Xk
−k

than (Πk
−k)

−T · P̂
Zk
−k

– Need compute (Πk′
−k′)

−1 rather than (Πk
−k)

−1

Similar idea applicable for multi-dimensional data.

Initial justification in (Moon & Weissman’05): “Universal Filtering via Hidden Markov Modelling”



Experiment 1: Burst-Noise Channel Corrupting a 1st-order

Markov Chain

• The source sequence is a first-order symmetric binary Markov process with the transition

probability, p

• The noise sequence is a binary two-state hidden Markov process with parameters

[ǫG, ǫB, PGB, PBG]

Good Bad

GB
P

BG
P

G

G

G
1

G
1

B

B

B
1

B
1

GB
P1 BG

P1



Reference Schemes

• Median Filter[k]

The 2k + 1 sliding-window median filter by “majority-vote” decoding

• Genie-aided[k]

arg min
f :A2k+1→A

[

1
n−2k

∑ n−k

i=k+1 Λ
(

xi, f(zi+k
i−k

)
)

]

• Proposed[k]

The proposed universal 2k + 1 sliding-window denoiser. The modified denoiser is used for

k = 7 with k′ = 2.

• DUDE[k]

The DUDE for DMC by taking the channel as an equivalent DMC with the cross-over probability,

pe =
ǫBPGB+ǫGPBG

PGB+PBG

• BCJR

The optimum denoiser with known source statistics, implemented by the BCJR algorithm (the

“forward-backward” recursions)



1D Denoising Results: Bit Error Rate

Source transition probability, p = 0.01 , n = 106
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Image Denoising: Setup

• The source signals are three binary images: (1) Text Image (Shannon’s paper): 103 × 103

(2) Half-toned Image (Einstein’s Portrait): 900 × 900 (3) Black-and-white Image (Lena):

256 × 256

• The noise sequence is a binary two-state hidden Markov random field with parameters

[εG, εB, αG, αB]

• States are 8-nearest-neighbor Gibbs field characterized by

P (Si,j = si,j|SNi,j
= sNi,j

) =
exp

−
[

V1(si,j)+
∑

(i,j)
∑

(k,l)∈Ni,j
V2(si,j,sk,l)

]

∑

si,j
exp

−
[

V1(si,j)+
∑

(i,j)
∑

(k,l)∈Ni,j
V2(si,j,sk,l)

]

where si,j ∈ {G, B}, V1(si,j) = αsi,j
, V2(si,j, sk,l) = 2δ(si,j, sk,l) − 1

• Two-state Markov random field with 50 Gibbs sampling iterations



Image Denoising: Reference Schemes

• Genie-aided

The best 3 × 3 sliding-window denoiser

• Proposed

The proposed universal 3 × 3 sliding-window denoiser

• DUDE

The 3 × 3 sliding-window DUDE for DMC

• Median Filter

The 3 × 3 sliding-window median filter

• Morphological Filter

The morphological filter uses a 3 × 3 structure element and implements the CLOSE and then

the OPEN operation to the noise corrupted image



Image Denoising Results: Text Image
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Image Denoising Results: Text Image Corrupted by

Channel 1

Figure 1: top-left : noiseless image; top-right : noisy image; bottom-left : denoised
image by the proposed denoiser; bottom-right: denoised image by DUDE



Image Denoising Results: Half-toned Image
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Image Denoising Results: Half-toned Image Corrupted by

Channel 3

Figure 2: top-left : noiseless image; top-right : noisy image; bottom-left : denoised
image by the proposed denoiser; bottom-right: denoised image by DUDE



Image Denoising Results: Black-and-white Image
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Image Denoising Results: Black-and-white Image Corrupted

by Channel 3

Figure 3: top-left : noiseless image; top-right : noisy image; bottom-left : denoised
image by the proposed denoiser; bottom-right: denoised image by DUDE



Conclusions

• Considered discrete denoising of an unknown source corrupted by a known
channel with memory

• Presented a practical denoiser that is universally asymptotically optimal

• Experimental results indicate that much is to be gained in practice by taking the
channel memory into account


