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Abstract. Reconstructing human motion dynamics in real-time is a chaltgngroblem since it
requires accurate motion sensing, subject specific models, anérmffieconstruction algorithms.
A promising approach is to construct accurate human models, atkitvem to behave the same
way the subject does. Here, we demonstrate that the whole-badiyobapproach can efficiently
reconstruct a subject’s motion dynamics in real world task-spdenwiven a scaled model and
marker based motion capture data. We scaled a biomechanicaisficsausculoskeletal model to
a subject, captured motion with suitably placed markers, and usedexrational space controller
to directly track the motion of the markers with the model. Ountouller tracked the positions,
velocities, and accelerations of many markers in parallel bygasgj them to tasks with differ-
ent priority levels based on how free their parent limbs were.ékecuted lower priority marker
tracking tasks in the successive null spaces of the higher priasks to resolve their interdepen-
dencies. The controller accurately reproduced the subjedit’lbody dynamics while executing a
throwing motion in near real time. Its reconstruction closelyehat the marker data, and its per-
formance was consistent for the entire motion. Our findings sudiggisthe direct marker tracking
approach is an attractive tool to reconstruct and syntheseeythamic motion of humans and
other complex articulated body systems in a computationallyieffienanner.
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1 Introduction

The reconstruction of human motions is important to reseascwho wish to un-
derstand the motor strategies skilled humans employ, girelitiical treatment out-
comes, or synthesize actor movement in virtual environmddihderstanding hu-
man motor control involves studying the principles useddtimize movement, and
its improvement requires finding changes which make it metér@l. Predicting
clinical outcomes of specific biomechanics operationsiregueveloping detailed
subject customized models to predict changes in the dyrsaasiparameters vary.
Finally, synthesizing motion involves mapping a subjentistion to a model, over-
coming differences in scale, and possibly modifying andingjxnotions as they are
executed. Motion reconstruction’s many objectives malkechallenging task.
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Existing reconstruction techniques are application djgecise approximate hu-
man models, and usually focus on animating virtual charadteexecute tracked
motions. The inverse approach estimates the subjectsgailes by imposing mo-
tion capture data’s spatial and timing constraints to a rhadd obtains the kine-
matics or dynamics in joint space [1, 2, 3, 4, 5, 6, 7]. Howgestimating joint
space from the real world task space translates motionrsggaesiors into unnatural
joint constraints which are further amplified by model infpetions. In addition,
inverting motion capture data is computationally expemsiask space reconstruc-
tion [8, 9] overcomes these difficulties by controlling a mbtb track task space
motion capture data directly and obviates the inversiomitat jspace. Controlling
realistic musculoskeletal models in task space to recactstnotion is challenging
due to the many degrees of freedom, their novel singular gorgtions, and com-
putational efficiency constraints.

In this paper, we applied the task space reconstructionoapprto track mul-
tiple markers with a detailed subject-customized biomeitd# model. To ensure
biomechanical detail, we developed a controllable muskdietal model based on
existing biomechanical models of the upper and lower body [11]. We identi-
fied a marker set that constrains the model sufficiently toeniskmotions match
the subject’s. We chose a task space marker control higraraith tracks markers
on the root and leaves of the model's branching structurh tié highest prior-
ity, and simultaneously tracks intermediate constrainadkers in successive null
spaces. The higher priority tasks track the motions of thikedfectors and pelvis,
and the lower priority tasks ensure that the motion of theaiaing limbs is consis-
tent with their marker trajectory constraints. Finally, e=cuted our reconstruction
algorithms in our simulation and control framework[12] iean real time.

2 Musculoskeletal M otion Reconstruction

For a given desired task, all motion patterns such as bodyneeglocation and

orientation, balance, posture, collision avoidance [¥3,need to be specified and
controlled in a logical order. They also need to be consistéh physio-mechanical

constraints including joint range of motion, singularityoadance, and muscular ef-
fort minimization [9]. To solve these problems, we extend task-space control
framework to marker space, where the marker trajectoreefracked with an accu-
rate musculoskeletal model. The model is scaled to the hwmlject and is simu-

lated in real-time. The reconstruction process starts wigth-time data acquisition
using optical marker-based motion capture, and motion fileéeing. The muscu-

loskeletal model is then scaled and used to directly traelntarker trajectories to
obtain the motion dynamics which may be analyzed later.
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Fig. 1 The musculoskeletal model scaled and used as the basis for the hunan sioulation
and reconstruction in our task-level dynamic framework. The 2&era tracked by our motion
reconstruction controller are labeled on the model.

2.1 Experimental Procedure and Musculoskeletal Model

Experiments were conducted using an eight-camera Vicoiomagapture system
(OMG plc, Oxford UK). A 25-year old healthy left-handed felmathlete performed
maximum velocity (left-hand) throws of a tennis ball. Thetio of the subject was
captured at a rate of 120Hz. Following the experiment, tHiected position data
was processed in Vicon Nexus Software. The raw marker data fillered using a
15Hz low pass 4th order Butterworth filter.

The musculoskeletal model used in this work combines exjsipper [11] and
lower [10] body models. The upper body’s kinematics confiirdegrees of free-
dom which represent the shoulder, elbow, forearm, wrist, hand. The lower
body’s kinematics contain 17 degrees of freedom which wsprethe hip, knee,
ankle, subtalar, and metatarsophalangeal joints. The-tores, torso-pelvis, and
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Fig. 2 The topology of the skeletal model. Each block represents a begment which is con-
nected to its parent body by the corresponding custom joirg.sTibscripts andl denote the right
and left body parts, respectively. The levels correspond teeTab

pelvis-leg joints are represented by ball-and-socketgoifihe remaining joints are
revolute.

The generic human model consists of 20 joints and has 32 elegfdreedom. It
was scaled based on body segment mass-center locatiorts [h&kch the anthro-
pometry of the subject. Figure 1 illustrates the scaled milos&eletal model used
in our control and simulation framework and Fig. 2 shows théybsegments of the
model, each connected to its parent body via the correspgralistom joint. For
example, the right ulna is connected to its parent bodyt higimerus via the right
elbow custom joint.

2.2 Control Framework

2.2.1 Marker Space Control Formulation

The marker space formulation is constructed by applyingmerational space con-
troller [16] to track marker trajectories. The formulatibegins with the joint space
dynamics of the robot

A(9)4+b(g,q) +9(q) =T 1)
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whereq is the vector of generalized coordinates of the articulated syst#is,the
n x n kinetic energy matrixb is the vector of centrifugal and Coriolis generalized
forces,g is the vector of gravity forces, and is the vector of generalized control
forces.

Task dynamic behavior is obtained by projecting (1) into $hace associated
with the task, which can be done with the following operation

FAG+b+g=] = A%+t +p =3 T 2)

Here,jtT is the dynamically-consistent generalized inversé ahe Jacobian of the
task,/\; is them x mkinetic energy matrix associated with the task, anénd p
are the associated centrifugal/Coriolis and gravity faregtors.

In the operational space framework, the task behavior isl€ilinto a set of
independent task points, and the torque component for #keisadetermined in a
manner that compensates for the dynamics in task space. task dehaviory;,
with decoupled dynamics and unit inertial properties="R*, this torque is given
by the force transformation

[task= JtTFt (3)

whereJ; is the Jacobian of the task aRdis the operational space force. This oper-
ational space control is given by

Ro= AR+ e+ py 4)

whereR* is the desired force associated with the task.

In the application to marker space, the task is defined inderfithe markers po-
sition coordinates describing the motion capture. The eraggace control structure
is established as

Fm = AmFq + Hmy + P (5)

Here,Fy, is the control force associated with marker task, and is defined by

Fin = X, — Ku(¥m —Xm,, ) —Kp(Xm —Xm) (6)

wherexm , Xm , andXm denote the desired position, velocity, and acceleration,
respectively, associated with the marker tracking tkslandk, are the position and
velocity gains. Thus, equation (5) represents the controtture for the trajectory
tracking in marker space.

However, the coordinates associated with the positionsaskets placed on the
articulated body are not all independent. In order to addtieis dependency, we
start by selecting an independent setof markers and a tasky, , associated with
this set. The control of the additional marker task is adtety projecting the
associated control in the null space of the Jacobian matsr@ated withy, .

Dynamic consistency between marker-set tasks is achigveecorsive projec-
tions of the associated control torques in the higher pgyidgisk null space [17]. For
a marker sety, this is achieved by the dynamically consistent Jacol{gm, ,|...;m,
defined as
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Fig. 3 A sequence of the reconstructed left hand throwing motion. Natethe dots correspond
to the experimental markers attached to the subject.

Table1 The hierarchy of the controlled tasks in the marker space. Sed&j. 1 and Fig. 2.

Level 1 Level 2 Level 3 Level 4
Pelvis Torso Lupperarm Posture
Lhand Lthigh Rupperarm  Additional Behaviors
Rhand Rthigh Ltibia
Lmt5 Lforearm Rtibia
Rmt5 Rforearm
LKnuckle Lcalcaneus
RKnuckle Rcalcaneus
Jnrymy g -my = Iy Nimy_y - - Nimy (7

WhereNy, is the null space associated with the marker-set task. Farmarker-
set tasks, the corresponding control torque vector is

T T T
r= ‘Jmlle +‘sz\m1sz\m1 e +’JfThImnfll'“\mlF”h‘”hfl""‘ml (8)

2.2.2 Human Moation Control Hierarchy

The implementation of the marker space control formulatit@scribed in Sec. 2.2.1,
to the human model requires building a hierarchy of indepahdarker sets. Our
approach for assigning markers to these task-sets is bastt @bservation that
two markers can be controlled independently if they arersged by three degrees
of freedom that span the space of motion. This principle @ia@ to the human
model following its natural tree-like branching structutée first level in the task
hierarchy is formed by markers placed on the pelvis, its,raod on the hands and
feet, its leaves. The following levels are constructed withrkers placed on the
intermediate links through assignments consistent wighathove principle. Addi-
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Fig. 4 Marker trajectories in task space: The left hand and knuckl&enamajectories demonstrate
the effectiveness of the task space motion reconstruction #igarirhe markers are tracked while
executing a left hand throwing motion. The tracked motion dlo&alows the recorder marker
positions. Placing multiple markers on links (some hidden foritglaenables the controller to
track the position and orientation of the hand well.

tional tasks, such as postures and dissipative forcespelialed in the lowest level
of the hierarchy.

Table 1 shows the resulting assignment for the human moadét that the pelvis
segment includes both RASI and LASI while the torso segmeedrporates C7,
CLAV, Lacromion, and Racromion markers that are illustiateFig. 1. The inde-
pendent marker sets are then tracked through the entirememtesequence using
this prioritization order. The remaining redundancy iselaiol as the posture space
of the marker tasks, containing all possible motions thatatoaffect marker tasks
performance. The direct marker control framework allows$ausynthesize any ad-
ditional behavior by projecting its control into the markask null-space and estab-
lishing a new priority.
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Fig. 5 Marker trajectories in time: The left hand and knuckle markajettories are tracked with
little error, even when the motion is fast. While straight linetimo is tracked with very low error
(1 cm), fast dynamic motions introduce small error overshoots (@)4tce the system is mildly
underdamped.

3 Resultsand Real-Time Simulation

The motion reconstruction algorithm presented in Secl2nAs tested on a se-
quence of human throwing motion described in Sec. 2.1 (Big.18 reconstruction

was executed by controlling the tasks in three-level maskace (Table 1) formed
by independent sets of 22 experimental marker traject@msFig. 1 and Table 1).

Desired and reconstructed trajectories for the throweftj(hand were recorded
during the simulation. Figure 4 illustrates the configuras of the throwing hand
together with the desired and reconstructed hand trajestdfigure 5 shows the
reconstructed marker trajectories in time. Trajectory ponents (X, y and z) of the
desired and reconstructed motions were given for both timgVeft hand and left
knuckle.

The results demonstrate the effectiveness of the recatistnualgorithm by
tracking the trajectories with little error (0-4cm). Ouiinmipal error source is the
scapular elevation and depression of the left shouldewaie not taken into ac-
count in the current human model. The error could be redugéddorporating the
movement of the scapula into the model. Overall, the restitsv that fast dynamic
motions can be effectively reconstructed in near real-time
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4 Conclusions

We described our direct marker space control frameworkdoomstructing human
motions by tracking captured marker trajectories with ausated musculoskeletal
model. The reconstruction was performed by successivegtions into the null
spaces of all tasks that are above it in the hierarchy formewmharker space. A
control hierarchy which allows whole-body motion recounstion was established
and tested on a sequence of human throwing motions. Our ¥varkgrovides an
efficient way to map motion patterns to accurate musculesikemodels without
the need for inverse kinematics computations. It also ran®al-time. Our fore-
most limitation is modeling inaccuracy. For instance, tleva&ion and depression
of the scapula, which enables the shoulder to translatet imcuded in the model.
The missing scapula movement limits the freedom of the slewuh fast motions,
and its absence dramatically degrades reconstructionthedimits of the arm’s
workspace.

Our marker space reconstruction methodology providesuhmbtion dynamics
by operating in marker space and automatically resolviedg<thematic constraints
of the markers. The framework has been used to analyze hifirpance human
motion such as that of athletes and martial art mastersf[@je lcontrol a subset of
the limbs, our controller will predict optimal motions fdre remaining limbs which
can then be used to train subjects. Novel gaits that minirtizeknee adduction
moment can be predicted by subject-specific musculosketetdeling and trained
using multi-modal feedback. Similarly, external knee logdthat may lead to a
non-contact anterior cruciate ligament (ACL) injury dgrirunning and cutting ma-
neuvers can be estimated [18, 19], and new altered motidarpatwith decreased
loads on the knee joint can be modeled in this framework.
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