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Denoising

X" » Noisy Channel »Z"» Denoiser |—»X"
X" = (Xq,...,X,) is a noise-free signal of interest corrupted by a channel
Observe a noise-corrupted sequence Z" = (41, ..., Zy,)

Objective is to estimate X™ from Z"

A measures goodness of reconstruction X" : D A(Xy, X)



Discrete Denoising

o X, 4, X,L take values in the finite alphabet A ={0,...,M — 1}
For concreteness, we focus on:

e Modulo-M additive noise Z; = X,; & N;

e Channel characterized by noise process {NV;}



Applications

Text Correction

Image Denoising

Reception of Uncoded Data

DNA Sequence Analysis and Processing
Systematic Source/Channel Decoding
Pattern Recognition

Separation of Superimposed Signals

Computer Memory with Defects



Example

e Binary source sequence: 0001111100001111100

e Channel: BSC, i.e., {N;} ~

0001000001000001010
e Corrupted Sequence: = 0000111101001110110
e Loss Function: A is Hamming loss

e Objective: Minimize Bit Error Rate given the observation of n-block.



Universality Setting

e Noiseless Source unknown

e Channel known



Previous Approaches to Universal Discrete Denoising
(for memoryless channels)

e Hidden Markov process modelling: EM + Forward-Backward (aka BCJR, Baum-
Welch, Discrete-time Wonham Filtering)

e Compression-based denoising:

— Occam Filters [Natarajan '95]

— * Kolmogorov Sampler [Donoho '02]
+ Empirical Dist. of R-D Codes [Weissman & Ordentlich '04]

Question:

In this setting, can optimum source-dependent performance be attained?



DUDE Algorithm: General Idea

(Weissman, Ordentlich, Seroussi, Verdi & Weinberger '05)

e Fix context length k. For each letter to be denoised, do:

e Find left k-context (/1,...,¢x) and right k-context (ry,...,7k)

'é]_ /62 e o o ﬁk o "/‘1 "”'2 e o o ’r‘k
e Count all occurrences of letters with left k-context (¢1,...,¢;) and right k-
context (ry,...,7%).

e Make decision using

— the loss function

— the channel transition matrix

— the count vector

— the observed letter to be denoised.

e Note: Decision rule does not depend on n, k, noron ({1, ...,¢;) and (r1,...,7%)



Example: DUDE for BSC + Hamming loss (error rate)

For each bit b, count how many bits that have the same left and right k-contexts
are equal to b and how many are equal to b. If the ratio of these counts is below

20(1 —9)
(1 —10)%+ 62
then b is deemed to be an error introduced by the BSC.




Properties of the DUDE

e Universally achieves asymptotically optimum performance
e Linear complexity in time and space

e Does well in practice



Some follow-up work on DUDE

e (Dembo & Weissman '04)
“Universal Denoising for the Finite-Input-General-Output Channel”

e (Gemelos, Sigurjonsson & Weissman '04)
“Universal Minimax Discrete Denoising Under Channel Uncertainty”

e (Ordentlich, Weissman, Weinberger, Somekh-Baruch & Merhav '04)
“Discrete Universal Filtering Through Incremental Parsing”

e (Ordentlich, Weinberger & Weissman '04)
“Efficient pruning of multi-directional context trees with applications to universal
denoising and compression”

e (Ordentlich, Seroussi, Verdd, Viswanathan, Weinberger & Weissman '04)
“Channel Decoding of Systematically Encoded Unknown Redundant Sources,”

e (Chen, Diggavi, Dusad & Muthukrishnan '05)
“Efficient String Matching Algorithms for Combinatorial Universal Denoising,”

e (Yu & Verdd '05)
“Schemes for Bi-Directional Modeling of Discrete Stationary Sources,”

All consider memoryless channels



Our Focus: Channels with Memory

Assumption 1. Noise process, {N,} , is

e stationary

o a-mixing with " oy < 00

where the a-mixing coefficients are defined as:

ap = sup max ‘P(N,i —ub, N =u
{(k<I<m<n: m—I>t} ul, 7

n



Channels with Memory (cont.)

Define the M?2Ft1 « AM2k+1 channel transition matrix as

0%, (2% ), 25,) = P(NF, = 28 e a?))

Assumption 2. T1I¥, is non-singular for every k.

Note the relation
T T k
szk — Pka . H—k:7

which implies, with Assumption 2,



Optimum Denoising: Known Source

X{7(2") = argmin BIA(X;, )| 2" = 2]



Motivating Derivation

e Optimum kth order sliding-window denoiser (source distribution known )

Xg"(z5) = argmin B[A(Xo,2)| 28, = 28]

= argm@inz A(a, ) Z P,
a k

x_k:aco:a

k k k
b (w—k>PNﬁk(Z—k SEAY

e Motivated by P)j;ﬁk = ZTﬁk : (H’jk)_1 ~we take

. ~1 Z,
kZ [P;fk ' (Hﬁk) ] (xlik)PNﬁk(Z:Z S w’ik)

x_k:xoza

)A(Z(sz,]z) = arg mjnz A(a, Z)

Let X™* denote the overall denoiser obtained.



Computation of (I1*,)~1

Note that IT*, (z",,2",) = 11", (8,,2",) whenever 2* & 2", = 2", oz" .

Theorem 1. Let F,; denote the M X M Fourier matrix

1 2
fM(l,m):\/Mexp{ gﬁlm}

and
Xn
Hn — M -

(@) Hory1 diagonalizes Hkk ie. ITF p = H%HFH%H, where I is diagonal M2FHL s pp2Rtt
(b) diag(l') = Hokt1 - Py
Thus we get

A -T A . ~
o Pka (I, - PZkk = Hok+1 - [( ki1 " PZkk) @ <H2k+1 : PNkk)l ,
e Computation is O(kM?") , compared with O(M°*) of direct computation.

Example: in case M = 2, each H’jk is diagonalized by the Hadamard transform
(lordache, Tabus & Astola '02) and (Giurcaneanu & Yu '05)



Complexity

M = Alphabet size; k = Order of sliding-window denoiser; n =Data block length

e Pre-processing.
() O(kM)
e Computation of counts.

P [z"]: O(kn)

zk
e Computation of decoding rule.

Pyr O (M*)

{Xo(zE0)} , + o™
“—k
e Denoising.

Total number of operations: O(kn + M*") = O(nlogn) provided k, = clogn

Total space: O(n)



Selection of k&

e Complexity:

— We have seen that &k, = clogn gives O(nlogn) complexity

e More basic tradeoff:

— k too short — suboptimum performance
— k too long (< too short n ) — counts are unreliable



Performance Criterion

Formally, a denoiser X™ is a mapping A" — A" . For any 2™, 2™ let
n .n 1 - Y n
Lon(z", 2 ):gZA(ﬂft,Xt(Z )
t=1

where A is the given loss function.



Universal Asymptotic Optimality

Theorem 2. Let X"

UNIV

A ¥ . e
£ X"™kn where k, — oo and satisfies
1
kn
(5,)

1. Stochastic Setting : For any stationary process X = (X1, X5...)

2
—0 as n — oo.

lk‘ M12kn
n n

lim EL¢, (X" Z") = lim min EL¢, (X", Z")

n— o0 univ n— 00 Xn

where the minimization on the right side is over all denoisers.
2. Semi-Stochastic Setting : For all {xy}n>1, 2™ € A",

L¢n (2", Z2") — Dy, (2", Z") — 0 in probability

UNIv

. _k :
where Dy (z",2") = min; goe+1_, 4 > e A (s f(z;“f,]j))} .



Example 1: Memoryless Noise

e For a memoryless channel, 11¥ | = (I19 ) ®(2k+1)

2k+1

e Therefore, ‘ (Hlik)_lH = H(HO—O)_lH

e k, = clogn suffices for

2

1
K, M ?Fn — 20 as n — 00
mn

—1
kn
(1%,

Remarks:

1. Can be shown using ideas similar to those in [Dembo & Weissman '04] that our
scheme coincides with the DUDE in this case

2. Bounds in DUDE paper allow k,, = C'logn, for C' > ¢



Example 2: Binary Noise Modulated by An Arbitrarily
Distributed State Process

Let {S;} be an arbitrarily distributed state process and {/N;} be a binary
process whose components are independent when conditioned on {S;} , where
N;|S; = s ~ Bernoulli(ds) for every s € S

Let § = sup,cgds and assume § < 1/2

~1
It can be shown that H (I1% ) H < 1/(1 — 25)2k+1

k, = clogn suffices for

l]ﬁ? Mlen
n n




Example 3: Contagion Channels

e Contagion channels (F. Alajaji & T. Fuja '94) are binary additive noise channels,

where the noise process is an M-th order Markov process with transition
. _ _ +w(ni”})0
probabilities characterized by P(N; = 1|N/—,, = nl_},) = - u{fﬁg)

w denotes Hamming weight, ¢ = P(N; = 1)

. where

e Can show

e k, = clogn suffices for

2
— 0 as n— o

—1
kn
(1%,

lk‘ Mlen
n n




Proof Sketch: Semi-stochastic Setting

To show

Lyn (2",Z") — Dy, (2", Z") — 0 in probability

UNLU

Define

1
n — 2k

n n k
qe(z 7 )|a, u_,] =

et = 3| Py 1
k :

x_k:x():a

With the following fact

|{k—|—1Sign—k::piza,zﬁg:uﬁkﬂ

(1) | @ 0P, (w6 2ty

|Lgni(z", 2") — Dp(z", 2")| < Mo M2 2| gr(z", &™) — Gu(2") ]

It is sufficient to show

P (|Gu(Z") — qu(Z",z™)|| > €) < M

(14257, o) | ()

2

2(n — 2k)



Proof Sketch: Stochastic Setting

To show

lim ELgn (X", Z") = lim min EL ¢ (X", Z")

n—00 UNIv

n>oo Xn

It follows from the proof for semi-stochastic setting:

EL¢n (X", Z") < EDW(X",Z™) 4+ €+ eApmar = EDp(X", Z™) + (1 + Appaz)

UNIv

Together with

It follows that

P (LXn (X", Z™) > Dp(X", Z") + e) <e

unt

EDy(X", Z"

rzeA

k—oo

limsup EL 4n

n— 00 UNIv

lim E [minE [A(Xo, £)|ka}

)< E

i E[AX,A Z’“}
win B [A (X0, )|2" |

= inf min EL 4, (X", Z")
n>1 xn

(X", Z") < 7111;5 rglflnn EL (X", Z")



Extension 1: General Stationary Channels

Consider a general channel characterized by { P(-[z> )}z and satisfying

1. stationarity

2. P(2F, |z ) = P(2%,]>,) whenever 2% = 7%  Vk

[ then take T1% , (2%, 2% ) = P(2%,|2",) , and right side will make sense ]
3. >0 < o0,
where a-mixing coefficients are now defined as:

co=swp  swp  max|P(eh shleh, o) — P(4lal) Pl
x> ARL<I<m<n: m—I>t} up,m,

Scheme and its performance guarantees carry over verbatim
[replacing PNE (ztyoah,) by P(ZF, = 2472k ) ]



Example of Family of Non-Additive Stationary Channels
Satisfying Assumptions

e {N;} is stationary noise process as before

e Channel input-output relationship is

Zi — f(xw Niii_ll)



Extension 2: Non-Stationary Channels

In stationary case pZTﬁkf (H’jk)_1 was good estimate of (2k + 1) th-order empirical
distribution of input sequence So now replace )
AT k7L k \~
Pzﬁk ' (H—k> T on— 2k Zz k+1 {Zz—l—k } | <H—k)
by the more general form
i+ky L : > itk
o ik k+1 {ch 1 (I15) . leading to X;(2;7y) =

( )

o\ -1 .
argm:%inz Ala, T) | Z Z 1 ]+k | (Hif’;) (x k)HZH«c k,zgfl;:

\ J

~~

Semi-stochastic performance guarantees carry over: For all {z,}n>1, 2" € A",

lim sup in probability [LX” (2", Z") — Dy, (=", Zn)} <0

n—oo

growth condition for k,, now being
2

1 -1
_k.an%nSup H (HT__I;Z) — 0 as n — oQ.

n )




Extension 3: Multi-dimensional Index

® Replace contexts by neighborhoods

e Analogous assumptions on a-mixing and non-singularity of channel

e Analogous performance guarantees in both stochastic and semi-stochastic setting



A Variation

e Considered also the following modified denoiser:
1. Set k , the order of the sliding-window denoiser to be used

A~ / A~
2. Select a value k', k" < k , and obtain P,/ = (I~ )" P
—k/ —k/
3. Obtain P,  through left- and right-extension of PXk/ by assuming X is a Markov
—k —k/
process of order no greater than 2k’ | i.e.,

/ k=K / /

A kN ~ k ~ E4im1\ £ K —i

PXk (ﬂ'}_k) = PXk/ (m_k/) H [PXk/ (wk/+i|$_k/+i ) PXk/ (x_k/_,é x_k/_i+1
—k _ k! i1 _ _ k!

4. Do the denoising assuming PXE

e The modified denoiser attains:

— Observed that prk thus obtained is closer to Pxﬁk than (IT" )~ 7. pzﬁk

— Need compute (H’“l ,)_1 rather than (Hk )_1
—k —k

Similar idea applicable for multi-dimensional data.

Initial justification in (Moon & Weissman'05): “Universal Filtering via Hidden Markov Modelling"



Experiment 1: Burst-Noise Channel Corrupting a 1st-order
Markov Chain

e The source sequence is a first-order symmetric binary Markov process with the transition
probability, p

e The noise sequence is a binary two-state hidden Markov process with parameters
€, €8, Pas, Ppc]

Py
A/—\
P
1-¢, @ 1-&,
&a &
¢g €p



Reference Schemes

Median Filter[k]

The 2k + 1 sliding-window median filter by “majority-vote” decoding

Genie-aided k]

arg min o1 | 3 imtin A (2 F(2170) ]

Proposed k]

The proposed universal 2k + 1 sliding-window denoiser. The modified denoiser is used for
k=7 with ¥’ = 2.

DUDE|k]

The DUDE for DMC by taking the channel as an equivalent DMC with the cross-over probability,
Do = cBPaBteaPBG

° PgptPBG
BCJR

The optimum denoiser with known source statistics, implemented by the BCJR algorithm (the
“forward-backward” recursions)




1D Denoising Results:

Bit Error Rate

Source transition probability, p = 0.01 , n = 10°
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Image Denoising: Setup

The source signals are three binary images: (1) Text Image (Shannon’s paper): 10° x 10°
(2) Half-toned Image (Einstein's Portrait): 900 x 900 (3) Black-and-white Image (Lena):
256 X 256

The noise sequence is a binary two-state hidden Markov random field with parameters
lea, €B, ag, aB]

States are 8-nearest-neighbor Gibbs field characterized by

eXp_ [Vl(si’j)+z (2,5) 2. (kal)e./\/’z"j V2(Si,j78]g,l)]

P(Si’j = Si7j|SNi,j = SNi,j) =
- lvl(si,j)'i'z (i,7) Z(k,Z)EJ\/’Z‘,j Vz(siaj’skal)]

2.

where s, ; € {G, B}, Vi(s;;) = Qs; S Va(si,jy Sk1) = 20(845, k1) — 1

Two-state Markov random field with 50 Gibbs sampling iterations

<. . €Xp
%



Image Denoising: Reference Schemes

Genie-aided
The best 3 X 3 sliding-window denoiser

Proposed
The proposed universal 3 X 3 sliding-window denoiser

DUDE
The 3 x 3 sliding-window DUDE for DMC

Median Filter
The 3 X 3 sliding-window median filter

Morphological Filter
The morphological filter uses a 3 X 3 structure element and implements the CLOSE and then
the OPEN operation to the noise corrupted image



Image Denoising Results: Text Image

Bit Error Rate

0.12 T T T
Il RAW BER
0.1fF B Genie—aided .
[ Proposed
] DUDE
I Median Filter
Hll Morphological Filter
0.08+ _
0.06 - b
0.04 ] b
0.02 b
0 Channel 1 Channel 2 Channel 3
Channel 1 Channel 2 Channel 3
caegagagl | [00102 02 0] | [00102 0 0] | [0.0108 0.2 0]




Image Denoising Results: Text Image Corrupted by
Channel 1

Figure 1: top-left :
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Image Denoising Results: Half-toned Image
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Image Denoising Results: Half-toned Image Corrupted by
Channel 3

Figure 2: top-left : noiseless image; top-right : noisy image; bottom-left : denoised
image by the proposed denoiser; bottom-right: denoised image by DUDE



Image Denoising Results: Black-and-white Image
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Image Denoising Results: Black-and-white Image Corrupted
by Channel 3

Figure 3: top-left : noiseless image; top-right : noisy image; bottom-left : denoised
image by the proposed denoiser; bottom-right: denoised image by DUDE



Conclusions

e Considered discrete denoising of an unknown source corrupted by a known
channel with memory

e Presented a practical denoiser that is universally asymptotically optimal

e Experimental results indicate that much is to be gained in practice by taking the
channel memory into account



