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Abstract. Reconstructing human motion dynamics in real-time is a challenging problem since it
requires accurate motion sensing, subject specific models, and efficient reconstruction algorithms.
A promising approach is to construct accurate human models, and control them to behave the same
way the subject does. Here, we demonstrate that the whole-body control approach can efficiently
reconstruct a subject’s motion dynamics in real world task-space when given a scaled model and
marker based motion capture data. We scaled a biomechanically realistic musculoskeletal model to
a subject, captured motion with suitably placed markers, and used an operational space controller
to directly track the motion of the markers with the model. Our controller tracked the positions,
velocities, and accelerations of many markers in parallel by assigning them to tasks with differ-
ent priority levels based on how free their parent limbs were. We executed lower priority marker
tracking tasks in the successive null spaces of the higher priority tasks to resolve their interdepen-
dencies. The controller accurately reproduced the subject’sfull body dynamics while executing a
throwing motion in near real time. Its reconstruction closely matched the marker data, and its per-
formance was consistent for the entire motion. Our findings suggestthat the direct marker tracking
approach is an attractive tool to reconstruct and synthesize the dynamic motion of humans and
other complex articulated body systems in a computationally efficient manner.
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1 Introduction

The reconstruction of human motions is important to researchers who wish to un-
derstand the motor strategies skilled humans employ, predict clinical treatment out-
comes, or synthesize actor movement in virtual environments. Understanding hu-
man motor control involves studying the principles used to optimize movement, and
its improvement requires finding changes which make it more optimal. Predicting
clinical outcomes of specific biomechanics operations requires developing detailed
subject customized models to predict changes in the dynamics as parameters vary.
Finally, synthesizing motion involves mapping a subject’smotion to a model, over-
coming differences in scale, and possibly modifying and mixing motions as they are
executed. Motion reconstruction’s many objectives make ita challenging task.
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Existing reconstruction techniques are application specific, use approximate hu-
man models, and usually focus on animating virtual characters to execute tracked
motions. The inverse approach estimates the subject’s joint angles by imposing mo-
tion capture data’s spatial and timing constraints to a model and obtains the kine-
matics or dynamics in joint space [1, 2, 3, 4, 5, 6, 7]. However, estimating joint
space from the real world task space translates motion sensing errors into unnatural
joint constraints which are further amplified by model imperfections. In addition,
inverting motion capture data is computationally expensive. Task space reconstruc-
tion [8, 9] overcomes these difficulties by controlling a model to track task space
motion capture data directly and obviates the inversion to joint space. Controlling
realistic musculoskeletal models in task space to reconstruct motion is challenging
due to the many degrees of freedom, their novel singular configurations, and com-
putational efficiency constraints.

In this paper, we applied the task space reconstruction approach to track mul-
tiple markers with a detailed subject-customized biomechanical model. To ensure
biomechanical detail, we developed a controllable musculoskeletal model based on
existing biomechanical models of the upper and lower body [10, 11]. We identi-
fied a marker set that constrains the model sufficiently to make its motions match
the subject’s. We chose a task space marker control hierarchy which tracks markers
on the root and leaves of the model’s branching structure with the highest prior-
ity, and simultaneously tracks intermediate constrained markers in successive null
spaces. The higher priority tasks track the motions of the end effectors and pelvis,
and the lower priority tasks ensure that the motion of the remaining limbs is consis-
tent with their marker trajectory constraints. Finally, weexecuted our reconstruction
algorithms in our simulation and control framework[12] in near real time.

2 Musculoskeletal Motion Reconstruction

For a given desired task, all motion patterns such as body segment location and
orientation, balance, posture, collision avoidance [13, 14] need to be specified and
controlled in a logical order. They also need to be consistent with physio-mechanical
constraints including joint range of motion, singularity avoidance, and muscular ef-
fort minimization [9]. To solve these problems, we extend the task-space control
framework to marker space, where the marker trajectories are tracked with an accu-
rate musculoskeletal model. The model is scaled to the humansubject and is simu-
lated in real-time. The reconstruction process starts withreal-time data acquisition
using optical marker-based motion capture, and motion datafiltering. The muscu-
loskeletal model is then scaled and used to directly track the marker trajectories to
obtain the motion dynamics which may be analyzed later.
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Fig. 1 The musculoskeletal model scaled and used as the basis for the human motion simulation
and reconstruction in our task-level dynamic framework. The 22 markers tracked by our motion
reconstruction controller are labeled on the model.

2.1 Experimental Procedure and Musculoskeletal Model

Experiments were conducted using an eight-camera Vicon motion capture system
(OMG plc, Oxford UK). A 25-year old healthy left-handed female athlete performed
maximum velocity (left-hand) throws of a tennis ball. The motion of the subject was
captured at a rate of 120Hz. Following the experiment, the collected position data
was processed in Vicon Nexus Software. The raw marker data were filtered using a
15Hz low pass 4th order Butterworth filter.

The musculoskeletal model used in this work combines existing upper [11] and
lower [10] body models. The upper body’s kinematics contain15 degrees of free-
dom which represent the shoulder, elbow, forearm, wrist, and hand. The lower
body’s kinematics contain 17 degrees of freedom which represent the hip, knee,
ankle, subtalar, and metatarsophalangeal joints. The arms-torso, torso-pelvis, and
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Fig. 2 The topology of the skeletal model. Each block represents a bodysegment which is con-
nected to its parent body by the corresponding custom joint. The subscriptsr andl denote the right
and left body parts, respectively. The levels correspond to Table 1.

pelvis-leg joints are represented by ball-and-socket joints. The remaining joints are
revolute.

The generic human model consists of 20 joints and has 32 degrees of freedom. It
was scaled based on body segment mass-center locations [15]to match the anthro-
pometry of the subject. Figure 1 illustrates the scaled musculoskeletal model used
in our control and simulation framework and Fig. 2 shows the body segments of the
model, each connected to its parent body via the corresponding custom joint. For
example, the right ulna is connected to its parent body, right humerus via the right
elbow custom joint.

2.2 Control Framework

2.2.1 Marker Space Control Formulation

The marker space formulation is constructed by applying an operational space con-
troller [16] to track marker trajectories. The formulationbegins with the joint space
dynamics of the robot

A(q)q̈+b(q, q̇)+g(q) = Γ (1)
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whereq is the vector ofn generalized coordinates of the articulated system,A is the
n×n kinetic energy matrix,b is the vector of centrifugal and Coriolis generalized
forces,g is the vector of gravity forces, andΓ is the vector of generalized control
forces.

Task dynamic behavior is obtained by projecting (1) into thespace associated
with the task, which can be done with the following operation

J
T
t [Aq̈+b+g = Γ ] =⇒ Λt ẍt + µt + pt = J

T
t Γ (2)

Here,J
T
t is the dynamically-consistent generalized inverse ofJt , the Jacobian of the

task,Λt is them×m kinetic energy matrix associated with the task, andµt and pt

are the associated centrifugal/Coriolis and gravity forcevectors.
In the operational space framework, the task behavior is divided into a set of

independent task points, and the torque component for the task is determined in a
manner that compensates for the dynamics in task space. For atask behavior,xt ,
with decoupled dynamics and unit inertial properties ¨xt = F∗

t , this torque is given
by the force transformation

Γtask= JT
t Ft (3)

whereJt is the Jacobian of the task andFt is the operational space force. This oper-
ational space control is given by

Ft = ΛtF
∗
t + µt + pt (4)

whereF∗
t is the desired force associated with the task.

In the application to marker space, the task is defined in terms of the markers po-
sition coordinates describing the motion capture. The marker space control structure
is established as

Fmi = Λmi F
∗
mi

+ µmi + pmi (5)

Here,F∗
mi

is the control force associated withith marker task, and is defined by

F∗
mi

= ẍmid
−kv(ẋmi − ẋmid

)−kp(xmi −xmid
) (6)

wherexmid
, ẋmid

, and ẍmid
denote the desired position, velocity, and acceleration,

respectively, associated with the marker tracking task.kp andkv are the position and
velocity gains. Thus, equation (5) represents the control structure for the trajectory
tracking in marker space.

However, the coordinates associated with the positions of markers placed on the
articulated body are not all independent. In order to address this dependency, we
start by selecting an independent setm1 of markers and a task,xm1, associated with
this set. The control of the additional marker task is achieved by projecting the
associated control in the null space of the Jacobian matrix associated withxm1.

Dynamic consistency between marker-set tasks is achieved by recursive projec-
tions of the associated control torques in the higher priority task null space [17]. For
a marker setmi , this is achieved by the dynamically consistent JacobianJmi |mi−1|···|m1

defined as
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Fig. 3 A sequence of the reconstructed left hand throwing motion. Notethat the dots correspond
to the experimental markers attached to the subject.

Table 1 The hierarchy of the controlled tasks in the marker space. See also Fig. 1 and Fig. 2.

Level 1 Level 2 Level 3 Level 4

Pelvis Torso Lupperarm Posture
Lhand Lthigh Rupperarm Additional Behaviors
Rhand Rthigh Ltibia
Lmt5 Lforearm Rtibia
Rmt5 Rforearm
LKnuckle Lcalcaneus
RKnuckle Rcalcaneus

Jmi |mi−1|···|m1
= Jmi Nmi−1 · · ·Nm1 (7)

WhereNmi is the null space associated with thexmi marker-set task. Forn marker-
set tasks, the corresponding control torque vector is

Γ = JT
m1

Fm1 +JT
m2|m1

Fm2|m1
+ · · ·+JT

mn|mn−1|···|m1
Fmn|mn−1|···|m1

(8)

2.2.2 Human Motion Control Hierarchy

The implementation of the marker space control formulation, described in Sec. 2.2.1,
to the human model requires building a hierarchy of independent marker sets. Our
approach for assigning markers to these task-sets is based on the observation that
two markers can be controlled independently if they are separated by three degrees
of freedom that span the space of motion. This principle is applied to the human
model following its natural tree-like branching structure. The first level in the task
hierarchy is formed by markers placed on the pelvis, its root, and on the hands and
feet, its leaves. The following levels are constructed withmarkers placed on the
intermediate links through assignments consistent with the above principle. Addi-
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Fig. 4 Marker trajectories in task space: The left hand and knuckle marker trajectories demonstrate
the effectiveness of the task space motion reconstruction algorithm. The markers are tracked while
executing a left hand throwing motion. The tracked motion closely follows the recorder marker
positions. Placing multiple markers on links (some hidden for clarity) enables the controller to
track the position and orientation of the hand well.

tional tasks, such as postures and dissipative forces, are included in the lowest level
of the hierarchy.

Table 1 shows the resulting assignment for the human model. Note that the pelvis
segment includes both RASI and LASI while the torso segment incorporates C7,
CLAV, Lacromion, and Racromion markers that are illustrated in Fig. 1. The inde-
pendent marker sets are then tracked through the entire movement sequence using
this prioritization order. The remaining redundancy is labeled as the posture space
of the marker tasks, containing all possible motions that donot affect marker tasks
performance. The direct marker control framework allows usto synthesize any ad-
ditional behavior by projecting its control into the markertask null-space and estab-
lishing a new priority.
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Fig. 5 Marker trajectories in time: The left hand and knuckle marker trajectories are tracked with
little error, even when the motion is fast. While straight line motion is tracked with very low error
(1 cm), fast dynamic motions introduce small error overshoots (2–4 cm) since the system is mildly
underdamped.

3 Results and Real-Time Simulation

The motion reconstruction algorithm presented in Sec. 2.2.1 was tested on a se-
quence of human throwing motion described in Sec. 2.1 (Fig. 3). The reconstruction
was executed by controlling the tasks in three-level markerspace (Table 1) formed
by independent sets of 22 experimental marker trajectories(see Fig. 1 and Table 1).

Desired and reconstructed trajectories for the throwing(left) hand were recorded
during the simulation. Figure 4 illustrates the configurations of the throwing hand
together with the desired and reconstructed hand trajectories. Figure 5 shows the
reconstructed marker trajectories in time. Trajectory components (x, y and z) of the
desired and reconstructed motions were given for both throwing left hand and left
knuckle.

The results demonstrate the effectiveness of the reconstruction algorithm by
tracking the trajectories with little error (0-4cm). Our principal error source is the
scapular elevation and depression of the left shoulder, which are not taken into ac-
count in the current human model. The error could be reduced by incorporating the
movement of the scapula into the model. Overall, the resultsshow that fast dynamic
motions can be effectively reconstructed in near real-time.
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4 Conclusions

We described our direct marker space control framework for reconstructing human
motions by tracking captured marker trajectories with a simulated musculoskeletal
model. The reconstruction was performed by successive projections into the null
spaces of all tasks that are above it in the hierarchy formed in marker space. A
control hierarchy which allows whole-body motion reconstruction was established
and tested on a sequence of human throwing motions. Our framework provides an
efficient way to map motion patterns to accurate musculoskeletal models without
the need for inverse kinematics computations. It also runs in real-time. Our fore-
most limitation is modeling inaccuracy. For instance, the elevation and depression
of the scapula, which enables the shoulder to translate, is not included in the model.
The missing scapula movement limits the freedom of the shoulder in fast motions,
and its absence dramatically degrades reconstruction nearthe limits of the arm’s
workspace.

Our marker space reconstruction methodology provides the full motion dynamics
by operating in marker space and automatically resolving the kinematic constraints
of the markers. The framework has been used to analyze high performance human
motion such as that of athletes and martial art masters [9]. If we control a subset of
the limbs, our controller will predict optimal motions for the remaining limbs which
can then be used to train subjects. Novel gaits that minimizethe knee adduction
moment can be predicted by subject-specific musculoskeletal modeling and trained
using multi-modal feedback. Similarly, external knee loading that may lead to a
non-contact anterior cruciate ligament (ACL) injury during running and cutting ma-
neuvers can be estimated [18, 19], and new altered motion patterns with decreased
loads on the knee joint can be modeled in this framework.
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