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DROPOUT TRAINING

For a probabilistic model of the form

̂P
[
y
∣∣x] = f

(
β̂ · x

)
,

dropping out a feature is equivalent to setting it
to 0. Writing ` for the loss (i.e., negative log-
likelihood),

β̂DROP = argminβ

{
n∑
i=1

E
[
`
(
β; x̃(i), y(i)

)]}
,

where x̃(i)j =

{
0 with prob. δ
x
(i)
j /(1− δ) with prob. 1− δ

DROPOUT FOR GENERALIZED LINEAR MODELS
Dropout acts as a label-independent regularizer

β̂DROP = argmin
β

{
n∑
i=1

(
`
(
β;x(i), y(i)

)
+R(β;xi)

)}
.

In a generalized linear model (GLM),

` (β;x, y) = −y β · x+A (β · x) .

We can write x̃ as ξ � x, where ξ = 0 or 1/(1 − δ)
and � is a component-wise product. The dropout
loss becomes

Eξ [` (β; ξ � x, y)]
= −Eξ [y β · (ξ � x)] + Eξ [A (β · (ξ � x))]
= −y β · x+ Eξ [A (β · (ξ � x))]
= ` (β;x, y) +R(β;x),

where R(·) is the dropout regularizer

R(β;x) = Eξ [A (β · (ξ � x))]−A (β · x) .

R is always non-negative because A is convex.

A second-order expansion of A gives us

R(β;x) ≈ 1

2

δ

1− δ
A′′ (β · x)

p∑
j=1

β2
jx

2
j .

This leads to a quadratic dropout penalty

Rq(β;X) =
1

2

δ

1− δ
βᵀ diag (XᵀV X)β,

where V is diagonal with Vii = A′′ (β · x).

lin. reg.: Rq(β;X) =
1

2

δ
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∑
j

β2
j

∑
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x2ij

log. reg.: Rq(β;X) =
1

2

δ

1− δ
∑
i,j

β2
j x

2
ij p̂i(1− p̂i)

Here, p̂i = σ(β̂ · xi) is the ith prediction.

Intuition: For logistic regression, dropout privi-
leges rare features and confident predictions.

THE DROPOUT REGULARIZER
Level surfaces of the regularizer are shown in
blue; likelihood surfaces are black. Dropout acts
as an L2 penalty applied after scaling X by the
root inverse diagonal Fisher information.

L2 regularization

Dropout regularization

SEMI-SUPERVISED RESULTS: SENTIMENT CLASSIFICATION
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Unigram features, with 10k labeled examples.

IMDB sentiment classification dataset (Maas et al,
2011). Highly polar reviews for both training and
test (25k each). 50k unlabeled reviews (not all po-
larized). We used logistic regression with dropout
on unigram/bigram features. Semi-supervised
dropout improves on state-of-the-art results.

Methods Labeled +Unlabeled
MNB-Uni 83.62 84.13

MNB-Bi 86.63 86.98
Vect.Sent 88.33 88.89

LogReg-Bi 90.13 –
NBSVM-Bi 91.22 –

Drop-Uni 87.78 89.52
Drop-Bi 91.31 91.98

References. Multinomial naive Bayes (MNB): Su
et al., 2011; Word vectors (Vect.Sent): Maas et al,
2011; Naive Bayes SVM (NBSVM): Wang & Man-
ning, 2012.

DROPOUT AND ADAGRAD
Stochastic gradient descent uses the update rule

β̂t+1 = β̂t − ηt gt, where gt = ∇`xt, yt(β̂t).

This is equivalent to solving a linearized L2-
penalized problem:

β̂t+1 = argmin
β

{
`xt, yt(β̂t) + gt · (β − β̂t)

+
1

2ηt
‖β − β̂t‖22

}
.

We could use a dropout-like penalty instead

β̂t+1 = argmin
β

{
`xt, yt(β̂t) + gt · (β − β̂t)+

1

2

(
β − β̂t

)ᵀ
diag

(
t∑
i=1

∇2`xi,yi

(
β̂i

))(
β − β̂t

)}
.

The result is closely related to diagonal AdaGrad
(Duchi et al., 2010).

SEMI-SUPERVISED DROPOUT
If we have m unlabeled datapoints {x∗j}, we can
use them to learn a better adaptive regularizer

R∗ (β) =
n

n+ αm

 n∑
i=1

R (β;xi) + α
m∑
j=1

R
(
β;x∗j

)
For the examples below, we split the full dataset
into 3 folds of equal size: training, test, and unla-
beled. K is the number of classes

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

This table is from our follow up paper with
Mengqiu Wang and Chris Manning (EMNLP,
2013), which also extends our results to linear-
chain conditional random fields.


