Discrete Denoising for Channels with Memory

Tsachy Weissman

Joint work with

Rui Zhang

Department of Electrical Engineering

Stanford University

Denoising

- $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ is a noise-free signal of interest corrupted by a channel
- Observe a noise-corrupted sequence $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$
- Objective is to estimate X^{n} from Z^{n}
- Λ measures goodness of reconstruction $\hat{X}^{n}: \frac{1}{n} \sum_{t=1}^{n} \Lambda\left(X_{t}, \hat{X}_{t}\right)$

Discrete Denoising

- $X_{i}, Z_{i}, \hat{X}_{i}$ take values in the finite alphabet $\mathcal{A}=\{0, \ldots, M-1\}$

For concreteness, we focus on:

- Modulo-Madditive noise $Z_{i}=X_{i} \oplus N_{i}$
- Channel characterized by noise process $\left\{N_{i}\right\}$

Applications

- Text Correction
- Image Denoising
- Reception of Uncoded Data
- DNA Sequence Analysis and Processing
- Systematic Source/Channel Decoding
- Pattern Recognition
- Separation of Superimposed Signals
- Computer Memory with Defects

Example

- Binary source sequence: 0001111100001111100
- Channel: BSC, i.e., $\left\{N_{i}\right\} \sim$

0001000001000001010

- Corrupted Sequence: $\quad \Rightarrow 0000111101001110110$
- Loss Function: Λ is Hamming loss
- Objective: Minimize Bit Error Rate given the observation of n-block.

Universality Setting

- Noiseless Source unknown
- Channel known

Previous Approaches to Universal Discrete Denoising (for memoryless channels)

- Hidden Markov process modelling: EM + Forward-Backward (aka BCJR, BaumWelch, Discrete-time Wonham Filtering)
- Compression-based denoising:
- Occam Filters [Natarajan '95]
- :
- * Kolmogorov Sampler [Donoho '02]
* Empirical Dist. of R-D Codes [Weissman \& Ordentlich '04]

Question:

In this setting, can optimum source-dependent performance be attained?

DUDE Algorithm: General Idea

(Weissman, Ordentlich, Seroussi, Verdú \& Weinberger '05)

- Fix context length k. For each letter to be denoised, do:
- Find left k-context $\left(\ell_{1}, \ldots, \ell_{k}\right)$ and right k-context $\left(r_{1}, \ldots, r_{k}\right)$

ℓ_{1}	ℓ_{2}	\cdots	ℓ_{k}	\bullet	r_{1}	r_{2}	\cdots	r_{k}

- Count all occurrences of letters with left k-context $\left(\ell_{1}, \ldots, \ell_{k}\right)$ and right k context (r_{1}, \ldots, r_{k}).
- Make decision using
- the loss function
- the channel transition matrix
- the count vector
- the observed letter to be denoised.
- Note: Decision rule does not depend on n, k, nor on $\left(\ell_{1}, \ldots, \ell_{k}\right)$ and $\left(r_{1}, \ldots, r_{k}\right)$

Example: DUDE for BSC + Hamming loss (error rate)

For each bit b, count how many bits that have the same left and right k-contexts are equal to b and how many are equal to \bar{b}. If the ratio of these counts is below

$$
\frac{2 \delta(1-\delta)}{(1-\delta)^{2}+\delta^{2}}
$$

then b is deemed to be an error introduced by the BSC.

Properties of the DUDE

- Universally achieves asymptotically optimum performance
- Linear complexity in time and space
- Does well in practice

Some follow-up work on DUDE

- (Dembo \& Weissman '04)
"Universal Denoising for the Finite-Input-General-Output Channel"
- (Gemelos, Sigurjónsson \& Weissman '04)
"Universal Minimax Discrete Denoising Under Channel Uncertainty"
- (Ordentlich, Weissman, Weinberger, Somekh-Baruch \& Merhav '04)
"Discrete Universal Filtering Through Incremental Parsing"
- (Ordentlich, Weinberger \& Weissman '04)
"Efficient pruning of multi-directional context trees with applications to universal denoising and compression"
- (Ordentlich, Seroussi, Verdú, Viswanathan, Weinberger \& Weissman '04) "Channel Decoding of Systematically Encoded Unknown Redundant Sources,"
- (Chen, Diggavi, Dusad \& Muthukrishnan '05)
"Efficient String Matching Algorithms for Combinatorial Universal Denoising,"
- (Yu \& Verdú '05)
"Schemes for Bi-Directional Modeling of Discrete Stationary Sources,"
All consider memoryless channels

Our Focus: Channels with Memory

Assumption 1. Noise process, $\left\{N_{i}\right\}$, is

- stationary
- α-mixing with $\sum_{t=1}^{\infty} \alpha_{t}<\infty$
where the α-mixing coefficients are defined as:

$$
\alpha_{t}=\sup _{\{k \leq l \leq m \leq n: m-l \geq t\}} \max _{u_{k}^{l}, m}\left|P\left(N_{k}^{l}=u_{k}^{l}, N_{m}^{n}=u_{m}^{n}\right)-P\left(N_{k}^{l}=u_{k}^{l}\right) P\left(N_{m}^{n}=u_{m}^{n}\right)\right|
$$

Channels with Memory (cont.)

Define the $M^{2 k+1} \times M^{2 k+1}$ channel transition matrix as

$$
\Pi_{-k}^{k}\left(x_{-k}^{k}, z_{-k}^{k}\right)=P\left(N_{-k}^{k}=z_{-k}^{k} \ominus x_{-k}^{k}\right)
$$

Assumption 2. Π_{-k}^{k} is non-singular for every k.

Note the relation

$$
\begin{equation*}
P_{Z_{-k}^{k}}^{T}=P_{X_{-k}^{k}}^{T} \cdot \Pi_{-k}^{k} \tag{1}
\end{equation*}
$$

which implies, with Assumption 2,

$$
P_{X_{-k}^{k}}^{T}=P_{Z_{-k}^{k}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}
$$

Optimum Denoising: Known Source

$$
\hat{X}_{i}^{o p t}\left(z^{n}\right)=\arg \min _{\hat{x} \in \mathcal{A}} E\left[\Lambda\left(X_{i}, \hat{x}\right) \mid Z^{n}=z^{n}\right]
$$

Motivating Derivation

- Optimum k th order sliding-window denoiser (source distribution known)

$$
\begin{aligned}
\hat{X}_{0}^{o p t}\left(z_{-k}^{k}\right) & =\arg \min _{\hat{x}} E\left[\Lambda\left(X_{0}, \hat{x}\right) \mid Z_{-k}^{k}=z_{-k}^{k}\right] \\
& =\arg \min _{\hat{x}} \sum_{a} \Lambda(a, \hat{x})\left[\sum_{x-k: x_{0}=a} P_{X_{-k}^{k}}\left(x_{-k}^{k}\right) P_{N_{-k}^{k}}\left(z_{-k}^{k} \ominus x_{-k}^{k}\right)\right]
\end{aligned}
$$

- Motivated by $P_{X_{-k}^{k}}^{T}=P_{Z_{-k}^{k}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}$, we take

$$
\hat{X}_{i}\left(z_{i-k}^{i+k}\right)=\arg \min _{\hat{x}} \sum_{a} \Lambda(a, \hat{x})\left[\sum_{x_{-k}^{k}: x_{0}=a}\left[\hat{P}_{Z_{-k}^{k}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}\right]\left(x_{-k}^{k}\right) P_{N_{-k}^{k}}\left(z_{i-k}^{i+k} \ominus x_{-k}^{k}\right)\right]
$$

Let $\hat{X}^{n, k}$ denote the overall denoiser obtained.

Computation of $\left(\Pi_{-k}^{k}\right)^{-1}$

Note that $\Pi_{-k}^{k}\left(x_{-k}^{k}, z_{-k}^{k}\right)=\Pi_{-k}^{k}\left(\tilde{x}_{-k}^{k}, \tilde{z}_{-k}^{k}\right)$ whenever $z_{-k}^{k} \ominus x_{-k}^{k}=\tilde{z}_{-k}^{k} \ominus \tilde{x}_{-k}^{k}$.
Theorem 1. Let \mathcal{F}_{M} denote the $M \times M$ Fourier matrix

$$
\mathcal{F}_{M}(l, m)=\frac{1}{\sqrt{M}} \exp \left\{-j \frac{2 \pi}{M} l m\right\}
$$

and

$$
\mathcal{H}_{n}=\mathcal{F}_{M}^{\otimes n}
$$

(a) $\mathcal{H}_{2 k+1}$ diagonalizes Π_{-k}^{k}, i.e., $\Pi_{-k}^{k}=\mathcal{H}_{2 k+1}^{H} \Gamma \mathcal{H}_{2 k+1}$, where Γ is diagonal $M^{2 k+1} \times M^{2 k+1}$.
(b) $\operatorname{diag}(\Gamma)=\mathcal{H}_{2 k+1} \cdot P_{N_{-k}^{k}}$.

Thus we get

- $\hat{P}_{X_{-k}^{k}}=\left(\Pi_{-k}^{k}\right)^{-T} \cdot \hat{P}_{Z_{-k}^{k}}=\mathcal{H}_{2 k+1} \cdot\left[\left(\mathcal{H}_{2 k+1}^{*} \cdot \hat{P}_{Z_{-k}^{k}}\right) \oslash\left(\mathcal{H}_{2 k+1} \cdot P_{N_{-k}^{k}}\right)\right]$,
- Computation is $O\left(k M^{2 k}\right)$, compared with $O\left(M^{6 k}\right)$ of direct computation.

Example: in case $M=2$, each Π_{-k}^{k} is diagonalized by the Hadamard transform (lordache, Tăbus \& Astola '02) and (Giurcăneanu \& Yu '05)

Complexity

$M=$ Alphabet size; $k=$ Order of sliding-window denoiser; $n=$ Data block length

- Pre-processing.

$$
\left(\Pi_{-k}^{k}\right)^{-1}: \quad O\left(k M^{2 k}\right)
$$

- Computation of counts.

$$
\hat{P}_{Z_{-k}^{k}}\left[z^{n}\right]: \quad O(k n)
$$

- Computation of decoding rule.

$$
\begin{array}{ll}
\hat{P}_{X_{-k}^{k}}: & O\left(M^{4 k}\right) \\
\left\{\hat{X}_{0}\left(z_{-k}^{k}\right)\right\}_{z_{-k}^{k}}: & O\left(M^{4 k}\right)
\end{array}
$$

- Denoising.

$$
\hat{X}_{i}\left(z_{i-k}^{i+k}\right): \quad O(k n)
$$

Total number of operations: $O\left(k n+M^{4 k}\right)=O(n \log n)$ provided $k_{n}=c \log n$
Total space: $O(n)$

Selection of k

- Complexity:
- We have seen that $k_{n}=c \log n$ gives $O(n \log n)$ complexity
- More basic tradeoff:
$-k$ too short \mapsto suboptimum performance
- k too long (\Leftrightarrow too short n) \mapsto counts are unreliable

Performance Criterion

Formally, a denoiser \hat{X}^{n} is a mapping $\mathcal{A}^{n} \rightarrow \mathcal{A}^{n}$. For any x^{n}, z^{n} let

$$
L_{\hat{X}^{n}}\left(x^{n}, z^{n}\right)=\frac{1}{n} \sum_{t=1}^{n} \Lambda\left(x_{t}, \hat{X}_{t}\left(z^{n}\right)\right),
$$

where Λ is the given loss function.

Universal Asymptotic Optimality

Theorem 2. Let $\hat{X}_{u n i v}^{n} \triangleq \hat{X}^{n, k_{n}}$ where $k_{n} \rightarrow \infty$ and satisfies

$$
\frac{1}{n} k_{n} M^{12 k_{n}}\left\|\left(\Pi_{-k_{n}}^{k_{n}}\right)^{-1}\right\|^{2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

1. Stochastic Setting : For any stationary process $\mathbf{X}=\left(X_{1}, X_{2} \ldots\right)$

$$
\lim _{n \rightarrow \infty} E L_{\hat{X}_{u n i v}^{n}}\left(X^{n}, Z^{n}\right)=\lim _{n \rightarrow \infty} \min _{\hat{X}^{n}} E L_{\hat{X}^{n}}\left(X^{n}, Z^{n}\right)
$$

where the minimization on the right side is over all denoisers.
2. Semi-Stochastic Setting : For all $\left\{x_{n}\right\}_{n \geq 1}, x^{n} \in \mathcal{A}^{n}$,

$$
L_{\hat{X}_{\text {univ }}^{n}}\left(x^{n}, Z^{n}\right)-D_{k_{n}}\left(x^{n}, Z^{n}\right) \longrightarrow 0 \quad \text { in probability }
$$

where $D_{k}\left(x^{n}, z^{n}\right)=\min _{f: \mathcal{A}^{2 k+1} \rightarrow \mathcal{A}}\left[\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} \Lambda\left(x_{i}, f\left(z_{i-k}^{i+k}\right)\right)\right]$.

Example 1: Memoryless Noise

- For a memoryless channel, $\Pi_{-k}^{k}=\left(\Pi_{-0}^{0}\right)^{\otimes(2 k+1)}$
- Therefore, $\left\|\left(\Pi_{-k}^{k}\right)^{-1}\right\|=\left\|\left(\Pi_{-0}^{0}\right)^{-1}\right\|^{2 k+1}$
- $k_{n}=c \log n$ suffices for

$$
\frac{1}{n} k_{n} M^{12 k_{n}}\left\|\left(\Pi_{-k_{n}}^{k_{n}}\right)^{-1}\right\|^{2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Remarks:

1. Can be shown using ideas similar to those in [Dembo \& Weissman '04] that our scheme coincides with the DUDE in this case
2. Bounds in DUDE paper allow $k_{n}=C \log n$, for $C>c$

Example 2: Binary Noise Modulated by An Arbitrarily Distributed State Process

- Let $\left\{S_{i}\right\}$ be an arbitrarily distributed state process and $\left\{N_{i}\right\}$ be a binary process whose components are independent when conditioned on $\left\{S_{i}\right\}$, where $N_{i} \mid S_{i}=s \sim \operatorname{Bernoulli}\left(\delta_{s}\right)$ for every $s \in \mathcal{S}$
- Let $\delta=\sup _{s \in \mathcal{S}} \delta_{s}$ and assume $\delta<1 / 2$
- It can be shown that $\left\|\left(\Pi_{-k}^{k}\right)^{-1}\right\| \leq 1 /(1-2 \delta)^{2 k+1}$
- $k_{n}=c \log n$ suffices for

$$
\frac{1}{n} k_{n} M^{12 k_{n}}\left\|\left(\Pi_{-k_{n}}^{k_{n}}\right)^{-1}\right\|^{2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Example 3: Contagion Channels

- Contagion channels (F. Alajaji \& T. Fuja '94) are binary additive noise channels, where the noise process is an M-th order Markov process with transition probabilities characterized by $P\left(N_{t}=1 \mid N_{t-M}^{t-1}=n_{t-M}^{t-1}\right)=\frac{\varepsilon+w\left(n_{t-M}^{t-1}\right) \delta}{1+M \delta}$, where w denotes Hamming weight, $\varepsilon=P\left(N_{t}=1\right)$
- Can show

$$
\left\|\left(\Pi_{-k}^{k}\right)^{-1}\right\| \leq\left(\frac{1-2 \varepsilon}{1+M \delta}\right)^{-(2 k+1)}
$$

- $k_{n}=c \log n$ suffices for

$$
\frac{1}{n} k_{n} M^{12 k_{n}}\left\|\left(\Pi_{-k_{n}}^{k_{n}}\right)^{-1}\right\|^{2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Proof Sketch: Semi-stochastic Setting

- To show

$$
L_{\hat{X}_{u n i v}^{n}}\left(x^{n}, Z^{n}\right)-D_{k_{n}}\left(x^{n}, Z^{n}\right) \longrightarrow 0 \quad \text { in probability }
$$

- Define

$$
\begin{aligned}
& q_{k}\left(z^{n}, x^{n}\right)\left[a, u_{-k}^{k}\right]=\frac{1}{n-2 k}\left|\left\{k+1 \leq i \leq n-k: x_{i}=a, z_{i-k}^{i+k}=u_{-k}^{k}\right\}\right| \\
& \hat{q}_{k}\left(z^{n}\right)\left[a, u_{-k}^{k}\right]=\sum_{x_{-k}^{k}: x_{0}=a}\left[\hat{P}_{Z_{-k}^{k}}\left[z^{n}\right]^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}\right]\left(x_{-k}^{k}\right) P_{N_{-k}^{k}}\left(u_{-k}^{k} \ominus x_{-k}^{k}\right)
\end{aligned}
$$

- With the following fact

$$
\left|L_{\hat{X}^{n, k}}\left(x^{n}, z^{n}\right)-D_{k}\left(x^{n}, z^{n}\right)\right| \leq \Lambda_{\max } M^{2 k+2}\left\|q_{k}\left(z^{n}, x^{n}\right)-\hat{q}_{k}\left(z^{n}\right)\right\|
$$

- It is sufficient to show

$$
P\left(\left\|\hat{q}_{k}\left(Z^{n}\right)-q_{k}\left(Z^{n}, x^{n}\right)\right\| \geq \epsilon\right) \leq M^{8 k+2} \frac{\left(4 k+1+2 \sum_{t=1}^{\infty} \alpha_{t}^{(N)}\right)\left\|\left(\Pi_{-k}^{k}\right)^{-1}\right\|^{2}}{\epsilon^{2}(n-2 k)}
$$

Proof Sketch: Stochastic Setting

- To show

$$
\lim _{n \rightarrow \infty} E L_{\hat{X}_{u n i v}^{n}}\left(X^{n}, Z^{n}\right)=\lim _{n \geq \infty} \min _{\hat{X}^{n}} E L_{\hat{X}^{n}}\left(X^{n}, Z^{n}\right)
$$

- It follows from the proof for semi-stochastic setting:

$$
\begin{gathered}
P\left(L_{\hat{X}_{u n i v}^{n}}\left(X^{n}, Z^{n}\right) \geq D_{k}\left(X^{n}, Z^{n}\right)+\varepsilon\right) \leq \varepsilon \\
E L_{\hat{X}_{u n i v}^{n}}\left(X^{n}, Z^{n}\right) \leq E D_{k}\left(X^{n}, Z^{n}\right)+\varepsilon+\varepsilon \Lambda_{\max }=E D_{k}\left(X^{n}, Z^{n}\right)+\varepsilon\left(1+\Lambda_{\max }\right)
\end{gathered}
$$

- Together with

$$
\begin{gathered}
E D_{k}\left(X^{n}, Z^{n}\right) \leq E\left[\min _{\hat{x} \in \mathcal{A}} E\left[\Lambda\left(X_{0}, \hat{x}\right) \mid Z_{-k}^{k}\right]\right] \\
\lim _{k \rightarrow \infty} E\left[\min _{\hat{x} \in \mathcal{A}} E\left[\Lambda\left(X_{0}, \hat{x}\right) \mid Z_{-k}^{k}\right]\right]=\inf _{n \geq 1} \min _{\hat{X}^{n}} E L_{\hat{X}^{n}}\left(X^{n}, Z^{n}\right)
\end{gathered}
$$

- It follows that

$$
\limsup _{n \rightarrow \infty} E L_{\hat{X}_{\text {univ }}^{n}}\left(X^{n}, Z^{n}\right) \leq \inf _{n \geq 1} \min _{\hat{X}^{n}} E L_{\hat{X}^{n}}\left(X^{n}, Z^{n}\right)
$$

Extension 1: General Stationary Channels

Consider a general channel characterized by $\left\{P\left(\cdot \mid x_{-\infty}^{\infty}\right)\right\}_{x_{-\infty}^{\infty}}$ and satisfying

1. stationarity
2. $P\left(z_{-k}^{k} \mid x_{-\infty}^{\infty}\right)=P\left(z_{-k}^{k} \mid \tilde{x}_{-\infty}^{\infty}\right)$ whenever $x_{-k}^{k}=\tilde{x}_{-k}^{k}, \forall k$ [then take $\Pi_{-k}^{k}\left(x_{-k}^{k}, z_{-k}^{k}\right)=P\left(z_{-k}^{k} \mid x_{-k}^{k}\right)$, and right side will make sense]
3. $\sum_{t=1}^{\infty} \alpha_{t}<\infty$,
where α-mixing coefficients are now defined as:

$$
\alpha_{t}=\sup _{x_{-\infty}^{\infty}\{k \leq l \leq m \leq n: m-l \geq t\}} \sup _{u_{k}^{l},{ }_{m}^{n}}\left|P\left(z_{k}^{l}, z_{m}^{n} \mid x_{k}^{l}, x_{m}^{n}\right)-P\left(z_{k}^{l} \mid x_{k}^{l}\right) P\left(z_{m}^{n} \mid x_{m}^{n}\right)\right|
$$

Scheme and its performance guarantees carry over verbatim
[replacing $P_{N_{-k}^{k}}\left(z_{i-k}^{i+k} \ominus x_{-k}^{k}\right)$ by $P\left(Z_{-k}^{k}=z_{i-k}^{i+k} \mid x_{-k}^{k}\right)$]

Example of Family of Non-Additive Stationary Channels

 Satisfying Assumptions- $\left\{N_{t}\right\}$ is stationary noise process as before
- Channel input-output relationship is

$$
Z_{i}=f\left(x_{i}, N_{i-l}^{i+l}\right)
$$

Extension 2: Non-Stationary Channels

In stationary case $\hat{P}_{Z_{-k}^{k}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}$ was good estimate of $(2 k+1)$ th-order empirical distribution of input sequence. So now replace
$\hat{P}_{Z_{-k}^{k}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} \mathbf{1}_{\left\{Z_{i-k}^{i+k}=\cdot\right\}}^{T} \cdot\left(\Pi_{-k}^{k}\right)^{-1}$
by the more general form
$\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} \mathbf{1}_{\left\{Z_{i-k}^{i+k}=\cdot\right\}}^{T} \cdot\left(\Pi_{i-k}^{i+k}\right)^{-1}$, leading to $\hat{X}_{i}\left(z_{i-k}^{i+k}\right)=$
$\left.\arg \min _{\hat{x}} \sum_{a} \Lambda(a, \hat{x})\left\{\sum_{x_{-k}^{k}: x_{0}=a}\left[\sum_{j=k+1}^{n-k} \mathbf{1}_{\left\{Z_{j-k}^{j}\right.}^{T+k=\}}\right\} \cdot\left(\Pi_{j-k}^{j+k}\right)^{-1}\right]\left(x_{-k}^{k}\right) \Pi_{i-k}^{i+k}\left(x_{-k}^{k}, z_{i-k}^{i+k}\right)\right\}$
Semi-stochastic performance guarantees carry over: For all $\left\{x_{n}\right\}_{n \geq 1}, x^{n} \in \mathcal{A}^{n}$,

$$
\limsup _{n \rightarrow \infty} \text { in probability }\left[L_{\hat{X}_{u n i v}^{n}}\left(x^{n}, Z^{n}\right)-D_{k_{n}}\left(x^{n}, Z^{n}\right)\right] \leq 0 .
$$

growth condition for k_{n} now being

$$
\frac{1}{n} k_{n} M^{12 k_{n}} \sup _{i}\left\|\left(\Pi_{i-k_{n}}^{i+k_{n}}\right)^{-1}\right\|^{2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Extension 3: Multi-dimensional Index

- Replace contexts by neighborhoods
- Analogous assumptions on α-mixing and non-singularity of channel
- Analogous performance guarantees in both stochastic and semi-stochastic setting

A Variation

- Considered also the following modified denoiser:

1. Set k, the order of the sliding-window denoiser to be used
2. Select a value $k^{\prime}, k^{\prime}<k$, and obtain $\hat{P}_{X_{-k^{\prime}}^{k^{\prime}}}=\left(\Pi_{-k^{\prime}}^{k^{\prime}}\right)^{-T} \cdot \hat{P}_{Z_{-k^{\prime}}^{k^{\prime}}}$
3. Obtain $\hat{P}_{X_{-k}^{k}}$ through left- and right-extension of $\hat{P}_{X_{-k^{\prime}}^{k^{\prime}}}$ by assuming \mathbf{X} is a Markov process of order no greater than $2 k^{\prime}$, i.e.,

$$
\hat{P}_{X_{-k}^{k}}\left(x_{-k}^{k}\right)=\quad \hat{P}_{X_{-k^{\prime}}^{k^{\prime}}}\left(x_{-k^{\prime}}^{k^{\prime}}\right) \prod_{i=1}^{k-k^{\prime}}\left[\hat{P}_{X_{-k^{\prime}}^{k^{\prime}}}\left(x_{k^{\prime}+i} \mid x_{-k^{\prime}+i}^{k^{\prime}+i-1}\right) \hat{P}_{X_{-k^{\prime}}^{k^{\prime}}}\left(x_{-k^{\prime}-i} \mid x_{-k^{\prime}-i+1}^{k^{\prime}-i}\right)\right]
$$

4. Do the denoising assuming $\hat{P}_{X_{-k}^{k}}$

- The modified denoiser attains:
- Observed that $\hat{P}_{X_{-k}^{k}}$ thus obtained is closer to $P_{X_{-k}^{k}}$ than $\left(\Pi_{-k}^{k}\right)^{-T} \cdot \hat{P}_{Z_{-k}^{k}}$
- Need compute $\left(\Pi_{-k^{\prime}}^{k^{\prime}}\right)^{-1}$ rather than $\left(\Pi_{-k}^{k}\right)^{-1}$

Similar idea applicable for multi-dimensional data.
Initial justification in (Moon \& Weissman'05): "Universal Filtering via Hidden Markov Modelling"

Experiment 1: Burst-Noise Channel Corrupting a 1st-order Markov Chain

- The source sequence is a first-order symmetric binary Markov process with the transition probability, p
- The noise sequence is a binary two-state hidden Markov process with parameters $\left[\epsilon_{G}, \epsilon_{B}, P_{G B}, P_{B G}\right]$

Reference Schemes

- Median Filter $[k]$

The $2 k+1$ sliding-window median filter by "majority-vote" decoding

- Genie-aided $[k]$
$\arg \min _{f: \mathcal{A}^{2 k+1} \rightarrow \mathcal{A}}\left[\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} \Lambda\left(x_{i}, f\left(z_{i-k}^{i+k}\right)\right)\right]$
- Proposed $[k]$

The proposed universal $2 k+1$ sliding-window denoiser. The modified denoiser is used for $k=7$ with $k^{\prime}=2$.

- DUDE $[k]$

The DUDE for DMC by taking the channel as an equivalent DMC with the cross-over probability, $p_{e}=\frac{\epsilon_{B} P_{G B}+\epsilon_{G} P_{B G}}{P_{G B}+P_{B G}}$

- BCJR

The optimum denoiser with known source statistics, implemented by the BCJR algorithm (the "forward-backward" recursions)

1D Denoising Results: Bit Error Rate

Source transition probability, $p=0.01, n=10^{6}$

	Channel 1	Channel 2	Channel 3	Channel 4
$\left[\varepsilon_{G} \varepsilon_{B} P_{G B} P_{B G}\right]$	$[0.010 .20 .010 .1]$	$[0.010 .80 .010 .1]$	$[0.010 .20 .010 .01]$	$[0.010 .80 .010 .01]$

Image Denoising: Setup

- The source signals are three binary images: (1) Text Image (Shannon's paper): $10^{3} \times 10^{3}$ (2) Half-toned Image (Einstein's Portrait): 900×900 (3) Black-and-white Image (Lena): 256×256
- The noise sequence is a binary two-state hidden Markov random field with parameters $\left[\varepsilon_{G}, \varepsilon_{B}, \alpha_{G}, \alpha_{B}\right]$
- States are 8-nearest-neighbor Gibbs field characterized by

$$
P\left(S_{i, j}=s_{i, j} \mid S_{\mathcal{N}_{i, j}}=s_{\mathcal{N}_{i, j}}\right)=\frac{\exp ^{-\left[V_{1}\left(s_{i, j}\right)+\sum_{(i, j)} \sum_{(k, l) \in \mathcal{N}_{i, j}} V_{2}\left(s_{i, j}, s_{k, l}\right)\right]}}{\sum_{s_{i, j}} \exp ^{-\left[V_{1}\left(s_{i, j}\right)+\sum_{(i, j)} \sum_{(k, l) \in \mathcal{N}_{i, j}} V_{2}\left(s_{i, j}, s_{k, l}\right)\right]}}
$$

where $s_{i, j} \in\{G, B\}, V_{1}\left(s_{i, j}\right)=\alpha_{s_{i, j}}, V_{2}\left(s_{i, j}, s_{k, l}\right)=2 \delta\left(s_{i, j}, s_{k, l}\right)-1$

- Two-state Markov random field with 50 Gibbs sampling iterations

Image Denoising: Reference Schemes

- Genie-aided

The best 3×3 sliding-window denoiser

- Proposed

The proposed universal 3×3 sliding-window denoiser

- DUDE

The 3×3 sliding-window DUDE for DMC

- Median Filter

The 3×3 sliding-window median filter

- Morphological Filter

The morphological filter uses a 3×3 structure element and implements the CLOSE and then the OPEN operation to the noise corrupted image

	Channel 1	Channel 2	Channel 3
$\left[\begin{array}{llllll}\varepsilon_{G} \varepsilon_{B} \alpha_{G} \alpha_{B}\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.2 & 0.2 & 0\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.2 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.8 & 0.2 & 0\end{array}\right]$

Image Denoising Results: Text Image Corrupted by Channel 1

A Mathematic

B

WHE recent development 1 and PPM which exchar tensified the interest in a ge such a theory is contained in on this subject. In the prest

A Mathematic:

B

HE recent development 1 and PPM which exchar tensified the interest in a ge such a theory is contained in on this subject. In the presc

A Mathematic

B

TQHE recent development and PPM which exchar tensified the interest in a ge such a theory is contained in on this subject, In the prese

A Mathematic
B

THE recent development 1 and PPM which exchar tensified the interest in a ge such a theory is contained in on this subject. In the prese

Figure 1: top-left : noiseless image; top-right : noisy image; bottom-left : denoised image by the proposed denoiser; bottom-right: denoised image by DUDE

Image Denoising Results: Half-toned Image

	Channel 1	Channel 2	Channel 3
$\left[\begin{array}{lllll}\varepsilon_{G} \varepsilon_{B} \alpha_{G} \alpha_{B}\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.2 & 0.2 & 0\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.2 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}0.01 & 0.8 & 0.2 & 0\end{array}\right]$

Image Denoising Results: Half-toned Image Corrupted by

Channel 3

Figure 2: top-left : noiseless image; top-right : noisy image; bottom-left : denoised image by the proposed denoiser; bottom-right: denoised image by DUDE

Image Denoising Results: Black-and-white Image

| | Channel 1 | Channel 2 | Channel 3 |
| :---: | :---: | :---: | :---: | :---: |
| $\left[\begin{array}{lllll}\varepsilon_{G} \varepsilon_{B} \alpha_{G} \alpha_{B}\end{array}\right]$ | $\left[\begin{array}{llll}0.01 & 0.2 & 0.2 & 0\end{array}\right]$ | $\left[\begin{array}{llll}0.01 & 0.2 & 0 & 0\end{array}\right]$ | $\left[\begin{array}{llll}0.01 & 0.8 & 0.2 & 0\end{array}\right]$ |

Image Denoising Results: Black-and-white Image Corrupted by Channel 3

Figure 3: top-left : noiseless image; top-right : noisy image; bottom-left : denoised image by the proposed denoiser; bottom-right: denoised image by DUDE

Conclusions

- Considered discrete denoising of an unknown source corrupted by a known channel with memory
- Presented a practical denoiser that is universally asymptotically optimal
- Experimental results indicate that much is to be gained in practice by taking the channel memory into account

