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A firm considers hiring an agent who may be competent for a poten-
tial project or not. The agent can prove her competence but faces a
holdup problem. We propose a model of persuasion and show how
gradualism helps mitigate the holdup problem. We show when it is op-
timal to give away part of the information at the beginning of the bar-
gaining and sell the remainder in dribs and drabs. The agent can ap-
propriate only part of the value of information. Introducing a third
party allows her to extract the maximum surplus.
I. Introduction
A firm contemplates hiring an expert. For example, it considers hiring a
consulting company to lead a potential reorganization of its division; an
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advisor to help with an acquisition; or an inventor to help build a new
product feature, or a product itself, in the case of an agency engaged
in a procurement process. The agent has private information whether
she is competent (type 1) or incompetent (type 0). Hiring an incompe-
tent agent leads to a negative expected net present value (ENPV) from
the project. Hiring a competent agent yields a positive ENPV. While the
firm could hire the expert/agent by offering her a payment equal to her
outside option, the firm’s problem is that it is uncertain whether hiring
the agent and going forward with the project is the best course of action.
The firm could make its decision on the basis of the prior belief, but tak-
ing into account the agent’s information would result in efficiency gains.
How could the agent persuade the firm that she is competent and at

the same time be rewarded for competence? How should the agent sell
that information optimally so that the firm would make an informed hir-
ing decision and the agent would be the most motivated to acquire com-
petence?
To answer these questions, we propose a game-theoretic model of

gradual persuasion between the agent and the firm. Persuasion can be
thought of as preliminary projects or temporary employment spells
(which either side can revoke at any time). During the trial period the
agent is paid and gradually reveals information. In particular, the agent
performs tasks (which we call “tests”) that are informative about her
type. In every period, the firm observes the task chosen by the agent,
and its outcomes, and then decides whether to continue the trial period,
fire the agent, or hire her and start the main project. Neither the firm
nor the agent can commit to future payments, hiring decisions, test tak-
ing (choice of tasks), or information sharing. There is neither commit-
ment nor contractibility. Most importantly, the firm cannot commit to
pay the agent contingent on the information she reveals. In practice,
there are obvious ways in which the two sides can commit, more or less
formally. The agent might be concerned about her reputation for com-
petence, for instance. The legal structure might provide some protec-
tion to intellectual property rights (as patents do).
Motivated by incentives to acquire competence, we characterize equi-

libria that maximize the difference in expected payoffs of the agent of
type 1 and type 0 (as we show, this is equivalent to solving for equilibria
that maximize the payoffs of the competent agent).
With one-time information transmission (whether information disclo-

sure is full or partial), both types of the agent would get the same pay-
ment. Maximizing incentives to acquire competence calls for multistage
communication. The game we consider is therefore dynamic: there is a
multistage information selling stage (which we call the game of informa-
tion sale) followed by the final decision of the firm, which depends on
the information the firm has acquired. Within a round of communica-
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tion, the two parties make voluntary monetary transfers, and then the
agent can disclose some information to the firm.
We assume that information is verifiable and divisible. In particular, the

information transmission is modeled as tests to verify the agent’s type.
Verifiability of information means that each test has a known difficulty:
the competent agent can always pass it (in the baseline model), but the
incompetent agent passes it with a probability commensurate to its diffi-
culty. Easier tests have a higher probability of being passed by an incom-
petent agent. Divisibility of information means that there is a rich set of
available tests of varying difficulties.
Our main result is that, very generally, “splitting information over

time” increases the competent agent’s payoff. That is, the competent
agent’s payoff is higher in equilibria in which she takes two tests (and
is paid for them) in a sequence than if she takes both of them at once
(which is equivalent to taking one harder test). The intuition is that
when we split the tests, the firm still pays the same amount on average;
but the incompetent agent may fail the first test, so that type gets a smaller
fraction of the expected payment.
That effect explains the structure of the best equilibrium in our first

model: first, an initial chunk of information is given away for free that
leads the firm to the utmost confusion regarding whether hiring the
agent is the correct decision. If the agent passes this first test, she is then
hired on a “temporary basis”; and during the trial, as long as the agent
performs, she sells information in dribs and drabs and gets paid a little
for each bit (and a failure of a test leads to a termination). These features
seem consistent with the practice of preliminary reports/trial periods be-
fore firms make large financial commitments to projects with the help of
external experts. Our finding that selling information gradually is ben-
eficial to reward competence of the seller should come as no surprise
to anyone who was ever involved in consulting. The free first consulta-
tion is also reminiscent of standard business practice.
We derive a tight bound on the competent agent’s equilibrium payoff

as the number of possible communication rounds grows to infinity. Al-
though the closed-form expression for the limit payoff relies on the di-
visibility of information and the arbitrary number of rounds that we al-
low, there is no discontinuity: the benefit of splitting information does
not depend on either assumption.
While the acquisition of competence is our leading interpretation for

the model, we also develop a more general version that could be useful
for other applications. For example, the firm may be buying the agent’s
advice (not needing the agent’s help to execute the project) and the
agent could be privately informed about a state of the world, which in
turn affects the ENPV of the project. The firm’s action set does not need
to be binary either (e.g., the firmmay be choosing a size of its investment
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in the project). To model such situations, we allow for more general pay-
offs if the firm decides to make decisions without further information
from the agent. In particular, these payoffs capture the possibility that
revealing information the agent has about the state makes it easier for
the firm to make good decisions without further agent’s input. We show
that the benefits of “splitting information” apply to this more general
model and characterize the best equilibrium payoffs for type 1. We prove
that selling information in small bits is profitable as long as the firm’s
payoff function (mapping the current posterior belief to the firm’s ENPV
if it was to make a decision without any further information from the
agent) is star shaped, that is, as long as its average value is increasing in
the belief.
Splitting information might help the agent in extracting more surplus

from the relationship, but it does not suffice to extract the entire sur-
plus. In the last section of the paper we show how enlarging the class
of “test technologies” to include some that involve noisy communication
between the agent and the firm can help. In particular, we show that,
even with our extreme assumptions of noncontractibility and noncom-
mitment, with rich enough tests, the competent agent can extract the
entire expected value quite generally.
Related literature.—The paper is related to the literature on holdup, for

example, Gul (2001) and Che and Sákovics (2004). One difference is
that in our game what is being sold is information, and hence the value
of past pieces sold can depend on the future pieces that are disclosed (or
failed to be). An agent that eventually reveals himself to be incompetent
by the same token destroys the value of the consideration that he had
established. This property of beliefs—that they can go up or down—is
an essential ingredient for our results. Moreover, we assume that there
is no physical cost of selling a piece of information, and hence the agent
does not care per se about how much information the firm gets or what
action it takes. In contrast, in Che and Sákovics (2004), each piece of the
project is costly to the agent and the problem is how to provide incen-
tives for this observable effort.
The formalmaximization problem and, in particular, the structural con-

straints on information revelation are reminiscent of the literature on long
cheap talk. See, in particular, Forges (1990) and Aumann andHart (2003)
and,more generally, Aumann andMaschler (1995). As is the case here, the
problemishowto “split”amartingaleoptimallyover time.That is, thefirm’s
belief is a martingale, and the optimal strategy specifies its distribution over
time. Ely, Frankel, and Kamenica (2015) is another analysis of optimal mar-
tingale splitting, although information has instrumental value there.
There are important differences between our paper and the motiva-

tion of these papers, however. First and foremost, in contrast to that lit-
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erature, payoff-relevant actions are taken before information disclosure
is over, since the firm pays the agent as information gets revealed over
time, so communication and payments are concurrent here. In fact, with
a mediator, the agent also makes payments to the firm during the com-
munication phase. As in Matthews and Postlewaite (1995) or Forges and
Koessler (2008), messages are type dependent, as the agent is constrained
in the messages she can send by the information she actually owns. Pure
cheap talk (i.e., the possibility to send messages from sets that are type
independent) is of no help in our model. Rosenberg, Solan, and Vieille
(2013) consider the problem of information exchange between two in-
formed parties in a repeated game without transfers and establish a folk
theorem. In all these papers, the focus is on identifying the best equilib-
rium from the agent’s perspective in the ex ante sense, before her type is
known. In our case, this is trivial and does not deliver differential payoffs
to the agents’ types (i.e., a higher payoff to the competent type).
The martingale property is distinctive of information, and this is a key

difference between our setup and other models in which gradualism ap-
pears. In particular, the benefits of gradualism are well known in games
of public goods provision (see Admati and Perry 1991; Marx and Mat-
thews 2000; Compte and Jehiel 2004). Contributions are costly in these
games, whereas information disclosure is not costly per se. In fact, cost-
lessness is a second hallmark of information disclosure that plays an im-
portant role in the analysis. (On the other hand, the specific order of
moves is irrelevant for the results, in contrast to contribution games.)
The opportunity cost of giving information away is a function of the
equilibrium to be played. So, in contrast to public goods game, the mar-
ginal (opportunity) cost of information is endogenous. Relative to sales
of private goods, the marginal value of information cannot be ascer-
tained without considering the information as a whole, very much as for
public goods.
Our focus (proving one’s knowledge) and instrument (tests that im-

perfectly discriminate for it) are reminiscent of the literature on zero-
knowledge proofs, which also stresses the benefits of repeating such tests.
This literature, which starts with the paper of Goldwasser, Micali, and
Rackoff (1985), is too large to survey here. A key difference is that, in
that literature, passing a test conveys information about the type without
revealing anything valuable (factoring large numbers into primes does
not help the tester factoring numbers himself). In many economic ap-
plications, however, it is hard to convince the buyer that the seller has
information without giving away some of it, which is costly—as it is in our
model.
Indeed, in contrast to public goods games, or zero-knowledge proofs,

splitting information is not always optimal. As mentioned, this hinges on
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a (commonly satisfied) property of the firm’s payoff, as a function of its
belief about the agent’s type.
Our leading motivating example of an agent that tries to convince a

firm to hire her is closely related to that of the standard model of signal-
ing, as in Spence (1973). There are three differences. First, in terms of
technology, in job market signaling, all messages can be sent by all types,
but at different costs. Here, instead, messages are free, but the message
space is type dependent. Second, in terms of market structure, in stan-
dard job market signaling, it is usually assumed that firms compete for
the worker, who reaps the entire surplus, so the issue of how much sur-
plus signaling allows her to appropriate does not really come up. Third,
in terms of objective function, our goal is to understand what equilibrium
maximizes the payoff difference between the competent and incompe-
tent types, a question that is not usually central to the analysis of signal-
ing. These are not major differences, however: type-dependent messages
can be viewed as actions that are prohibitively costly to some types;1 per-
fect competition among firms does not seem like an essential ingredient
of Spence’s analysis, and likewise for the fact that we ignore here any out-
side option for the agent. The major difference, in our view, is that we
are interested in how persuasion should be dynamically structured, to
provide maximum rewards for (and so incentives to acquire) compe-
tence. With the exception of Forges (1990), who analyzes a very different
game, we are not aware of an analysis of longer communication or signal-
ing in a job market–related setting.
Less related are some papers in industrial organization. Our paper is

complementary to Anton and Yao (1994, 2002), in which an inventor tries
to obtain a return to his information in the absence of property rights. In
Anton and Yao (1994), the inventor has the threat of revealing informa-
tion to competitors of the firm, and it allows him to receive payments even
after she gives the firm all information. In Anton and Yao (2002), some
contingent payments are allowed, and the inventor can use them together
with competition among firms to obtain positive return to her informa-
tion. In contrast, in our model, there are no contingent payments, and
we assume that only one firm can use the information.
Finally, there is a vast literature directly related to the value of informa-

tion. See, among others, Admati and Pfleiderer (1988, 1990). Eső and
Szentes (2007) take a mechanism design approach to this problem, while
Kamenica and Gentzkow (2011) apply ideas similar to those in Aumann
and Maschler (1995) to study optimal information disclosure policy when
the agent does not have private information about the state of the world
but cares about the firm’s action.
1 This interpretation of our tests does not quite work because the incompetent agent
does not know whether she will be lucky or not in passing a given test.
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II. Hiring Competent Experts and
Motivating Competence
We start with a simple model in which we explicitly derive how the firm’s
payoff of hiring the agent as a function of the firm’s beliefs about her
competence arises from a decision problem.
A. Setup
There is one agent (she) and a firm (it). The agent is of one of two pos-
sible types:q ∈ Q ≔ f0, 1g; she is either competent (1) or not (0).We also
refer to these as type 1 and type 0. The agent’s type is private informa-
tion. The firm’s prior belief that q 5 1 is p0 ∈ ð0, 1Þ. In Section II.G, we
discuss how this belief might come about.
The game is divided into K rounds of communication (we focus on the

limit as K grows large), followed by an action stage. In the action stage
the firm must choose either action I (hire the agent and “invest” in
the project) or action N (not hire the agent and “not invest” in the proj-
ect). Not investing yields a payoff of 0 independently of the agent’s type.
Investing yields an expected net payoff of 1 if q 5 1 and 2g < 0 if q 5 0
(net of the costs of hiring the agent). That is, investing is optimal if the
agent is competent, as such an agent has the skill, know-how, or informa-
tion to make the investment thrive. However, if the agent is incompetent,
it is safer to abstain from investing.
In each of the K rounds of communication timing is as follows. First,

the firm and the agent choose a monetary transfer to the other player, tAk
and tFk , respectively.

2 Second, after these simultaneous transfers, the agent
chooses whether to reveal some information by undergoing a test.3

We propose the following concrete model of gradual persuasion/
communication using tests. We assume that for every m ∈ [0, 1], there
exists a test that the competent agent passes for sure but that the incom-
petent agent passes with probability m. The level of difficulty, m, is cho-
sen by the agent and observed by the firm.4 If the firm’s prior belief
about the agent being competent is p and a test of difficulty m is chosen
and passed, the posterior belief is

p 0 5
p

p 1 ð1 2 pÞm :
2 The reader might wonder why we allow the agent to pay the firm. After all, it is the
agent who owns the unique valuable good, information. Such payments will turn out to
be irrelevant given the testing technology in this section but will play a role in the second
part of the paper with more complex communication.

3 Nothing hinges on this timing. Payments could be made sequentially rather than si-
multaneously and occur after rather than before the test is taken.

4 Because the level of difficulty is determined in equilibrium, it does not matter that the
agent chooses it rather than the firm.
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Thus, the range of possible posterior beliefs as m varies is [p, 1] (if the
test is passed). An uninformative test corresponds to the case m 5 1. If
the agent fails the test, then the firm correctly updates its belief to zero.
To allow for rich communication, tests of any desired precision m are
available at each of the K rounds, and their outcomes are conditionally
independent.
In words, by disclosing information, the agent affects the firm’s belief

that she is competent. Persuasion can be a gradual process: after the
agent discloses some information, the firm’s posterior belief p0 can be ar-
bitrary, provided that the prior belief p is not degenerate. But the firm
uses Bayesian updating. Viewed as a stochastic process whose realization
depends on the disclosed information, the sequence of posterior beliefs
is a martingale from the firm’s point of view.5
B. Histories, Strategies, and Payoffs
More formally, a (public) history of length k is a sequence

hk 5 fðtAk 0 , tFk 0 ,mk 0 , rk 0 Þgk21
k 050,

where

ðtAk 0 , tFk 0 ,mk 0 , rk 0 Þ ∈ R2
1 � 0, 1½ � � 0, 1f g:

Here, mk is the difficulty of the test chosen by the agent in stage k and rk is
the outcome of that test (which is either positive, 1, or negative, 0). The
set of all such histories is denoted Hk (set H0 ≔ ∅).
A (behavior) strategy jF for the firm is a collection ðftFk gK21

k50 , a
F Þ, where

(i) tFk is a probability transition tFk :Hk →R1, specifying a transfer tFk ≔
tF ðhkÞ as a function of the (public) history so far, as well as (ii) an action
(a probability transition as well), aF :HK →fI ,N g after the Kth round.
A (behavior) strategy jA for the agent is a collection ftAk , mA

k gK21
k50 , where

(i) tAk : Q � Hk →R1 is a probability transition specifying the transfer tAk ≔
tAðhkÞ in round k given the history so far and given the information
she has, and (ii) mA

k : Q � Hk � R2
1 → ½0, 1� is a probability transition spec-

ifying the difficulty of the test (i.e., the value of m), as a function of the
5 More abstractly, as in the literature on repeated games with incomplete information,
we can think of an agent’s strategy as a choice of a martingale—the firm’s beliefs—given
the consistency requirements imposed by Bayes’s rule. For concreteness, we model this
as the outcome of a series of tests whose difficulty can be varied. Alternatively, we may think
of information as being divisible and the agent choosing howmuch information to disclose
at each round; the incompetent agent might be a charlatan who might be lucky or skilled
enough to produce some persuasive evidence. For now, we do not allow the competent
agent to flunk the test on purpose, nor do we consider tests so difficult that even the com-
petent agent might fail them. This means that the sample path of the belief martingale is
either nondecreasing or absorbed at zero. We discuss richer communication possibilities in
Sec. IV.
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agent’s type, the history up to the current round, and the transfers that
were made in the round. All choices are possibly randomized, but in this
and the next section we restrict attention to pure-strategy equilibria.
These definitions imply that there is no commitment on either side:

the firm (and the agent) can stopmaking payments at any time, and noth-
ing compels the agent to disclose information if she prefers not to.
In terms of payoffs, we assume there is neither discounting nor any

other type of frictions during the K rounds (e.g., taking the tests is free).
We discuss frictions in the next section.
In the absence of any additional information revelation, the firm’s op-

timal action is to invest if and only if its belief p that her type is 1 satisfies

p ≥ p* ≔
g

1 1 g
:

Hence, its payoff from the optimal action is given by

wðpÞ ≔ ½p 2 ð1 2 pÞg�1,
where x1 ≔ maxf0, xg. While our analysis covers the cases in which the
prior belief p0 is below or above p*, we have in mind the more interesting
case in which p0 is smaller than p*. The payoff w(p) is the firm’s outside
option. Since we assumed that the firm makes a binary investment deci-
sion, the specific outside option reduces to a call option. We consider
a richer class of outside option specifications in the next section.
To focus attention on the communication stage of the game, we as-

sume for now that if the firm decides to invest, it hires the agent at a sal-
ary equal to her outside option (we consider the perhaps more realistic
case in which the agent strictly prefers to be hired in Sec. II.F). As a re-
sult, the agent does not care about the firm’s investment decision or
about its own competence per se. All she cares about is getting paid as
much as possible over the K rounds of communication.
The firm cares about the payoff from the investment decision, net of

any payments to the agent during the communication stage (recall that
the investment payoffs already include the cost of hiring the agent).
Given some final history hK (which does not include the firm’s final ac-

tion to invest or not), the type q agent’s realized payoff is the sum of all
net transfers over all rounds, independently of her type:

VqðhK Þ 5 o
K21

k50

ðtFk 2 tAk Þ:

Given type q, the firm’s overall payoff results from its action, as well as
from the sum of net transfers. If the firm chooses the safe action, it gets

W ðq, hK ,N Þ 5 o
K21

k50

ðtAk 2 tFk Þ:
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If instead the firm decides to invest, it receives

W ðq, hK , I Þ 5 o
K21

k50

ðtAk 2 tFk Þ 1 1 � 1q51 2 g � 1q50,

where 1A denotes the indicator function of the event A.
A prior belief p0 and a strategy profile j ≔ ðjF , jAÞ define a distribution

over Q � HK � fI ,N g, and we let V(j),W(j), or simply V, W, denote the
expected payoffs of the agent and the firm, respectively, with respect to
this distribution. When the strategy profile is understood, we also write
V(hk), W(hk) for the players’ continuation payoffs, given history hk. We
further write V0, V1 for the payoff to the agent when we condition on the
type q5 0, 1.
The solution concept is perfect Bayesian equilibrium, as defined in

Fudenberg and Tirole (1991, definition 8.2).6 We assume that players
have access to a public randomization device at the beginning of each
round (a draw from a uniform distribution), as this facilitates an argu-
ment in a proof. The best equilibrium that we identify (in this and later
sections) turns out not to take advantage of this device, so that results do
not depend on it.
C. Preliminary Remarks
This game admits a plethora of equilibria, but our focus is on identifying
the best equilibrium for the competent agent. It is not difficult to moti-
vate our interest in this equilibrium. After all, rewarding agents for their
expertise is socially desirable if acquiring it is costly. Clearly, there are
many ways to model acquisition of competence; the online appendix
provides a particular example.
As usual, how good payoffs can be sustained on the equilibrium path

depends on the worst punishment payoffs that are consistent with a con-
tinuation equilibrium. In our game, after every history there is a “bab-
bling” equilibrium in which the agent never undergoes a test (i.e., chooses
m 5 1 in each period), and neither the agent nor the firm makes pay-
ments. This gives the agent a payoff of 0 and the firm a payoff of w(p),
its outside option. This equilibrium achieves the lower bound on the pay-
offs of all the participants simultaneously, so it is the most potent punish-
ment available. This implies that without loss of generality we can restrict
attention to equilibria in which any observable deviation triggers rever-
sion to this equilibrium (the firm then getting its outside option w(p)
given its belief once the deviation occurs). To induce compliance, it suf-
6 Fudenberg and Tirole define perfect Bayesian equilibria for finite multistage games
with observed actions only. Here instead, both the type space and the action sets are infi-
nite. The natural generalization of their definition is straightforward and is omitted.
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fices to make sure that all players receive at least their minmax payoff
(0 and w(p)) at any time.
If the firm assigns probability p to the type 1 agent, then, from its point

of view, the expected total surplus is at most p � 1 1 ð1 2 pÞ � 0 5 p (this
is in the best possible scenario in which it eventually makes the right in-
vestment decision). Hence, given some equilibrium, any history hk, and
resulting belief p, continuation payoffs must satisfy

pV1ðhkÞ 1 1 2 pð ÞV0ðhkÞ 1 W ðhkÞ ≤ p: (1)

With only one round of communication, K5 1, both types of the agent
have to receive the same payoff in any equilibrium, so V1 ≤ p 2 wðpÞ in
this case. By (1), p 2 wðpÞ is also the upper bound on the average or ex
ante payoff of the agent.
How much can gradual communication improve V1? By (1), given that

W ðhkÞ ≥ wðpÞ and V0ðhkÞ ≥ 0, the type 1 agent cannot receive more than
1 2 wðpÞ=p. Clearly p 2 wðpÞ < 1 2 wðpÞ=p whenever wðpÞ < p, so the
upper bound is strictly larger than the maximum ex ante payoff. Can
we improve on the latter?
It is worth pointing out that, in some cases, maximizing the incentives

to acquire competence is not about maximizing the type 1 agent’s payoff
V1, but the difference V1 2 V0. But the two objectives coincide. This can
be seen in three steps: first, in terms of the agent’s equilibrium payoffs
ðV0, V1Þ, there is no loss of generality in assuming that the equilibrium
achieving this payoff is efficient, that is, that it satisfies (1) with equality: dis-
closing the type in the last period on the equilibrium path does not affect
the agent’s payoff and only makes compliance with the equilibrium strat-
egy more attractive to the firm. Second, if (1) holds as an equality, then

V1 2 V0 5
V1 1 W 2 p0

1 2 p0
:

Hence, maximizing the difference in the types’ payoffs amounts to max-
imizing the sum V1 1 W. Third, maximizing V1 is equivalent to maximiz-
ing V1 1 W. The reason is that payoffs between the principal and the
agent can be transferred one to one via the first payment that the firm
makes: if W > wðp0Þ, we can decrease W and increase V1 by the same
amount by requiring the firm to make a larger payment up-front. Hence,
in maximizing V1 1 W over all equilibria, there is no loss in assuming
that W 5 wðp0Þ, a fixed quantity, and so in maximizing V1 only.
D. The Best Equilibrium for the Competent Agent
We now turn to the focus of the analysis: what equilibriummaximizes the
payoff of the competent agent, and how much of the surplus can she ap-
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propriate? Note that this maximum payoff is nondecreasing in K, the
number of rounds: players can always choose not to make transfers or
disclose any information in the first round. Hence, for any p0, the highest
equilibrium payoff for the type 1 agent has a well-defined limit as K→ ∞
that we seek to identify.
In this and the next section we consider equilibria in which the com-

petent agent always passes any test she takes. She is not allowed to “flunk”
the test on purpose, a possibility that we will allow in Section IV: there we
enrich the description of the game to allow the agent to choose whether
to pass the test after she chooses the difficulty m. In that richer game the
analysis in this section is equivalent to restricting attention to pure strat-
egies (a restriction that we recall in formal statements).
From the firm’s point of view, its posterior will take one of two values:

either it jumps from p0 up to some p0 if the test is successful or it jumps
down to zero. This is illustrated in figure 1. The two arrows indicate the
two possible posterior beliefs. As mentioned, viewed from the firm’s per-
spective, this belief must follow a martingale: the firm’s expectation of its
posterior belief must be equal to its prior belief. This is not the case from
the agent’s point of view. Given her knowledge of the type, she assigns
different probabilities to these posterior beliefs than the firm. If she is
competent, she knows for sure that the belief will not decrease over time.
If she is incompetent, the expectation of the posterior belief is below p0,
as she does not know whether she will be lucky in taking the test (the pro-
cess is then a supermartingale).
Instead of describing the information part of an equilibrium outcome

by the tests taken so far {mk} and their results, we can equivalently de-
scribe it by martingale splitting, that is, the sequence of the firm’s beliefs
that the type is 1, conditional on all tests so far. As long as the agent passes
the tests, the firm’s equilibrium beliefs follow a nondecreasing sequence
fp0, ::: ; pK11g starting at the firm’s prior belief, p0, and ending at pK11 5
1 (assuming, without loss, that the equilibrium is efficient). If the agent
fails a test, the posterior drops to zero.
An equilibrium must also specify payments. It turns out that the type 1

agent’s payoff decreases if the firm is ever granted any payoff in excess of
its outside option. On the one hand, the agent could demand more in
earlier rounds by promising to leave some surplus to the firm in later
rounds. On the other hand, the willingness to pay of the firm for this fu-
FIG. 1.—A feasible action
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ture surplus is lower than the cost of such a promise to the type 1 agent.
The reason is that the firm assigns a lower probability than the type 1 agent
to the posterior increasing (and payments once the posterior drops to
zero are not individually rational). Finally, it is not hard to see that there
is no point here in having the agent make any payments. To sum up, if
the firm’s belief in the next round is either pk11 or 0, given the current
belief pk, then the equilibrium specifies that the firm pays her willingness
to pay

EF ½wðp 0Þ� 2 wðpkÞ,
where p0 is the (random) belief in the next round, with possible values
zero and pk11, and EF ½�� is the expectation operator for the firm.
This leaves us with the determination of the sequence of posterior be-

liefs.7
E. A Geometric Analysis
We already know that it is possible for the agent to appropriate some of
the value of her information, but the question is whether she can get
more than p0 2 wðp0Þ, which is just as much as the type 0 agent gets in
the equilibrium we constructed so far.
Consider first the case K5 1. In this case, the highest equilibrium pay-

off to the type 1 agent is indeed equal to p0 2 wðp0Þ. Suppose that a suc-
cessful test takes the posterior to p1 ≥ p0. Using the martingale property,
it must be that the probability that the posterior is p1 is p0=p1, because

p0 5
p0
p1

� p11
p1 2 p0

p1
� 0:

Hence, the firm is willing to pay

EF ½wðp 0Þ� 2 wðp0Þ 5
p0
p1

w p1ð Þ 2 w p0ð Þ ≤ p0 2 w p0ð Þ,

where the inequality follows from wðp1Þ ≤ p1. Setting p1 to one is best, as
it makes the inequality tight: with one round, revealing all information is
optimal.
Note that, when p0 ≤ p*, wðp0Þ 5 0, and the highest payoff in one

round that the type 1 agent can achieve is the prior p0, which is increas-
ing in p0 ≤ p*. This suggests one way to improve on the payoff with two
rounds. In the first round, the agent takes a test whose success leads to a
posterior of p* for free. Indeed, the firm is not willing to pay for a test
7 In addition, an equilibrium must also specify how players behave off the equilibrium
path. As discussed, the most effective punishment for deviations is reversion to the bab-
bling equilibrium, and this is assumed throughout unless mentioned otherwise.
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that does not affect its outside option. In the second round, the equilib-
rium of the one-round game is played, given the belief p*. This second
and only payment yields

p* 2 wðp*Þ 5 p* > p0:

This is illustrated in figure 2. The lower kinked line is the outside op-
tion w, and the upper straight line is total surplus, p. Hence, the payment
in the second round is given by the length of the vertical segment at p*

in the right panel, which is larger than the payment with only one round,
given by the length of the vertical segment at p0.
To sum up: the agent gives away a chunk of information for free, mak-

ing the firm really unsure whether investing is a good idea. Then she
charges as much as she can for the disclosure of all her information.
Is the splitting that we described optimal with two periods to go? As it

turns out, it is so if and only if p0 < ðp*Þ2. But there are many other ways
of splitting information with two periods to go that improve on the one-
round equilibrium and, among them, splits that also improve over the
one-period equilibrium when p0 > p*. The optimal strategy is given at
the end of this subsection.
Can we do better with more rounds? Consider figure 3. As shown on

the left panel, information is revealed in three stages. First, the belief is
split into 0 and p*. Second, at p* (assuming this belief is reached), it is
split in 0 and p 0. Finally, at p 0, it is split in 0 and 1. The right panel shows
how to determine the type 1 agent’s payoff. The two solid (vertical) seg-
ments represent the maximum payments that can be demanded at the
second and third stages. (No payment is made in the first, as the splitting
does not affect the firm’s outside option.)
To understand these payments, note that in each round the agent is

paid the difference between the expectation of the value of the outside
FIG. 2.—Revealing information in two steps
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option tomorrow and the current outside option. The expectation is
weighted by the probabilities of each posterior belief: geometrically, it
is the value, at the current belief, of the line that connects the outside
option at the two possible posterior beliefs tomorrow (so 0 and p 0 for
the first positive payment and 0 and 1 for the second).
Thus, the added lengths of the solid vertical segments measure the

type 1 agent’s payoff. Compare with our two-stage equilibrium, in which
all information is disclosed once the belief reaches p*. The payment for
our three-stage equilibrium is measured the same way: it is the length of
the vertical segment connecting the outside option at p 0 to the point on
the line connecting the outside options at 0 and 1. So it is the sum of the
left vertical segment and the dotted segment above it. As is clear, the
right solid segment exceeds the left dotted segment: the payoff with
three stages must be larger, as the chords from the origin to the point
ðp, wðpÞÞ become steeper as p increases. With three steps as depicted,
the type 1 agent reaps two payments that add to more than the one pay-
ment with two steps.
Intuitively, the firm is willing to pay more with three steps because it is

less likely to have tomake all these payments if it is dealing with the type 0
agent. By the time the posterior belief reaches p 0, by definition, there is a
chance that the type 0 agent has been found out; hence, the second pay-
ment is a conditional payment, and because the conditioning event is
suggestive that the agent is indeed competent, the firm is willing to pay
more in total when some of the payments are conditional.
We could go on: information splitting is beneficial. Figure 4 illustrates

the total payoff that results from a splitting that involves many small steps
(which is the sum of all vertical segments).
Does it follow that the competent agent extracts the maximum value

of information as K → ∞? Unfortunately, no: see the right panel of fig-
FIG. 3.—Revealing information in three steps: evolution (left) and payoff (right)
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ure 4. As the firm’s belief goes from p2 dp to p, the firmmust pay (using
the martingale property, the test must be passed with probability ðp 2
dpÞ=p)

p 2 dp

p
w pð Þ 2 w p 2 dpð Þ;

yet its outside option increases by wðpÞ 2 wðp 2 dpÞ. The type 1 agent
gives up the difference wðpÞdp=p in the process. This forgone payoff
need not be large when the step size dp is small; but then again, the
smaller the step size, the larger the number of steps involved. Note that
this forgone payoff does not benefit the firm, which is always charged its
full willingness to pay. The type 0 agent reaps this payoff. As a result, her
payoff does not vanish, even as K → ∞.
What does the maximum payoff converge to as K→∞? Plugging in the

specific form of w from our leading example, the payment for a splitting
of p into p 0 ∈ f0, p 1 dpg is

p

p 1 dp
w p 1 dpð Þ 2 w pð Þ 5 p

p 1 dp
½ðp 1 dpÞ 2 gð1 2 p 2 dpÞ�

2 ½p 2 gð1 2 pÞ�

5 g
dp

p
1 Oðdp2Þ,

where OðxÞ < M jxj for some constant M and all x. If the entire interval
½p*, 1� is divided in this fashion into smaller and smaller intervals, the re-
sulting payoff to the competent agent tends toð1

p*
g
dp

p
5 gðln 1 2 ln p*Þ 5 2g ln p*:
FIG. 4.—Revealing information in many steps (left); forgone profit at each step (right)
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This suggests that the limiting payoff is independent of the exact way in
which information (above p*) is divided up over time, as long as themesh
of the partition tends to zero.
Lemma 1. Consider the binary-hiringmodel: wðpÞ 5 ½p 2 ð1 2 pÞg�1.

As K → ∞, the maximum payoff to the type 1 agent in pure strategies
tends to, for p0 < p*,

V
p
1 ðp0Þ ≔ 2g ln p*:

If p0 ≥ p*, V p
1 ðp0Þ 5 2g ln p0.

8

This lemma follows as as immediate corollary from the next one. Note
that this payoff is independent of p0 (for p0 < p*). Indeed, the first chunk
of information, leading to a posterior belief of p* if K is large enough, is
given away for free. It does not affect the firm’s outside option, but it
makes the firm as unsure as can be about the right decision. From that
point on, the agent starts selling information in excruciatingly small bits,
leaving no surplus whatsoever to the firm, as in the left panel of figure 5.
We conclude this subsection by the explicit description of the equilib-

rium that achieves themaximumpayoff of the type 1 agent, as a function of
the number of rounds and the prior belief p0. Here, x2 ≔ 2minf0, xg ≥ 0.
Lemma 2. The maximum equilibrium payoff of the type 1 agent in a

game with K rounds is recursively given by

V1,K ðp0Þ 5
Kgð1 2 p1=K

0 Þ 2 ½p0 2 gð1 2 p0Þ�2  if p0 ≥ ðp*ÞK=ðK21Þ

V1,K21ðp*Þ if p0 < ðp*ÞK=ðK21Þ,

(

for K > 1, with V1,1ðp0Þ 5 gð1 2 p0Þ 2 ½p0 2 gð1 2 p0Þ�2. On the equilib-
rium path, in the initial round, the type 1 agent reveals a piece of infor-
mation leading to a posterior belief of

p1 5
pðK21Þ=K
0   if p0 ≥ ðp*ÞK=ðK21Þ

p* if p0 < ðp*ÞK=ðK21Þ,

(

after which the play proceeds as in the best equilibrium with K 2 1
rounds, given prior p1.
Note that, fixing p0 < p*, and letting K → ∞, it holds that p0 <

ðp*ÞK=ðK21Þ for all K large enough, so that, with enough rounds ahead,
it is optimal to set p1 5 p* in the first, and then to follow the sequence
of posterior beliefs ðp*ÞðK21Þ=K , ðp*ÞðK22Þ=K , ::: , 1, and the sequence of
posteriors successively used becomes dense in ½p*, 1�. Therefore, with
sufficiently many rounds, the equilibrium involves progressive disclosure
of information, with a first big step leading to the posterior belief p*,
8 The superscript p refers to the restriction to pure strategies.
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given the prior belief p0 < p*, followed by a succession of very small dis-
closures, leading the firm’s belief gradually up all the way to one. The
right panel of figure 5 shows how the payoff varies with K.
Note also that, for any K and any equilibrium, if p and p 0 > p are beliefs

on the equilibrium path, then V0ðp 0Þ 2 V1ðp 0Þ ≤ V0ðpÞ 2 V1ðpÞ, as long as
only the firmmakes payments. Indeed, going from p to p0, the type 1 agent
forfeits the payments that the firm might have made over this range of
beliefs (hence V1ðp 0Þ < V1ðpÞ), while the type 0 agent forfeits them only
in the event that she is able to pass the test: hence she loses less and
might even gain (for instance, she might not have been able to pass
the first free test at p < p*). As a result, the type 1 agent has a preference
for lower beliefs, relative to the type 0 agent. Having to give away infor-
mation is more costly to an agent who knows that she owns it. This plays
an important role once noise (mixed strategies) is considered.
F. Agent Prefers to Be Hired
So far, we have assumed that the firm can hire the agent at her outside
option, so that the agent is indifferent whether the firm hires her or not.
A perhaps more realistic assumption is that the agent’s compensation is
strictly higher than her outside option, so that she strictly prefers being
hired. How does that affect our analysis?
Assume that the agent’s surplus from employment is smaller than the

expected net losses the firm would incur if it hired an incompetent ex-
pert, so that not investing remains the efficient action if the agent is in-
competent (otherwise, investing would be optimal in both states and com-
municating competence would not be important).
In this case the equilibrium that maximizes V1 (or V1 2 V0) has the

same equilibrium path as described above. The only difference is in the
off-path behavior supporting it.
FIG. 5.—Revealing information inmany steps (left); payoff as a function of K (right). Color
version available as an online enhancement.
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First, in our construction above, deviations are punished by a babbling
equilibrium. That means that if p ≥ p* and the agent deviates, the firm
still hires her. When the agent strictly prefers being hired, this no longer
suffices. Once p is sufficiently high, the incompetent type would prefer
not to take any more tests (even if she gets compensated for them) to
avoid the risk of losing employment. In particular, she would not take
the last test in round K that is fully revealing. To sustain our equilibrium
outcome we can use the following continuation equilibrium: if the agent
ever fails to take the test she is expected to take, the firm’s belief about
her competence drops to 0, and the babbling equilibrium is then played.
This clearly provides incentives for the agent to take the prescribed tests.
Second, one may worry that the firm would not make any payments to

the agent knowing that she wants to be employed and hence has strict
incentives in the last period to reveal enough information to get em-
ployed. This creates no difficulty: our equilibrium calls for the agent to
take for free a test in the first period so that the firm’s beliefs increase
to p*. After that, it is always a best response for the firm to hire her. So
if the firm deviates to not paying for future tests, the deviation to a bab-
bling equilibrium (in which the agent reveals no more information and
is still hired at the end) remains incentive compatible.
Positive employment surplus has two additional effects on the equilib-

rium that are worth pointing out. First, it increases V1 2 V0, because only
the competent agent captures the employment surplus. Since our equi-
librium is separating, leaving employment surplus to the competent agent
strengthens incentives for acquisition of competence. Second, onemay be
worried that in our original construction the agent is indifferent between
revealing and not revealing the last piece of information in round K, be-
cause some considerations left out of the model might break this indiffer-
ence, leading to unraveling. With a positive employment surplus the agent
has strict incentives to take the last, fully revealing test, because otherwise
the firm would think that she must be “hiding something” and not hire
her. At the same time, it does not lead to unraveling because the strict in-
centives hold only on the equilibrium path. If the firm deviates by not pay-
ing for some of the tests, the agent would still be hired, so it would be ra-
tional not to take the last test (the competent agent would be indifferent
and the incompetent agent strictly prefers to follow the punishment). For
further discussion of robustness, see Section III.
G. Free Entry
The prior belief p0 plays an important role in the analysis, so it is worth
discussing how it might come about. One natural way of endogenizing it
is to explicitlymodel a prior stage in which agents must decide on whether
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to invest in competence, so that the benefit of doing so, which depends
on p0, must equal its cost. As a result, the fraction of agents doing the
necessary investment gives rise to the value of p0 that makes precisely this
fraction willing to do so.
More directly, we may assume that there is a unit mass of agents (on

the short side of the market), whose choice is to enter either as incom-
petent for free or as competent at a cost of c ∈ (0, 1). There are plenty of
equilibria, including one in which only incompetent agents enter and
p0 5 0.9 The best equilibrium from a social point of view is the one max-
imizing p0; indeed, each competent agent generates a surplus of 1 at a
cost of c. But note that it is not an equilibrium for every agent to enter
as a competent one, as the resulting belief p0 5 1 would strip them from
any additional rewards from further persuading the firm of their compe-
tence. In the best equilibrium, both types of agents must enter, and so
the constraint V1ðp0Þ 2 V0ðp0Þ 5 c must hold. Maximizing p0 thus means
selecting the equilibrium that maximizes the difference V1 2 V0, as this is
the one for which it is possible to pick the highest p0 satisfying the con-
straint. This is precisely the equilibrium that we have characterized.
Hence, the best equilibrium yields a prior belief p0 that solves

V1ðp0Þ 2 V0ðp0Þ 5 c,

p0V1ðp0Þ 1 ð1 2 p0ÞV0ðp0Þ 1 wðp0Þ 5 p0:

If c ∈ ð2g½1 1 ð1 1 gÞ ln p*�,2g ln p*Þ, the unique solution has p0 5
2½ðc 1 g ln p*Þ=ð1 2 cÞ� ∈ ð0, p*Þ.10 If, on the other hand, c ≤ 2g½1 1
ð1 1 gÞ ln p*�, the unique solution lies in ðp*, 1Þ. As one would expect,
a lower cost leads to a higher prior belief that an agent is competent,
as it is then cheaper for him to enter.
III. General Outside Options
Assuming that the outside option is given by a call option, as in our main
example, provides a simple illustration of the benefits of splitting, as well
as closed-form expressions. However, the analysis can be generalized.
Such a generalization has two benefits. First, it clarifies what drives the

benefits of splitting information. Second, it encompasses a broader class
of applications. Plainly, there is no reason to confine ourselves to binary
decisions by the firm. For instance, the firm might choose between hir-
ing the agent if it deems it profitable, remaining in an arm’s-length re-
lationship with the agent, or stopping the relationship altogether.11
9 A small cost of entering as incompetent would eliminate this equilibrium.
10 If c ≥ 2g ln p*, there is no equilibrium with competent entrants.
11 We thank a referee for suggesting such a ternary decision, as well as useful variations.
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Hence, it makes sense to assume that the firm’s outside option de-
pends on its belief in the agent’s competence in arbitrary ways. Convex-
ity seems to be a natural property to impose, but as we show, an even
weaker condition suffices to generalize our results.
Suppose that the payoff of the firm (gross of any transfers) as a func-

tion of its posterior belief p after the K rounds is a nonnegative contin-
uous function w(p), and normalize w(0) 5 0, w(1) 5 1.12 We further as-
sume that w(p) ≤ p, for all p ∈ [0, 1], for otherwise full information
disclosure is not socially desirable. This payoff can be thought of as
the reduced form of some decision problem that the firm faces, as in
our baseline model. In that case, wmust be convex, but since it is a prim-
itive here, we do not assume so.
Recall that the best equilibrium with many rounds called for a first

burst of information released for free (assuming p < p*), after which in-
formation is disclosed in dribs and drabs. One might wonder whether
this is a general phenomenon.
The answer, as it turns out, depends on the shape of the outside op-

tion. It is in the interest of the type 1 agent to split information as finely
as possible for any prior belief p0 if and only if the function w is (strictly)
star shaped, that is, if and only if the average, wðpÞ=p, is a strictly increas-
ing function of p.13 More generally, if a function is star shaped on some
intervals of beliefs but not on others, then information will be sold in
small bits at a positive price for beliefs in the former type of interval
and given away for free as a chunk in the latter. In our main example,
w is not star shaped on ½0, p*�, as the average value wðpÞ=p is constant
(and equal to zero) over this interval. However, it is star shaped on
½p*, 1�. Hence our finding.
Let us first consider a star-shaped outside option. If in a given round

the firm’s belief goes from p to either p 1 dp or 0, the agent can charge
up to

p

p 1 dp
wðp 1 dpÞ 2 wðpÞ 5 ½w 0ðpÞ 2 wðpÞ=p�dp 1Oðdp2Þ

for it.14 Given the firm’s prior belief p0, the type 1 agent’s payoff becomes
then (in the limit, as the number of rounds K goes to infinity)ð1

p0

½w 0ðpÞ 2 wðpÞ=p�dp 5 wð1Þ 2 wðp0Þ 2
ð1

p0

wðpÞdp=p,
12 Without loss we may assume w to be nondecreasing.
13 This condition already appears in the economics literature in the study of risk (see

Landsberger and Meilijson 1990). It is weaker than convexity.
14 In case w(p) is not differentiable, then w0(p) is the right derivative, which is well de-

fined in case w is star shaped.
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which generalizes the formula that we have seen for the special case
wðpÞ 5 ½p 2 ð1 2 pÞg�1.15 That is, the type 1 agent’s payoff is the area be-
tween the marginal payoff of the firm and its average payoff.
To see that splitting information as finely as possible is best in that

case, fix some arbitrary interval of beliefs ½p, p � and consider the alterna-
tive strategy under which the posterior belief of the firm jumps from p to
p; the payment from the firm to the agent in that round is given by

p

p
wðpÞ 2 wðpÞ:

If instead this interval of beliefs is split as finely as possible, the payoff
over this range is

wðpÞ 2 wðpÞ 2
ðp

p

wðpÞ
p

dp:

Hence, splitting is better if and only if

1

p 2 p

ðp

p

wðpÞ
p

dp ≤
wðpÞ
p

, (2)

which is satisfied if the average wðpÞ=p is increasing.
Equation (2) also explains why splitting information finely is not a

good idea if the average outside option is strictly decreasing over some
range ½p, p�, as the inequality is reversed in that case. What determines
the jump? As mentioned, the payoff from a jump is pwðpÞ=p 2 wðpÞ,
while the marginal benefit from finely splitting information disclosures
at any given belief p (in particular, at p and p) is w 0ðpÞ 2 wðpÞ=p. Setting
the marginal benefits equal at p and p, respectively, yields that

wðpÞ
p

5
wðpÞ
p

and w 0ðpÞ 5 wðpÞ
p

:

See figure 6. The left panel illustrates how having two rounds improves
on one round. Starting with a prior belief p0, the highest equilibrium
payoff the type 1 agent can receive in one round is given by the dotted
black segment. If instead information is disclosed in two steps, with an
intermediate belief p1, the type 1 agent’s payoff becomes the sum of
the two solid (vertical) segments, which is strictly more, since wðpÞ=p is
strictly increasing. The right panel illustrates the jump in beliefs that oc-
15 In our main example, w is (globally) weakly star shaped; i.e., the function p ↦ wðpÞ=p is
only weakly increasing. The formula for themaximum payoff in the limit K→∞ is the same
whether there is a jump in the first period or not. But for any finite K, splitting information
disclosures over the range ½p0, p*� is suboptimal, as it is a “wasted period,” whose cost van-
ishes only in the limit.
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curs over the relevant interval when wðpÞ=p is not strictly increasing, as
occurs in our leading example for p < p*.
There is a simple way to describe the maximum resulting payoff. Given

a nonnegative function f on [0, 1], let sha f denote the largest weakly star-
shaped function that is smaller than f. In light of the previous discussion
(see the right panel of fig. 6), the following result should not be too un-
expected.
Theorem 1. The maximum equilibrium payoff to the type 1 agent in

pure strategies as K → ∞ tends to

V
p
1 p0ð Þ 5 1 2 sha w ðp̂0Þ 2

ð1

p̂0

sha w pð Þdp=p,

where

p̂0 ≔ minfp ∈ ½p0, 1� : wðpÞ 5 sha wðpÞg:

That is, the same formula as in the case of a star-shaped function ap-
plies, provided that one applies it to the largest weakly star-shaped func-
tion that is smaller than w. In words, the maximum payoff to the type 1
agent is the area between the marginal and the average outside option of
the firm, after “regularizing” this outside option by considering the larg-
est weakly star-shaped function below it.
The proof also elucidates the structure of the optimal information dis-

closure policy, at least in the limit. Let

Iw ≔ clfp ∈ 0, 1½ � : sha w pð Þ 5 w pð Þ
and wðpÞ=p is strictly increasing at pg,

where cl A is the closure of set A. In our main example, sha wðpÞ 5 wðpÞ
for all p, but Iw 5 ½1=2, 1�. Then the set of on-path beliefs as K → ∞ held
FIG. 6.—Splitting information with an arbitrary outside option. Color version available
as an online enhancement.
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by the firm is contained, and dense, in Iw if Iw ≠ ∅. If Iw 5 ∅, any policy is
optimal.
Note that this result immediately implies that the highest payoff to the

type 1 agent is higher, the lower the outside option w. That is, if we con-
sider two functions w, ~w such that w ≥ ~w, then the corresponding payoffs
satisfy V p

1 ≤ ~V
p
1 . The “favorite” outside option for the agent is w(p) 5 0

for all p < 1, and w(1) 5 1 (though this does not quite satisfy our main-
tained continuity assumptions). In that case, the type 1 agent appropri-
ates the entire surplus. This is the case considered in the literature on
“zero-knowledge proofs”: the revision in the firm’s belief that successive
information disclosures entail does not affect its willingness to pay.
Frictions.—The only friction assumed so far has been the finiteness of

the horizon. Clearly, this is a simplification. In practice, delaying the ac-
tion has a cost in terms of discounting. Taking tests can entail intrinsic
costs as well. Finally, the agent is unlikely to be wholly unconcerned by
the firm’s action. She might be able to make money out of her informa-
tion elsewhere; in this case, she would balk at giving away for free the last
bit. Or, to the contrary, she might have a slight preference for the firm
taking the right action, all else being equal; she would then not resist giv-
ing away this last bit for free if this was the only way to prevent the firm
from making a mistake. The firm might then be tempted to forgo the
payments in hopes that this occurs.
Considering each friction one by one, it is not hard to see that our re-

sults are robust to small perturbations. First, suppose that every additional
round of communication is discounted, with some common discount fac-
tor d ∈ (0, 1). Plainly then, there is no benefit in having arbitrarily many
rounds. The reason is that the agent faces a trade-off between collecting
more money overall and collecting it earlier, and the firm ultimately pre-
fers taking its outside option rather than waiting for another period,
once the benefits from waiting become small. Hence, in the best equilib-
rium, the number of rounds in which communication actually takes
place is bounded. However, as long as the players are not too impatient,
the best equilibrium still involves a gradual release of information. It is
easy to see that, as discounting vanishes, the payoff to the competent
agent must tend to her payoff in the undiscounted game. In the Appen-
dix, we prove the following result.
Lemma 3. Suppose that w is star shaped and that players discount

rounds at rate d ≥ 1. As d → 1, the maximum equilibrium payoff of the
type 1 agent in pure strategies tends to the undiscounted limit V p

1 ðp0Þ.
In our main example, it is easy to show that this convergence occurs at

a rate that is geometric in 1 2 d.
Suppose now that the horizon is infinite (with low discounting), and

introduce a cost to the agent taking a test or transmitting/certifying in-
formation. (This is equivalent to each bit of information having an op-
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portunity cost.) Assume that conveying information is socially efficient;
more precisely, assume that the ratio of the cost of taking the posterior
belief of the firm from p to p0 > p (denoted cðp, p 0Þ ≥ 0) to the benefit
p 0wðp 0Þ=p 2 wðpÞ to the firm is bounded below one, uniformly in p, p0.
We can then scale down the information as time passes so as to make

sure that the continuation payoff of the two parties incentivizes them to
make payments and to take the test.16

In the case of an intrinsic preference of the agent for the firm taking
either the right or a given action (worth, say, a given $vðq, aÞ ≥ 0, a 5 I,
N, to the agent, where it is assumed that incentives are weakly aligned:
vð1, I Þ ≥ vð1,N Þ, vð0,N Þ ≥ vð0, I Þ), the procedure must be modified so
that the agent releases a last chunk of information whose value to the firm
still exceeds dmaxq,a vðq, aÞ; if the due payment takes place, the agent re-
leases this last chunk; if not, the agent postpones releasing this informa-
tion, expecting the firm to make up for such a careless slip by making
the payment in the next round (if and only if the agent did not release
this information). See the Appendix for a formal proof of the following
result.
Lemma 4. Suppose that w is differentiable and star shaped and that

players discount rounds at rate d ≥ 1. Suppose either costs cðp, p 0Þor intrin-
sicpreferencesv(q,a)asdescribed.Asd→1andeither maxp<p0 cðp, p 0Þ→ 0
or maxq,a vðq, aÞ→ 0, the maximum equilibrium payoff of the type 1
agent in pure strategies tends to the undiscounted limit (without cost
of intrinsic preferences) V p

1 ðp0Þ.
We stress that this robustness applies to small perturbations only. Un-

raveling certainly applies to our model for certain kinds of perturba-
tions, as it does in related models of contribution games with irreversibil-
ity (e.g., Admati and Perry 1991; Marx and Matthews 2000). For instance
(and this is certainly not the only possibility), if the agent derives a strictly
positive gain from the firmmaking the right (hiring) decision and there is
a finite horizon, the firm can certainly wait until the last period and get all
the information for free.
IV. Noisy Information Transmission
So far, we have assumed that the competent agent always passes the test,
which implies that the firm’s posterior belief is either nondecreasing or
absorbed at zero.
16 As usual, one need not think of the information sale phase as lasting literally forever:
the low discount factor can be thought of as a probability of terminating this phase, and it
can be generated by the players themselves, using, for instance, a jointly controlled lottery;
in that case, the duration of this phase is (almost surely) finite.
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There are two reasons why even the competent agent may fail. First,
she may be able to choose to flunk the test (it turns out that such an op-
tion may improve on the equilibria considered so far). In practice, it is
hard to see what prevents an agent from failing intentionally a given test:
software can be crippled or slowed down, prototypes can be damaged or
impaired, and imprecise or even incorrect answers can be given. Tomodel
this possibility, we add a third dimension to the agent’s strategy; namely, in
every round, after a test has been privately performed, the agent has the
choice, in case of a success, to report a failure. As further notation is not
needed, we refer the interested reader to the working paper (Hörner and
Skrzypacz 2012) for a formal definition. Because the model considered
in Sec. II.D corresponds to the special case in which the competent agent
always passes the test—the only interesting pure strategy in the extended
model—we refer to this version as the noisy model. Formally, this is the
samemodel as before, but mixed strategies are considered and, as we will
see, make a difference.
A second reason for why a competent agent might fail a test is simply

that the test might be noisy or very hard. One might devise procedures
that are so difficult that even knowledgeable agents might be occasion-
ally unsuccessful; not many recognized experts provide correct predic-
tions every time.
There is an important difference between these two cases. In the first

case, a competent agent who fails the test must be willing to fail. In the
second case, she might just not be able to pass it. Hence, in the first case,
equilibrium imposes more stringent requirements than in the second.
Clearly, we canmodel the second case by allowing for amore general tech-
nology, that is, tests that are parameterized by two probabilities, (m0, m1),
where mq is the probability with which the type q agent passes the test.
From a game-theoretic point of view, this is equivalent to allowing for a
(disinterested) mediator in the baseline model: the competent agent al-
ways passes the test, whose outcome is observed by the mediator, but not
by the firm. Then, themediator chooses whether to report whether the test
was successful or not to the firm. Our description follows the second ap-
proach, and we refer to this version as the model with mediation.
While the game-theoretic mediator is an abstraction that does not re-

quire a third party to be involved, but merely the necessary technology (a
trustworthy noisy channel whose output depends on the outcome of the
test), it is worth stressing that such intermediaries are actually being in-
volved in sales of intellectual property. As mentioned in the introduc-
tion, there are law firms, consulting firms, and specialized companies
that are hired for the purpose of estimating and certifying the value of
intellectual property and facilitating technological transfers.
While noise turns out to be less valuable than mediators, the funda-

mental principle for why lower posterior beliefs can be useful is the same
in both cases. The next subsection provides an illustration.
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A. The Value of Lower Posteriors: An Illustration
Consider the main example, in which the outside option is a simple call
option, and consider g 5 1 and the limiting case K 5 ∞. Using the best
pure-strategy equilibrium(for the type1agent) as abenchmark, the type1
agent has a payoff function given by 2ln p for p > p* and 2ln p* for p ≤
p*.
Suppose that the firm and the agent agree to the following (self-

enforcing) scheme. If the test fails, the posterior belief falls to p2 D, for
some D > 0. If the test succeeds, the posterior belief jumps to p1 D. Pick
D such that p* < p 2 D < p 1 D < 1. Such posterior beliefs are achieved
by mixing by the type 1 agent (or by a mediator on her behalf), given
that the type 0 agent will disclose that the outcome of the test is a success
whenever she is lucky. Because the possible posterior beliefs are symmet-
ric around p, the two events (that information gets disclosed or not)
must be equally likely from the firm’s point of view.
The new twist is that, in the event that the posterior belief drops to p2

D, the agent is expected to pay the firm an amount X > 0. No payment is
made by the agent if the posterior belief increases to p1 D. Because both
posterior beliefs are equally likely, the firm is willing to pay X/2 up-front
in exchange for this contingent future payment, and the equilibrium calls
for the firm tomake this payment in addition to the familiar term that cor-
responds to the variation in its expected outside option.
Such a side payment is neutral from the point of the view of the firm:

after all, the up-front payment is fair, given the odds that the posterior
goes up or down. But it is not fair from the agent’s point of view: because
the posterior belief is more likely to go down if the agent is incompetent,
by definition of the posterior belief, this implies that the incompetent
agent is more likely to have to pay back than the competent agent. In this
fashion, some payoff gets shifted from the incompetent to the competent
agent.
There are two constraints on the size of this payment X. First, it cannot

exceed the continuation payoff of the type 0 agent, for otherwise she would
renege on the back payment in case she fails the test. That is, X ≤ V0ðp 2
DÞ, where V0 is her continuation payoff. Second, in the case in which the
mixing is performed by the (type 1) agent rather than by a mediator, it
must be that the agent is actually indifferent about either passing or fail-
ing the test. In this case, assuming that after this payment play resumes
according to the best pure-strategy equilibrium described above, the con-
tinuation payoffs after this payment are 2lnðp 1 DÞ and 2lnðp 2 DÞ,
respectively; hence, we must set X so as to exactly offset this difference
in continuation payoffs, that is, X 5 lnðp 1 DÞ 2 lnðp 2 DÞ. This cer-
tainly satisfies X < V0ðp 2 DÞ if D is small enough. As mentioned, be-
cause V0 2 V1 (the difference in payoffs in the best equilibrium) is in-
creasing in p, this implies that the type 0 agent is happy to claim she
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passes the test whenever she is lucky. The left panel of figure 7 illustrates
how the mixing works, starting from a given belief p > p*.
Given that the firm pays X/2 up-front and that, by construction, the

continuation payoff of the type 1 agent is the same whether the posterior
belief goes up or down (namely, lnðp 2 DÞ), her expected payoff is

lnðp 1 DÞ 2 lnðp 2 DÞ
2

1 lnðp 2 DÞ 5 2
lnðp 1 DÞ 1 lnðp 2 DÞ

2

> 2 ln p,

where the strict inequality follows from Jensen’s inequality. Hence, we
have just improved on our limit payoff V1ðpÞ 5 2ln p.
What is the key to this improvement, and howmuch can such schemes

improve on the competent agent’s payoff ? It turns out to depend on the
curvature of the sum of the firm’s and competent agent’s payoffs. Let
V m

0 ðpÞ and V m
1 ðpÞ denote the limiting payoffs as K → ∞ in the best equi-

librium that uses mixed (or pure) strategies and define hðpÞ ≔ V m
1 ðpÞ 1

wðpÞ. If V m
0 ðpÞ 5 0 for some p, the incompetent agent would no longer

make any payments; by (1), this implies that hðpÞ 5 �hðpÞ ≔ 1 2 ð1 2
pÞwðpÞ=p (�h is the bound from [1] and V0 ≥ 0). This would yield the high-
est possible payoff to the competent agent, given the firm’s outside op-
tion. So suppose that h < �h on some interval around p, and for the sake
of contradiction, assume that h is not concave on this interval; that is,
there exists p1 < p < p2 such that

hðpÞ < p2 2 p

p2 2 p1
hðp1Þ 1

p 2 p1
p2 2 p1

hðp2Þ:

We generalize the previous scheme to this case: the agent pays V m
1 ðp1Þ 2

V m
1 ðp2Þ to the principal if and only if the posterior drops to p1, and play

reverts then (or if the posterior belief turns out to be p2) to the equilib-
rium that achieves V m

1 . The type 1 agent is indifferent between both pos-
FIG. 7.—Construction of the scheme (left); maximum limit payoff V m
1 1 w, g5 1 (right).

Color version available as an online enhancement.
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terior beliefs and so is willing to randomize. Given her assessment of the
likelihood of each of these events, the firm is willing to pay up-front

p2 2 p

p2 2 p1
½wðp1Þ 1 V m

1 ðp1Þ 2 V m
1 ðp2Þ� 1

p 2 p1
p2 2 p1

wðp2Þ 2 wðpÞ,

as this is the difference between its expected continuation payoff and its
current outside option. The type 1 agent’s payoff V̂1ðpÞ consists then of
this payment and her continuation payoff V m

1 ðp2Þ, so that, adding up,

hðpÞ ≥ V̂1ðpÞ 1 wðpÞ 5 p2 2 p

p2 2 p1
½wðp1Þ 1 V m

1 ðp1Þ 2 V m
1 ðp2Þ�

1
p 2 p1
p2 2 p1

wðp2Þ 1 V m
1 ðp2Þ

5
p2 2 p

p2 2 p1
hðp1Þ 1

p 2 p1
p2 2 p1

hðp2Þ:

Note that the participation constraint for the incompetent agent,
V m

0 ðp1Þ > V m
1 ðp1Þ 2 V m

1 ðp2Þ, is always satisfied if p1, p2 are close enough
to p and V m

0 ðp1Þ > 0, and so h must be locally concave at any p at which
V m

0 ðpÞ > 0.17

The concavity of the sum of the payoffs of the competent agent and the
firm in the best equilibrium should not be surprising: if it were convex, a
lottery could increase their joint payoff, at the expense of the incompe-
tent agent. The up-front payment by the firm, followed by the contingent
payment by the agent, is the simplest way of implementing such a lottery.
To summarize: using contingent payments in the way described im-

proves the competent agent’s payoff, and this can be done as long as
the type 0 agent’s payoff is not zero and, in the case in which the type
1 agent is actually required to perform the randomization herself, as long
as h is not locally concave. Equilibrium imposes additional constraints on
the type 1 agent’s payoff, which is the subject of the next subsection.
B. Maximum Payoff with Noise and Mediation

1. Noise
First, consider the case of noise—the extension of the baseline model to
mixed strategies. Two constraints have been derived on the limiting value
of h, the sum of the payoffs of the firm and the competent agent. First,
17 This hinges on continuity of V m
1 and V m

0 ; V m
1 is continuous because it is always possible

to use the same disclosure strategy starting at p2 as the continuation strategy given p1 would
specify from the first posterior belief above p2 onward; the first payment must be adjusted,
but the continuity in payoffs as p1 → p2 then follows from the continuity of w. Continuity of
V m

0 follows from the continuity of V m
1 .
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it must be less than �h 5 1 2 ð1 2 pÞwðpÞ=p, as implied by feasibility given
that the type 0 agent’s payoff is nonnegative. Second, on any interval on
which h < �h, the function hmust be locally concave. There is a third con-
straint on h that is rather obvious: hmust exceed w, the outside option of
the firm, as the type 1 agent’s payoff is nonnegative.
Finally, the basic splitting of Section II.D delivers onemore restriction;

namely, the function h must be no steeper than wðpÞ=p. We can always
split the prior belief p0 into the posterior beliefs in {0, p1}, p1 > p0. The
firm is willing to pay p0wðp1Þ=p1 2 wðp0Þ for such a test, so that, at the very
least,

V m
1 ðp0Þ ≥

p0
p1

wðp1Þ 2 wðp0Þ 1 V m
1 ðp1Þ,

or

hðp1Þ 2 hðp0Þ
p1 2 p0

≤
wðp1Þ
p1

: (3)

If h were known to be differentiable, this would reduce to the require-
ment that h0ðpÞ be smaller than w(p)/p. More generally, chords connect-
ing points ðp0, hðp0ÞÞ and ðp1, hðp1ÞÞmust be flatter than the ray with slope
wðp1Þ=p1. We summarize these requirements in the following definition.

Definition 1. Given the outside option w, we define hm : ½0, 1�→R1

as the smallest function such that,

1. for all p, hm ≤ �hðpÞ ≔ 1 2 ð1 2 pÞwðpÞ=p;
2. if hm < �h on ½p0, p1�, then h is locally concave on ½p0, p1�;
3. for all p, hm ≥ wðpÞ;
4. for all p1 > p0,

hmðp1Þ 2 hmðp0Þ
p1 2 p0

≤
wðp1Þ
p1

:

As it turns out, equilibrium imposes no additional restriction on h, as
we show in the Appendix.18 What is the smallest function that satisfies
these four requirements?19 In our main example, some algebra gives that
18 Roughly, any function satisfying these properties cannot be improved on with one
more round, even with mixed strategies. Because the payoff of the type 1 agent is increas-
ing in her continuation payoff, this means that the highest limiting payoff must be below
this function. Conversely, the limiting payoff must satisfy these properties. Hence, it follows
that this lowest function is the limiting payoff.

19 One might wonder why the smallest function h satisfying the requirements is the ap-
propriate one; the reason is that, starting from the highest equilibrium payoff with one
round and applying the two schemes that we have described, we recursively obtain higher
values for h as the number of rounds increases, but we cannot “overtake” the smallest func-
tion that satisfies the four requirements.
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V m
1 ðpÞ 5

2
ffiffiffi
g

p ð ffiffiffiffiffiffiffiffiffiffiffiffi
1 1 g

p
2

ffiffiffi
g

p Þ 2 wðpÞ  if p < pm ≔
ffiffiffiffiffi
p*

p
1 2 wðpÞ=p if p ≥ pm :

(

The smallest function hm is shown on the right panel of figure 7 in the
case g 5 1. The following corollary records the limiting value for prior
beliefs below p*.
Lemma 5. Consider the main example: wðpÞ 5 ½p 2 ð1 2 pÞg�1. As

K→ ∞, the maximum payoff to the type 1 agent in the model with noise
tends to, for p0 < p*,

V m
1 ðp0Þ 5 2

ffiffiffi
g

p � ffiffiffiffiffiffiffiffiffiffiffiffi
1 1 g

p
2

ffiffiffi
g

p �
< 1:

If p0 > p*, this limit is

V m
1 ðp0Þ 5 2

ffiffiffi
g

p � ffiffiffiffiffiffiffiffiffiffiffiffi
1 1 g

p
2

ffiffiffi
g

p �
2wðp0Þ:

That is, full extraction occurs for high enough (p ≥ pm, in which case
V m

0 ðpÞ 5 0) but not for low beliefs. Still, even for p < pm , this is a marked
improvement on pure strategies. Because the competent agent gains from
noise and the firm does not lose from them, it must be that the type 0
agent loses. For p ≤ pm , her payoff function is given by V0ðpÞ 5 1 1
ðp ln pÞ=ð1 2 pÞ (for g 5 1).
How about more general outside options? The logic is robust: let hm be

the smallest function satisfying the four requirements above (which is
well defined, as the lower envelope of functions satisfying the require-
ments satisfies them as well). The following theorem elucidates the role
of hm.
Theorem 2. Assume that w is weakly star shaped. As K→ ∞, the max-

imum payoff to the type 1 agent in the model with noise tends to

V m
1 ðp0Þ 5 hmðp0Þ 2 wðp0Þ:

To emphasize, the result does not assume that only tests or schemes
that we have described so far can be used. It shows that, at least as the
number of rounds is sufficiently large, these suffice.
2. Mediation
It turns out that a similar reasoning can be used to characterize the max-
imal V1 in case a mediator can send noisy messages based on the test re-
sults (or the agent has access to noisy tests). The only difference is that
the scheme that involves payments by the agent in case the posterior drops
is no longer constrained by the indifference of the competent agent,
which imposed that h was locally concave whenever h fell short of the up-
per bound �h. So we are left with the other three restrictions on the func-
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tion h. It turns out, as before, that the solution is given by the smallest
function satisfying these requirements. The maximum payoff has a par-
ticularly simple expression, and the result does not require w to be star
shaped.
As the next theorem states, the type 1 agent can extract all the surplus

from the type 0 agent as well as the firm, up to its outside option.
Theorem 3. As K→ ∞, the maximum payoff to the type 1 agent with

an intermediary tends to

V int
1 ðp0Þ 5 1 2

wðp0Þ
p0

:

In our main example, this means that, for p0 < p*, the maximum payoff
of the competent agent is 1, and there is nothing left to improve on.
V. Final Remarks
This paper describes self-enforcing contracts based on gradual persua-
sion to facilitate sale of information. Clearly, in real-life applications, the
mechanism that we describe is limited by the extent to which information
is divisible or tests are available. On the other hand, it can be facilitated by
repeated interactions and reputation building.
As mentioned in the introduction, our mechanism is reminiscent of

zero-knowledge proofs. But gradualism is a technological constraint in
this literature. There is no counterpart to the firm’s outside option,
and the only objective is to convince the other party that the agent holds
the information. It is as if w(p)5 0 for p < 1 and w(1)5 1, in which case it
is optimal to reveal all details but the “last key,” increasing the firm’s pos-
terior close to one, and then to sell just that remaining piece. Gradual-
ism arises in our mechanism precisely because the firm’s outside option
depends on its belief, as is plausible in most economic applications. In
fact, often the buyer has private information as well, and an inventor al-
ways risks making herself obsolete by revealing additional information to
the firm. Considering such a model, in which both parties hold private
information, is left for future research.
Appendix

Proofs

Because mediation imposes one fewer constraint on the payoff function to be
determined than noise, as explained in Section IV.B.2, we prove the three theo-
rems in the following order: first, theorem 1 (pure strategies), then theorem 3
(mediation), and then theorem 2 (noise).
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A. Proof of Lemma 2 and Lemma 1

The proof of lemma 2 is by induction on the number of rounds. Lemma 2 im-
mediately implies lemma 1.

Our induction hypothesis is that, with k ≥ 1 periods to go and a prior belief p5
p0, the best equilibrium involves setting the next (nonzero) posterior belief, p1,
equal to p1 5 pðk21Þ=k if pðk21Þ=k ≥ p* (i.e., if p ≥ ðp*Þk=ðk21Þ for k ≥ 2), and equal to p*

otherwise.20 Further, the type 1 agent’s maximal payoff with k rounds to go is
equal to

V1,kðpÞ 5
kgð1 2 p1=kÞ 2 ½p 2 gð1 2 pÞ�2  if p ≥ ðp*Þk=ðk21Þ

V1,k21ðp*Þ if p < ðp*Þk=ðk21Þ:

(

Note that this claim implies that V1,kðp*Þ 5 kg½1 2 ðp*Þ1=k �. Finally, as part of our
induction hypothesis, we claim the following. Given some equilibrium, let X ≥ 0
denote the payoff of the firm, net of its outside option, with k rounds left. That
is, X ≔ WkðpÞ 2 wðpÞ, where Wk(p) is the firm’s payoff given the history leading
to the equilibrium belief p with k rounds to go. Let V1,kðp, X Þ be the maximal pay-
off of the type 1 agent over all such equilibria, with associated belief p, and ex-
cess payoff X promised to the firm (set V1,kðp, X Þ ≔ 2∞ if no such equilibrium
exists). Then we claim that V1,kðp, X Þ ≤ V1,kðpÞ 2 X . We first verify this with one
round. Clearly, if K 5 1, it is optimal to set the posterior p1 equal to 1, which is
pðK21Þ=K , the relevant specification given that p0=1 5 1 ≥ p*. The payoff to the type
1 agent is

V1,1 pð Þ 5 p 2 ½p 2 gð1 2 pÞ�1 5 gð1 2 pÞ 2 ½p 2 gð1 2 pÞ�2,
as was to be shown. Note that this equilibrium is efficient. This implies that
V1,1ðp, X Þ ≤ V1,1ðpÞ 2 X , for all X ≥ 0, because any additional payoff to the firm
must come as a reduction of the net transfer from the firm to the agent.

Assume that this holds with k rounds to go, and consider the problemwith k1 1
rounds. Of course, we do not know (yet) whether, in the continuation game, the
firm will be held to its outside option.

Note that the firm assigns probability p/p1 to the event that its posterior belief
p0 will be p1, because, by the martingale property, we have

p 5 EF ½p 0� 5 p

p1
� p1 1

p1 2 p

p1

� 0:

This implies that, with k 1 1 rounds, the firm is willing to pay at most

�tFk11 ≔
p

p1

½w p1ð Þ 1 X 0� 2 w pð Þ,
20 In this proof, when we say that the equilibrium involves setting the posterior belief p1,
we mean that, from the type 1 agent’s point of view, the posterior belief will be p1, while
from the point of view of the firm, the posterior belief will be a random variable p0 with
possible values {0, p1}.
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where X 0 is the excess payoff of the firm with k rounds to go, given posterior be-
lief p1. Therefore, the payoff to the type 1 agent is at most

V1,k11ðpÞ ≤ �tFk11 1 V1,kðp1; X 0Þ

≤
p

p1
½w p1ð Þ 1 X 0� 2 wðpÞ 1 V1,kðp1Þ 2 X 0,

where the second inequality follows from our induction hypothesis. Note that,
since p=p1 < 1, this is a decreasing function of X 0: it is best to hold the firm
to its outside option when the next round begins. Therefore, we maximize
ðp=p1Þwðp1Þ 1 V1,kðp1Þ. Note first that, given the induction hypothesis, all values
p1 ∈ ½p, ðp*Þk=ðk21ÞÞ yield the same payoff, because for any such p1, V1,kðp1Þ 5
V1,k21ðp*Þ. The remaining analysis is now a simple matter of algebra. Note that,
for p1 ∈ ½ðp*Þk=ðk21Þ, p*Þ (which obviously requires p < p*), the objective becomes
(using the induction hypothesis)

V1,kðp1Þ 5 kg½1 2 ðp1Þ1=k � 2 ½ p1 2 gð1 2 p1Þ�2,
which is increasing in p1, so that the only candidate value for p1 in this interval is
p1 5 p*. Consider now picking p1 ≥ p*. Then we maximize

p

p1
½ p1 2 gð1 2 p1Þ� 1 kgð1 2 p1=k

1 Þ,

which admits a unique critical point p1 5 pk=ðk11Þ, achieving a payoff equal to

ðk 1 1Þg½1 2 p1=ðk11Þ� 1 p 2 gð1 2 pÞ 5 ðk 1 1Þg½1 2 p1=ðk11Þ�:
Note, however, that this critical point satisfies p1 ≥ p* if and only if p ≥ ðp*Þðk11Þ=k .

Therefore, the unique candidates for p1 are fp*, maxfp*, pk=ðk11Þg, 1g. Observe
that setting the posterior belief p1 equal to maxfp*, pk=ðk11Þg does at least as well
as choosing either p* or 1. This establishes the optimality of the strategy, and the
optimal payoff for the type 1 agent, with k 1 1 rounds to go.

Finally, we must verify that V1,k11ðp; X Þ ≤ V1,k11ðpÞ 2 X . Given that we have ob-
served that it is optimal to set X 0 5 0 in any case, any excess payoff to the firm with
k1 1 rounds to go is best obtained by a commensurate reduction in the net trans-
fer from the firm to the agent in the first round (among the k1 1 rounds). This
might violate individual rationality for some type of the agent, but even if it does
not, it still yields a payoff V1,k11ðp; X Þ no larger than V1,k11ðpÞ 2 X (if it does violate
individual rationality, V1,k11ðp; X Þ must be lower).

B. Proof of Theorem 1

Given a function f, the average function of f is denoted

f a xð Þ ≔ f xð Þ=x:
Given a nonnegative function f on [0,1], let sha f denote the largest weakly star-
shaped function that is smaller than f. This function is well defined because
(i) if f1, f2 are two weakly star-shaped functions lower than f, the pointwise max-
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imum g (i.e., g ðpÞ ≔ maxff1ðpÞ, f2ðpÞg) is star shaped as well;21 and (ii) the limit
of a convergent sequence of star-shaped functions is star shaped. Bruckner and
Ostrow (1962, theorem 2) also show that a nonnegative star-shaped function
(with w(0) 5 0) must be nondecreasing.

The theorem claims that the equilibrium payoff, given w, and ŵ ≔ sha w, is
given by

V
p
1 p0ð Þ 5 1 2 ŵ ðp̂0Þ 2

ð1

p̂0

ŵa pð Þdp,

where p̂0 ≔ minfp ∈ ½p0, 1� : wðpÞ 5 sha wðpÞg. Further, letting
Iw 5 clfp ∈ 0, 1½ � : sha w pð Þ 5 w pð Þ and wa is strictly increasing at pg,

we show that the set of beliefs held by the firm is contained, and dense, in Iw if
Iw ≠ ∅. If Iw 5 ∅, any policy is optimal.

Let us start by showing that this payoff can be achieved asymptotically (i.e., as
K → ∞). Let Jw denote the complement of Iw, which is a union of disjoint open
intervals. Let fðp2

n , p
1
n Þgn∈N denote an enumeration of its endpoints. Finally, let

�p0 ≔ minfp ∈ Iw , p ≥ p0g. Note that, for all n, by continuity of w (using that
ŵðp1

n Þ=p1
n 5 ŵðp2

n Þ=p2
n by definition of ðp2

n , p
1
n Þ),

ŵðp1
n Þ 2 ŵ p2

nð Þ 2
ðp1

n

p2
n

ŵa pð Þdp 5 p2
n ½waðp1

n Þ 2 wa p2
nð Þ� 5 0:

Similarly, if p̂0 < �p0,

ŵ �p0ð Þ 2 ŵ ðp̂0Þ 2
ð�p0

p̂0

ŵa pð Þdp 5 0:

Fix any sequence of finite subsets of points PK 5 fpK
k : k 5 0, ::: , Kg⊆ Iw \

½p0, 1� (where pK
k is strictly increasing in k), for K ∈ N, with pK

0 5 �p0, p
K
K 5 1,

such that pK becomes dense in Iw as K→ ∞. Consider the pure strategy according
to which, in the first period, if �p0 > p0, the type 1 agent gives away the information
for free that leads to a posterior �p0; afterward, the price paid in each period given
that the posterior is supposed to move from pK

k to pK
k11 is given by the maximum

amount pK
k ½waðpK

k11Þ 2 waðpK
k Þ�. Failure to pay leads to no further disclosure, and

failure to disclose leads to no further payment. Given K, the payoff of following
this pure strategy is (by considering Riemann sums and using the equality from
the previous equation)

o
k21

k50

pK
k ½waðpK

k11Þ 2 waðpK
k Þ�→1 2 ŵð�p0Þ 2

ð
Iw\½�p0,1�

ŵaðpÞdp

5 1 2 ŵðp̂0Þ 2
ð1

p̂0

ŵaðpÞdp:
21 Given p1 < p2, let g ðp1Þ 5 fi ðp1Þ, g ðp2Þ 5 fj ðp2Þ. Then g aðp2Þ 5 f a
j ðp2Þ ≥ f a

i ðp2Þ ≥
f a
i ðp1Þ 5 g aðp1Þ.
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Conversely, we show that (i) for any K, the best payoff given w is the same as for
some weakly star-shaped function smaller than w, and (ii) if w ≥ ~w, then V1 ≤ ~V1.
The result follows.

Note that thepayoff fromthe sequenceof beliefsp1, p2, ::: , pK21, pK 5 1, starting
from p0, is given by

p0½waðp1Þ 2 waðp0Þ� 1 p1½waðp2Þ 2 waðp1Þ� 1 ⋯1 pK21 � ½wað1Þ 2 waðpK21Þ�
5 1 2 wðp0Þ 2 ð1 2 pK21Þwað1Þ 2 ⋯2 ðp1 2 p0Þwaðp1Þ,

so that

V1,K ðp0Þ 1 wðp0Þ 5 1 2 o
K21

k50

ðpk11 2 pkÞwaðpk11Þ:

Note that maximizing V1,K ðpÞ 1 wðpÞ and maximizing V1,K ðpÞ are equivalent, so
this amounts to finding the sequence that maximizes the sum

1 2 o
K21

k50

ðpk11 2 pkÞwaðpk11Þ,

with p05 p. Becausew ≤ ~w implieswa ≤ ~wa , we have just established the following.
Lemma 6. Suppose that ~w ≥ w pointwise. Then, for every K and every prior

belief p0,

~V1,K ðp0Þ ≤ V1,K ðp0Þ,
where ~V1,K ðp0Þ and V1,K ðp0Þ are the type 1 agent’s payoffs given outside option ~w
and w, respectively.

To every sequence of beliefs p0, p1, ::: , pK 5 1, we can associate the piecewise
linear function wK on [p0, 1] that obtains from linear interpolation given the
points

ðp0, wðp0ÞÞ, ðp1, wðp1ÞÞ, ::: , ð1, 1Þ:
Lemma 7. For all K, p0, the optimal policy is such that the function wK is weakly

star shaped.
Proof. This follows immediately from the payoff from the formula for the

price of a jump from p1 to p2,

p1½wa p2
� �

2 wa p1ð Þ�:
Indeed, if p1, p2, p3 are consecutive jumps, it must be that doing so dominates
skipping p2, that is,

p1½wa p2
� �

2 wa p1ð Þ� 1 p2½wa p3ð Þ 2 wa p2
� �� ≥ p1½wa p3ð Þ 2 wa p1ð Þ�,

or waðp3Þ ≥ waðp1Þ. A similar argument applies to the first jump. QED
Note finally that the payoff from the sequence fp1, :::, pKg given w is the same

as given wK. The result follows. The asymptotic properties of the optimal policy
follow as well.

We start with the theorem, which implies the lemma by a straightforward com-
putation.
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C. Proof of Lemma 3

When there is discounting, the payment made when the current belief is p and
the next belief is p0 > p (or 0) is given by

tðpÞ 5 p

p 0 wðp 0Þ 2 wðpÞ:

Here, for simplicity, we assume that the function w is strongly star shaped on the
relevant interval of beliefs [p0, 1]; that is, there exists n > 0 such that, for all p ∈
½p0, 1�, pw 0ðpÞ 2 wðpÞ > n. If as in our main example the function is star shaped
but not strongly star shaped, given the prior (it is strongly star shaped if p0 >
p*), an elementary adaptation is required (e.g., in the main example, if the prior
p is lower than p < p*, give for free a piece of information such that the posterior
p1 is strictly above but arbitrarily close to p*, and then follow the same argument).

Fix the prior p0 > 0. We consider a strategy in which p/p0 is kept constant in all
but a final period of disclosure. That is, assume that p 0 5 ð1 1 kÞp, for some k > 0
(and all p < 1=ð1 1 kÞ). Once ð1 1 kÞp > 1 given p, information is disclosed in
one shot (for the maximum price).

We set k 5
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p
. The assumption that w is strongly star shaped ensures that

there exists �d < 1, for all d ∈ ð�d, 1Þ, and all p ∈ ½p0, 1=ð1 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p Þ�,

d
p 0

p
wðp 0Þ 2 wðpÞ 5 d

1 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p wðð1 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p
ÞpÞ 2 wðpÞ > 0:

We write pð0Þ 5 p0, p
ðnÞ 5 ð1 1 kÞnp0, and compute the value function V from

this policy:

V ðp0Þ 5
d

1 1 k
wðpð1ÞÞ 2 wðpÞ 1 dV ðpð1ÞÞ

5
dwðpð1ÞÞ
1 1 k

2 wðpÞ 1 d
dwðpð2ÞÞ
1 1 k

2 wðpð1ÞÞ
� �

1⋯1 dT
dwðpðT11ÞÞ
1 1 k

2 wðpðT ÞÞ
� �

,

where T is the number of steps until the belief 1=ð1 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p Þ is exceeded, that
is, T 5 maxft : ð1 1 kÞt p ≤ 1=ð1 1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p Þg: Alternatively,

T 5 ⌊2ln½ð1 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p Þp�
lnð1 1 kÞ ⌋:

Rearranging,

V ðp0Þ 5
dT11

1 1 k
wðpðT11ÞÞ 2 wðpÞ 2 d

k

1 1 k
wðpð1ÞÞ

2⋯2 dT
k

1 1 k
wðpðT ÞÞ

≥
dT11

1 1 k
wðpðT11ÞÞ 2 wðpÞ 2

"
k

1 1 k
wðpð1ÞÞ

1⋯1
k

1 1 k
wðpðT ÞÞ

#
:
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Note that, for all k < T,

pðk11Þ 2 pðkÞ

pðk11Þ 5
k

1 1 k
,

so

V ðp0Þ ≥
dT11

1 1 k
wðpðT11ÞÞ 2 wðpÞ 2 ½pð1Þ 2 pð0Þ�wðp

ð1ÞÞ
pð1Þ

	

1⋯1 ½pðT Þ 2 pðT21Þ�wðp
ðT ÞÞ

pðT Þ




≥
dT11

1 1 k
wðpðT11ÞÞ 2 wðpÞ 2

ð1

p0

wðpÞ
p

dp,

because w is star shaped. To prove that this lower bound converges to wð1Þ 2
wðp0Þ 2

Ð 1

p0
½wðpÞ=p�dp, as desired, it now suffices to show that dT11=ð1 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 2 d
p Þ→ 1. This follows from d1= lnð11

ffiffiffiffiffiffi
12d

p Þ → 1. (Take logs to get ln d= lnð1 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 d

p Þ; use l’Hospital’s rule to conclude that this has the same limit as 2½ð1 2
dÞ 2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 2 d
p �=d→ 0.)

D. Proof of Lemma 4

Part 1: Let us first consider the case of positive costs cðp, p 0Þ. Modify the construc-
tion of the equilibrium used for lemma 3 as follows. Instead of having a final pe-
riod once ð1 1 kÞp > 1, assume that from that round onward, the agent discloses
information on that path in each round in a way that leads the firm’s belief to
follow a strictly increasing sequence ðpnÞn∈N, with pn < 1 for all n, and ðpn12 2
pn11Þ=ðpn11 2 pnÞ > 1 2 ε for some ε > 0 (take, for instance, pn 5 1 2 h1=ðn2 1
h2Þ for some large constants h1, h2 > 0). If the agent ever deviates or the firm fails
to pay dðpn=pn11Þwðpn11Þ 2 wðpnÞ in the nth round along this sequence, equilib-
rium reverts to babbling, with no payments ever made again. Because ðpn12 2
pn11Þ=ðpn11 2 pnÞ > 1 2 ε,

wðpn12Þ=pn12 2 wðpn11Þ=pn11

wðpn11Þ=pn11 2 wðpnÞ=pn
> 1 2 h3ε

for some constant h3 (this is where differentiability ofw is invoked), so that tomor-
row’s payment exceeds the cost cðpn , pn11Þ today for ε small enough. Pick d close
enough to one and ε small enough for this to remain the case when discounting
is taken into account. It follows that the agent has no incentive to deviate.

Part 2: Let us now consider intrinsic preferences v(q, a). Again, we modify the
construction of lemma 3 by specifying that the last round is reached in the round
immediately before the first time the payment falls short of dmaxq,a vðq, aÞ. Tak-
ing v(q, a) to zero, this occurs at T, for d sufficiently close to one. As described in
the text, equilibrium strategies call for the entire information to be disclosed as
soon as this payment is made. If the agent discloses more information than pre-
scribed at earlier rounds, babbling is played: no payment is ever made again. Be-
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cause future payments always exceed the benefit from disclosure, it is optimal for
the agent (as well as for the firm) to follow this equilibrium strategy.

E. Proof of Theorem 3

The procedure used by the intermediary can be summarized by a distribution
Fkð�jpÞ over the firm’s posterior beliefs, given the prior belief p, and given the
number of rounds k. Because this distribution is known, the firm’s belief must
be a martingale, which means that, given p,ð

½0,1�
p 0dFkðp 0 ∣ pÞ 5 p or

ð
½0,1�

ðp 0 2 pÞdFkðp 0 ∣ pÞ 5 0: (A1)

To put it differently, Fkð� ∣ pÞ is a mean-preserving spread of the firm’s prior be-
lief p.22

Given such a distribution and some equilibrium to be played in the continu-
ation game for each resulting posterior belief p0, how much is the firm willing to
pay up-front? Again, this must be the difference between its continuation payoff
and its outside option, namely,

�tFk ≔
ð1

0

½wðp 0Þ 1 X ðp 0Þ�dFkðp 0 ∣ pÞ 2 wðpÞ,

where, as before, X ðp 0Þ, or X 0 for short, denotes the firm’s payoff, net of the out-
side option, in the continuation game, given that the posterior belief is p0.

Assume that the distribution Fkð� ∣ pÞ assigns probability q to some posterior
belief p0. This means that the firm attaches probability q to its next posterior be-
lief turning out to be p0. What is the probability q1 assigned to this event by the
type 1 agent? This must be qp 0=p, because

p 0 5 P½q 5 1 ∣ p 0� 5 pq1
q

,

where the first equality follows from the definition of the event p0, and the sec-
ond follows from Bayes’s rule, given the prior belief p.

Therefore, the maximal payoff that the type 1 agent expects to receive from
the next round onward isð1

0

V1,k21ðp 0, X 0Þ p
0

p
dFkðp 0 ∣ pÞ,

where, as before, V1,k21ðp 0, X 0Þ denotes the maximal payoff of the type 1 agent,
with k 2 1 rounds to go, given that the firm’s payoff, net of its outside option,
is X 0 and its belief is p0.

Combining these two observations, we obtain that the payoff of the type 1
agent is at most
22 The notation [0, 1] for the domain of integration emphasizes the possibility of an
atom at zero. This, however, plays no role for payoffs, as there is no room for transfers once
the prior drops to zero, and wð0Þ 5 0, and we will then revert to the more usual notation.
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ð1

0

½wðp 0Þ 1 X 0�dFkðp 0 ∣ pÞ 2 wðpÞ 1
ð1

0

V1,k21ðp 0, X 0Þ p
0

p
dFkðp 0 ∣ pÞ, (A2)

and our objective is to maximize this expression, for each p, over all distributions
Fkð� ∣ pÞ, as well as mappings p 0 ↦ X 0 5 X ðp 0Þ (subject to [A1]) and the feasibility
of X 0).
1. The Optimal Transfers

As a first step in the analysis, we prove the following lemma.
Lemma 8. Fix the prior belief p and the number of remaining rounds k. The

best equilibrium payoff of the type 1 agent, as defined by (A2), is achieved by set-
ting, for each p 0 ∈ ½0, 1�, the firm’s net payoff in the continuation game defined
by p0 equal to

X ðp 0Þ 5
X *ðp 0Þ  if p 0 < p

0 if p 0 ≥ p,

(

where

X *ðp 0Þ ≔ p 0½1 2 V1,k21Þ� 2 wðpÞ
1 2 p 0 :

The type 1 agent’s continuation payoff is then given as

V1,k21ðp 0, X *ðp 0ÞÞ 5 V1,k21ðp 0Þ 2 X *ðp 0Þ:
Proof. First of all, we must derive some properties of the function V1,kðp, X Þ.

Note that, as observed earlier, we can always assume that the equilibrium is effi-
cient: take any equilibrium, and assume that, in the last round, on the equilib-
rium path, the type 1 agent discloses her type. This modification can only relax
any incentive (or individual rationality) constraint. This means that payoffs must
satisfy (1) with equality, which provides a rather elementary upper bound on the
maximal payoff to the type 1 agent: in the best possible case, the payoffs X and
V0,kðp, X Þ are zero, and hence we have

V1,kðpÞ ≤
p 2 wðpÞ

p
:

Our observation that the equilibrium that maximizes the type 1 agent’s payoff
also maximizes the sum of the firm’s and type 1 agent’s payoffs is obviously true
here as well. Hence, any increase in X must lead to a decrease in V1,kðp, X Þ of at
least that amount. As long as X is such that V0,kðp, X Þ is positive, we do not need to
decrease V1,kðp, X Þ by more than this amount, because it is then possible to sim-
ply decrease the net transfer made by the firm to the agent in the initial period
by as much. Therefore, either V1,kðp, X Þ 5 V1,kðpÞ 2 X if X is smaller than some
threshold value X *

k ðpÞ (X* for short) or V0,kðp, X Þ 5 0. By continuity, it must be
that, at X 5 X *,
This content downloaded from 171.064.222.249 on March 02, 2019 14:30:15 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



selling information 1555
p½V1,kðpÞ 2 X *� 1 X * 1 wðpÞ 5 p

or

X * 5
p½1 2 V1,k pð Þ� 2 wðpÞ

1 2 p
:

Therefore, for values of X below X*, we have that V1ðp, X Þ 5 V1,kðpÞ 2 X , and this
payoff is obtained from the equilibrium achieving the payoff V1,kðpÞ to the type 1
agent, by reducing the net transfer from the firm to the agent in the initial round
by an amount X. For values of X above X*, we know that V0,kðp, X Þ 5 0, so that

V1,k p, Xð Þ ≤ 1 2
wðpÞ 1 X

p
:

Wemay now turn to the issue of the optimal net payoff to grant the firm in the
continuation round. This can be done pointwise, for each posterior belief p0. The
previous analysis suggests that, to identify what the optimal value of X 0 is, it is con-
venient to break down the analysis into two cases, according to whether or not X 0

is above X*. Consider some posterior belief p0 in the support of the distribution
Fkð� ∣ pÞ. From (A2), the contribution to the type 1 agent’s payoff from this pos-
terior is equal to

wðp 0Þ 1 X 0 1 V1,k21ðp 0, X 0Þp
0

p

5 wðp 0Þ 1 X 0 1 ½V1,k21ðp 0Þ 2 X 0�p
0

p
if X 0 ≤ X *ðp 0Þ

≤ wðp 0Þ 1 X 0 1 1 2
wðp 0Þ 1 X 0

p 0

� �
p 0

p
  if X 0 > X *ðp 0Þ:

8>>><
>>>:

Note that, for X 0 > X *ðp 0Þ, the upper bound to this contribution is decreasing in
X

0
; and since this upper bound is achieved at X 0 5 X *ðp 0Þ, it is best to set X 0 5

X *ðp 0Þ in this range. For X 0 ≤ X *ðp 0Þ, this depends on p0: if p0 > p, it is best to set
X0 to zero, while if p0 < p, it is optimal to set X 0 to X*(p0). To conclude, the optimal
choice of X 0 is

X ðp 0Þ 5
X *ðp 0Þ  if p 0 < p

0 if p 0 ≥ p,

(

as claimed. QED
The intuition behind this lemma is that to maximize V1, because the type 1

agent assigns a smaller probability to the posterior decreasing than the type 0
agent, it is best to promise as high a rent as possible to the firm if the posterior
belief is lower than the prior belief and as low as possible if it is higher. The func-
tion X * describes this upper bound. As in the example, this bound turns out to be
the entire continuation payoff of the type 0 agent in the best equilibrium for the
type 1 agent with k 2 1 periods to go. We can express this bound in terms of the
firm’s belief and the type 1 agent’s continuation payoff, given that the equilib-
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rium is efficient. Of course, it is possible to give even higher rents to the firm, pro
vided that the equilibrium that is played in the continuation game gives the type 0
agent a higher payoff than the equilibrium that is best for the type 1 agent. The
proof of this lemma establishes that what is gained in the initial period by consid
ering higher rents is more than offset by what must be relinquished in the con
tinuation game, in order to generate a high enough payoff to the type 0 agent.

The key intuition here is that the type 1 agent assigns a higher probability to
the event that the posterior belief will be p0 > p than does the firm and, conversely
a lower probability to the event that p0 < p, because she knows that her type is 1
Therefore, the type 1 agent wants to offer the firm an extra continuation payoff
in the event that p0 < p (and collect extra money for it now) and offer as small a
continuation payoff as possible in the event that p0 > p. Given that the agent and
the firm have different beliefs, there is room for profitable bets, in the form of
transfers whose odds are actuarially fair from the firm’s point of view but profit
able from the point of view of the type 1 agent. Such bets were not possible with
out the intermediary (at least in pure strategies), because at the only posterior
belief lower than p, namely, p0 5 0, there was no room for any further transfer
in this event (because there was no further information to be sold).
2. The Value of an Intermediary

Having solved for the optimal transfers, we may now focus on the issue of iden
tifying the optimal distribution Fkð� ∣ pÞ. Plugging in our solution forX 0 into (A2)
we obtain that

V1,kðpÞ 5 sup
Fk ð� ∣ pÞ

ð1

0

vk21ðp 0; pÞdFkðp 0 ∣ pÞ 2 wðpÞ, (A3)

where

vk21ðp 0; pÞ ≔
wðp 0Þ 1 p 2 p 0

p
X *ðp 0Þ 1 p 0

p
V1,k21ðp 0Þ  for p 0 < p

wðp 0Þ 1 p 0

p
V1,k21ðp 0Þ for p 0 ≥ p,

8>>><
>>>:

and the supremum is taken over all distributions Fkð� ∣ pÞ that satisfy (A1); namely
Fkð� ∣ pÞmust be a distribution with mean p.

This optimality equation cannot be solved explicitly. Nevertheless, the associ
ated operator is monotone and bounded above. Therefore, its limiting value as
we let k tend to infinity, using the initial value V1,0ðpÞ 5 0 for all p, converges to
the smallest (positive) fixed point of this operator. This fixed point gives us the
limiting payoff of the type 1 agent as the number of rounds grows without
bound.

It turns out that we can guess this fixed point. One of the fixed points of (A3)
is V1ðpÞ 5 ½p 2 wðpÞ�=p. Recall that this value is the upper bound on V1,kðpÞ that
we derived earlier, so it is the highest payoff that we could have hoped for. We
may now finally prove the theorem.
.edu/t-and-c).
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Proof of theorem 3. Recall that the function to be maximized isðp

0

wðp 0Þ 1 V1,k21ðp 0Þ p
0

p
1

p 2 p 0

p

p 0½1 2 V1,k21ðp 0Þ� 2 wðp 0Þ
1 2 p 0

	 

dFkðp 0 ∣ pÞ

1

ð1

p

wðp 0Þ 1 V1,k21ðp 0Þ p
0

p

� �
dFkðp 0 ∣ pÞ 2 wðpÞ,

or rearranging,ðp

0

1 2 p

p

p 0wðp 0Þ 1 p 0V1,k21ðp 0Þ
1 2 p 0 1

ðp 2 p 0Þp 0

pð1 2 p 0Þ
� �

dFkðp 0 ∣ pÞ

1

ð1

p

wðp 0Þ 1 V1,k21ðp 0Þ p
0

p

� �
dFkðp 0 ∣ pÞ 2 wðpÞ:

Let us define xkðpÞ ≔ p 2 wðpÞ 2 pV1,kðpÞ, and so multiplying through by p and
substituting, we get

p 2 wðpÞ 2 xkðpÞ 5
ðp

0

1 2 p

1 2 p 0 ½p 0wðp 0Þ 1 p 0 2 wðp 0Þ 2 xk21ðp 0Þ�
	

1
ðp 2 p 0Þp 0

1 2 p 0



dFkðp 0 ∣ pÞ

1

ð1

p

½pwðp 0Þ 1 p 0 2 wðp 0Þ 2 xk21ðp 0Þ�dFkðp 0 ∣ pÞ 2 pwðpÞ,

or rearranging,

xkðpÞ 5 p 2 wðpÞ 2
ðp

0

1 2 p

1 2 p 0 ½ðp 0 2 1Þwðp 0Þ 2 xk21ðp 0Þ� 1 p 0
	 


dFkðp 0 ∣ pÞ

2

ð1

p

½p 0 2 ð1 2 pÞwðp 0Þ 2 xk21ðp 0Þ�dFkðp 0 ∣ pÞ 1 pwðpÞ:

This gives

xkðpÞ 5 ð1 2 pÞ
ðp

0

xk21ðp 0Þ
1 2 p 0 dFkðp 0 ∣ pÞ 1

ð1

p

xk21ðp 0ÞdFkðp 0 ∣ pÞ

1 ð1 2 pÞ
ð1

0

½wðp 0Þ 2 wðpÞ�dFkðp 0 ∣ pÞ:

Note that the operator mapping xk21 into xk, as defined by the minimum over
Fkð� ∣ pÞ for each p, is a monotone operator. Note also that x 5 0 is a fixed point
of this operator (consider Fkð� ∣ pÞ 5 dp , the Dirac measure at p). We therefore
ask whether this operator admits a larger fixed point. So we consider the opti-
mality equation, which to each p associates

xðpÞ 5 min
F ð� ∣ pÞ

ð1 2 pÞ
ðp

0

xðp 0Þ
1 2 p 0 dF ðp 0 ∣ pÞ 1

ð1

p

xðp 0ÞdF ðp 0 ∣ pÞ
	

1ð1 2 pÞ
ð1

0

½wðp 0Þ 2 wðpÞ�dF ðp 0 ∣ pÞ


:
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It is standard to show that x is continuous on (0, 1). Further, consider the feasible
distribution F ð� ∣ pÞ that assigns probability one-half to p2 ε and one-half to p1 ε,
for ε > 0 small enough. This gives as upper bound

xðpÞ ≤
1

2
� 1 2 p

1 2 p 1 ε
xðp 2 εÞ 1 1

2
� xðp 1 εÞ

1 ð1 2 pÞ wðp 1 εÞ 1 wðp 2 εÞ
2

2 wðpÞ
� �

,

or

xðpÞ 1 ð1 2 pÞwðpÞ ≤
1

2
� 1 2 p

1 2 p 1 ε
½xðp 2 εÞ 1 ð1 2 p 1 εÞwðp 2 εÞ�

1
1

2
½xðp 1 εÞ 1 ð1 2 p 2 εÞwðp 1 εÞ� 1 εwðp 1 εÞ

5
1

2
½xðp 2 εÞ 1 ð1 2 p 1 εÞwðp 2 εÞ�

1
1

2
½xðp 1 εÞ 1 ð1 2 p 2 εÞwðp 1 εÞ�

1 ε wðp 1 εÞ 2 wðp 2 εÞ 2 xðp 2 εÞ
1 2 p 1 ε

� �
:

Suppose that xðpÞ > 0 for some p ∈ (0, 1). Then, since x is continuous, x > 0 on
some interval I. Because w is continuous, the last summand is then negative for
all p ∈ I, for ε > 0 small enough. This implies that the function z : p ↦ xðpÞ 1 ð1 2
pÞwðpÞ is convex on I, and therefore differentiable almost everywhere on I. Rear-
ranging our last inequality, we have

2 wðp 2 εÞ 2 wðp 1 εÞ 1 xðp 2 εÞ
1 2 p 1 ε

� �
1

zðpÞ 2 zðp 2 εÞ
ε

≤
zðp 1 εÞ 2 zðpÞ

ε
:

Integrating over I, taking limits as ε→ 0, and using the almost everywhere differ-
entiability of z gives

Ð
I xðpÞ=ð1 2 pÞ ≤ 0. Because x is positive and continuous, it

must be equal to zero on I. Because I is arbitrary, it follows that x 5 0 on (0, 1).
Because x is the largest fixed point of the optimality equation and because the

map defined by the optimality equation is monotone, it follows that the limit of
the iterations of this map, applied to the initial value x0 : x0ðpÞ ≔ p 2 wðpÞ 2
pV1,0ðpÞ, all p ∈ (0, 1), is well defined and equal to zero. Given the definition
of x, the claim regarding the limiting value of V1,k follows. QED
F. Proof of Lemma 5 and Theorem 2

We adapt the arguments from the proof of theorem 3. Recall that w is assumed to
be weakly star shaped (in particular, nondecreasing). Consider a mixed-strategy
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equilibrium. In terms of beliefs, such an equilibrium can be summarized by a dis-
tribution Fk11ð� ∣ pÞ that is used by the agent (on the equilibrium path) with k1 1
rounds left, given belief p, and the continuation payoffs Wk(⋅) and Vk(⋅). As be-
fore, we may assume that the equilibrium is efficient, and so we can assume that,
given that the firm obtains a net payoff of Xk (i.e., given that Wk 5 wðpÞ 1 Xk),
the type 1 agent receives V1,kðp, XkÞ, the highest payoff to this type given that the
firm receives at least a net payoff of Xk. Since V1,k maximizes the sum of the firm’s
and type 1 agent’s payoff, it holds that, for all k, p and X ≥ 0,

V1,kðp, X Þ ≤ V1,kðpÞ 2 X :

The payoff V1,k11ðpÞ of the type 1 agent is at most, with k1 1 rounds to go,

sup
Fk11ð� ∣ pÞ

ð1

0

wðp 0Þ 1 Xkðp 0Þ 1 V1,kðp 0, Xkðp 0ÞÞ p
0

p

� �
dFk11ðp 0 ∣ pÞ 2 wðpÞ,

where the supremum is taken over all distributions Fk11ð� ∣ pÞ that satisfy
ð
½0,1�

ðp 0 2 pÞdFk11ðp 0 ∣ pÞ 5 0,

that is, such that the belief of the firm follows a martingale. To emphasize the im-
portance of the posterior p0 5 0, we alternatively write this constraint asð1

0

ðp 0 2 pÞdFk11ðp 0 ∣ pÞ 5 pFk11ð0 ∣ pÞ,

where ð1

0

dFk11ðp 0 ∣ pÞ ≔ 1 2 Fk11ð0 ∣ pÞ:

If the type 1 agent randomizes, she must be indifferent between all elements
in the support of its mixed action, that is, for all p0 > 0 in the support of Fk11ð� ∣ pÞ,
V1,kðp 0, X 0Þ 5 V k , for some V k independent of p

0. Assume (as will be verified) that
in all relevant arguments, p0 and X ≥ 0 are such that it holds that

V1,kðp 0, X Þ 5 V1,kðp 0Þ 2 X :

Recall that this is always possible if X is small enough (cf. lemma 8). Further-
more, for the type 0 agent to go along, we must verify that V0,k ≥ X . By substitu-
tion, we obtain that V1,k11ðpÞ is at most equal to

sup
Fk11ð� ∣ pÞ

ð1

0

wðp 0Þ 1 V1,kðp 0Þ 2 V k 1 V k

p 0

p

� �
dFk11ðp 0 ∣ pÞ 2 wðpÞ

5 sup
Fk11ð� ∣ pÞ

ð1

0

½wðp 0Þ 1 V1,kðp 0Þ�dFk11ðp 0 ∣ pÞ

1 Fk11ð0 ∣ pÞ min
p 0∈suppFk11ð� ∣ pÞ,p 0>0

V1,kðp 0Þ 2 wðpÞ:
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So let V *
1 denote the smallest fixed point larger than zero of the map T given by

T ðV1ÞðpÞ 5 sup
F ð� ∣ pÞ

ð1

0

½wðp 0Þ 1 V1ðp 0Þ�dF ðp 0 ∣ pÞ

1 Fk11ð0 ∣ pÞ min
p 0∈suppF ð� ∣ pÞ,p 0>0

V1ðp 0Þ 2 wðpÞ,

for which V *
1 ð1Þ 1 wð1Þ 5 1. The function V *

1 , and hence h*, is continuous by
standard arguments. As argued in the text, either h* ≔ V *

1 1 w is equal to �h at
p or it is locally concave at p. Indeed, for any 0 < p1 < p < p2 ≤ 1,

V *
1 ðpÞ 1 wðpÞ ≥ p2 2 p

p2 2 p1
½V *

1 ðp1Þ 1 wðp1Þ� 1
p 2 p1
p2 2 p1

½V *
1 ðp2Þ 1 wðp2Þ�,

and by choosing p1, p2 close to p, the constraint (that X is small enough) is satis-
fied. Clearly, also, h* is no steeper than p ↦ wðpÞ=p (given p < p0, consider the dis-
tribution F ð� ∣ pÞ that splits p into f0, p 0g, as explained in Sec. IV.A), so that h* is
no steeper than w. That is, h* satisfies all four constraints from Section IV.B.1.

Recall that hm is defined to be the smallest function satisfying the four re-
quirements. This function is well defined because if h, h0 are two functions satis-
fying these requirements, the lower envelope h 00 5 minfh, h0g does as well, and
if (hn), n ∈ N, is a converging sequence of functions satisfying them, so does
limn→∞ hn .
We now show that hm cannot be improved on. By monotonicity of the operator

T, it follows that, starting from h0 ≔ w and iterating, the resulting sequence h1 5
T ðh0 2 wÞ 1 w, h2 5 T ðh1 2 wÞ 1 w, and so forth must converge to hm.

To show that hm cannot be improved on, it suffices to consider arbitrary two-
point distributions splitting p into p1 < p < p2.

23 If all three beliefs belong to
an interval in which hm < �h, the result follows from the concavity of hm on such
intervals. If p1 5 0, the result follows from the fact that h* is no steeper than
p ↦ wðpÞ=p. If p1 > 0 is such that hmðp1Þ 5 �hðp1Þ, such a splitting is impossible,
as V0ðp1Þ 5 0, and so the type 0 agent would not pay X > 0, and hence the type 1
agent could not be indifferent. Hence, we are left with the case in which p1 > 0,
hmðp1Þ < �hðp1Þ, and hmð~pÞ 5 �hð~pÞ for some ~p ∈ ½p1, p2�, which can be further re-
duced to the case hmðp2Þ 5 �hðp2Þ. The side bet X must equal V1ðp1Þ 2 V1ðp2Þ,
and because V0ðp2Þ 5 0, we have V1ðp2Þ 5 ½p2 2 wðp2Þ�=p2. We must have

V0ðp1Þ 5
p1 2 wðp1Þ 2 p1V1ðp1Þ

1 2 p1
≥ X 5 V1ðp1Þ 2 V1ðp2Þ:

This implies that h1ðp1Þ ≤ 1 2 ð1 2 p1Þ½wðp2Þ=p2�, or, rearranging and using the
formula for V1(p2),

wðp2Þ
p2

≤
1 2 hðp1Þ
1 2 p1

:

23 Note that, with arbitrarily many periods, we can always decompose more complicated
distributions into a sequence of two-point distributions. But the linearity of the optimiza-
tion problem actually implies that two-point distributions are optimal.
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Note, however, that, because h is no steeper than wðpÞ=p,

hðp1Þ ≥ hðp2Þ 2
ðp2

p1

waðpÞdp

(recall that waðpÞ ≔ wðpÞ=p), and hence, replacing h(p1) and rearranging,

waðp2Þ ≤
1

p2 2 p1

ðp2

p1

waðpÞdp,

a contradiction, given star-shapedness (if w is weakly star shaped on the entire in-
terval [p1, p2], the bet is feasible but worthless).
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