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Abstract

The ability to detect what unlicensed radios are operating in a neigh-
borhood, their spectrum occupancies and the spatial directions their
signals are traversing is a fundamental primitive needed by many ap-
plications, ranging from smart radios to coexistence to network man-
agement to security. In this paper we present DOF, a detector that in
a single framework accurately estimates all three parameters. DOF
builds on the insight that in most wireless protocols, there are hidden
repeating patterns in the signals that can be used to construct unique
signatures, and accurately estimate signal types and their spectral and
spatial parameters. We show via experimental evaluation in an indoor
testbed that DOF is robust and accurate, it achieves greater than 85%
accuracy even when the SNRs of the detected signals are as low as
0 dB, and even when there are multiple interfering signals present.
To demonstrate the benefits of DOF, we design and implement a pre-
liminary prototype of a smart radio that operates on top of DOF, and
show experimentally that it provides a 80% increase in throughput
over Jello, the best known prior implementation, while causing less
than 10% performance drop for co-existing WiFi and Zigbee radios.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems

General Terms

Algorithms, Performance, Design

1. INTRODUCTION

The ability to detect what unlicensed radios are operating in a
neighborhood, what parts of the spectrum they are occupying, and
what spatial directions their signals are traversing is a fundamental
primitive that is needed by many applications. For example, smart
and agile radios such as [28, 22] could use it to detect what spectral
resources are unused, and exploit them to provide high throughput.
They could detect what spatial directions are unoccupied, and direc-
tionally steer their signals to further increase capacity. They could
also use the primitive to be gentle when needed, if a low power med-
ical wireless sensor is operating in the neighborhood, the smart ra-
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dio could detect it and take extra measures to avoid causing inter-
ference to the sensor, lest some critical communication is impaired.
Similarly, network administrators can use such a primitive to man-
age their “airspace”, improve channel allocation and diagnose perfor-
mance problems. Recent work [27] has explored using detectors that
compute what spatial directions signals arrive at for wireless network
security. Thus, a large and growing number of applications could
benefit from such a primitive.

However, building such a detector that operates accurately across
the large range of SNRs signals exhibit, in the presence of multiple
interfering signals, or in the rich indoor multipath environment of
the unlicensed ISM band is hard. Prior implemented systems have
mostly focused on spectrum occupancy detection, and used threshold
based methods that estimate changes in received signal energy [16] or
the variations in the FFT [28] to estimate spectrum occupancy. How-
ever, optimal thresholds that work accurately across the rich variety
of conditions (in SNR, multipath, interference etc) are hard to pick,
and consequently these methods have low accuracy. Other work [22,
16] has used higher layer protocol behavior signatures to detect ra-
dio types. However, these techniques also rely on threshold based
methods to detect the protocol behavior, and suffer from the same
problems as above.

In this paper we present Degrees Of Freedom (DOF), a single
framework that accurately detects what radios exist in a neighbor-
hood, what parts of the spectrum they occupy, and their angles of ar-
rival (AoA) at the detector. We believe this to be a first. DOF is robust
and works accurately (around 90% accuracy) in a large SNR range (0
to 30dB) as well as in the presence of multiple interfering signals.
DOF is passive and does not impose any measurement overhead, it
can operate even when the detecting radio is being used for other
communication. Finally, DOF is efficient to implement, it builds on
top of commonly available FFT modules and requires modest extra
resources ( 30% more computation compared to a standard FFT).

The key insight behind DOF is the observation that for most wire-
less protocols, there are hidden repeating patterns that are unique
and necessary for their operation. For example, Wifi uses a repeat-
ing cyclic prefix to avoid intersymbol interference between consecu-
tive OFDM symbols. A Zigbee radio has a repeating pulse which it
uses for QPSK data transmission, Bluetooth has a Gaussian pulse on
which it modulates data bits using FSK that is repeating with a differ-
ent frequency and so on. DOF exploits the existence of these patterns
to create unique signatures for each signal type. Further, DOF shows
that the same signatures can also be exploited to determine the spec-
trum occupied and the AoA of that signal type.

Algorithmically, DOF extracts feature vectors using the following
key idea: if a signal has a repeating hidden pattern, then a delayed
version of the signal correlated with the original signal will show
peaks at specific delay intervals. These intervals form a signature for
each signal and can be used to extract feature vectors. We build on



prior work [9, 19] in cyclostationary signal analysis to design an effi-
cient feature extraction technique based on standard FFT operations.
However, DOF’s key contribution over prior work in cyclostationary
analysis is to show that the extracted feature vector encodes informa-
tion about the component signal types, what spectrum they occupy,
as well as what AoAs they arrive at the detecting radio. DOF de-
signs a novel SVM decision tree to classify component signal types,
and new algorithms to estimate their spectrum occupancies as well as
AoAs from the feature vector.

We implement DOF using the fftw [1] library and GnuRadio [3]
software on a wideband radio that is capable of operating over the
entire 100 MHz ISM band and has 4 MIMO antennas. We evaluate
DOF using testbed experiments in an indoor office environment and
compare it to three prior approaches, RFDump [16] for signal type,
Jello [28] for spectrum occupancy, and SecureAngle [27] for AoA
estimation (the best known implemented systems for each component
respectively). We find that:

e DOF is accurate and robust at all SNRes, it classifies co-existing
radio types with greater than 85% accuracy even at SNRs as
low as 0dB. On the other hand, RFDump is at most 60% accu-
rate at SNRs lower than 8dB.

e DOF is robust to interference, achieving more than 82% ac-
curacy in detecting component signal types even when there
are three overlapping and interfering signals. The compared
approach RFDump cannot operate in this case.

e DOF’s spectrum occupancy estimates are more than 85% ac-
curate at low SNRs or in the presence of interference. The
compared approach, Jello has an error of 35%, and cannot de-
tect individual spectrum occupancies of interfering component
signals.

e DOF’s AoA estimation error is less than 6 degrees for SNRs as
low as 0dB, and is the same as SecureAngle.

DOF is practical and can be applied to many problems. While we
leave most of DOF’s applications to future work, we demonstrate the
potential benefits of DOF for building smart and agile radios by de-
signing and implementing a preliminary prototype, DOF-SR. The key
novel component in DOF-SR is that it’s aggressiveness in scavenging
for unused spectral resources can be tuned by a user specified policy
so that interference to co-existing radios is controlled. To demon-
strate this flexibility we implement three sample policies, from one
which only uses unoccupied spectrum and minimizes interference to
co-existing radios to ones which use microwave oven occupied spec-
trum and compete with co-existing WiFi radios. We deploy DOF-
SR in our indoor testbed and compare it with Jello [28] (which uses
edge detection for finding unused spectrum). Our evaluation shows
that DOF-SR provides nearly a 80% throughput increase over Jello in
crowded environments. Further, the co-existing WiFi/Zigbee radios
suffer less than 10% throughput drop with DOF-SR, while Jello can
cause nearly a 45% throughput drop. DOF-SR outperforms because
it can accurately detect (un)occupied spectrum even at low SNRs as
well as the occupying signal types, allowing it to more accurately
scavenge unused spectrum, yet guarantee that it does not affect the
co-existing radios.

2. RELATED WORK

DOF bridges and builds upon related work in signal detection and
cyclostationary signal analysis. We discuss both of them below.

2.1 Signal Detection

Detecting Radio Type: Prior work such as RFDump and others [16,
22] has used unique protocol characteristics (e.g. 10us delay between
data and ACK WiFi packets) to infer radio type. The basic approach
is to detect the start and end of packets using energy detection in the

time domain, and use the delays between packets to estimate radio
type. However, energy detection is not accurate at medium to low
SNR, and fails if there are multiple interfering signals as we show in
our evaluation in Sec. 6. Other work [20] has used preamble corre-
lation to detect radio type by exploiting known preambles at the start
of a packet. However this technique doesn’t work for legacy analog
signals such as microwaves, cordless phones etc which don’t have
preambles. Further, as prior work has shown [10], preamble corre-
lation requires coarse synchronization to the carrier frequency of the
detected signal, which becomes expensive given the large number of
carrier frequencies for different radio types in the ISM band.
Detecting Spectrum Occupancy: Prior work such as Jello [28] has
used edge detection on the power spectral density of the received sig-
nal to estimate spectrum occupancy. The basic idea is to compute
the slope of the PSD at every point, and detect signal starts and ends
based on thresholds on the slope. However, at low SNRs and for sig-
nals whose spectral masks are not of good quality, the accuracy of this
approach is low because noise and spectral leakage can cause sharp
spikes in the slope away from where the signal is located. Further,
this approach fails when we have multiple interfering signals who
also overlap in the frequency domain, since a edge will be detected
as soon as the first signal ends, in spite of the second signal which oc-
cupies some more portion of the spectrum. Other approaches based
on energy detection such as SpecNet [12] also suffer at low SNRs and
are unable to distinguish between overlapping signals.
Detecting Angle of Arrival: Prior work such as SecureAngle [27]
has used classic AoA estimation algorithms [14, 6, 23] to compute
AoAs of the incoming signals. These approaches are highly accu-
rate, and we show in our evaluation that DOF’s accuracy is similar.
Further, DOF can automatically associate a signal type with the AoA
(e.g. a WiFi signal is impinging at 45°), while prior approaches need
separate detectors to associate signal type.

DOF thus provides a single framework that estimates all three pa-
rameters, and with accuracy better than the best known implemented
techniques for each component.

2.2 Cyclostationary Signal Analysis

DOF builds on prior work in cyclostationary signal analysis, which
was pioneered in the early 90’s through the work of Gardner [9], and
has been used widely in a variety of applications [11, 24, 17, 29].
Further, recent work [8, 7] has used neural network classifiers with
cyclostationary features to detect the type of modulation used in a
received signal. Finally, recent work has implemented cyclostation-
ary techniques on the USRP platform [21, 19, 4] and evaluated its
effectiveness for detection and rendezvous in cognitive networks.

As we will see in Sec. 3, DOF builds on this prior work to design
an efficient feature extraction technique. However, DOF differenti-
ates itself from all prior work in cyclostationary signal analysis in the
following ways:

e DOF designs an efficient linear-time classification technique
based on hiearchical SVMs to estimate the type of multiple
overlapping signals. Prior approaches based on neural net-
works [8, 7] have cubic computational complexity and those
based on SVMs [15] are limited to classifying a single signal.
DOF’s technique is robust to the presence of multiple interfer-
ing signals and can reuse the same SVM decision tree for clas-
sifying all component signal types. To the best of our knowl-
edge, we are not aware of prior work in cyclostationary analysis
that has handled detection of multiple interfering signals.

e DOF extends cyclostationary signal analysis to detect angle of
arrivals, and designs a novel algorithm that computes AoAs as
well as associates the signal type with the signal on each AoA.

e DOF is implemented on a wideband radio, and has been eval-



uated extensively in an indoor testbed with five different inter-
fering signal types (WiFi, Bluetooth, Zigbee, Analog Cordless
phones and microwave signals). We are not aware of any work
that provides a similar extensive evaluation.

e We also design and build a preliminary prototype of a smart ra-
dio based on DOF, and show experimentally how it can be used
to increase network capacity without harming other radios.

3. OVERVIEW & DESIGN

DOF operates on windows of raw samples from the ADC which do
not undergo any demodulation, decoding or synchronization. These
raw samples are processed to extract feature vectors, which are then
used to detect signal types, the corresponding spectrum occupancies
and the AoAs of the signals at the detector. Before discussing the
detailed design, we provide the high level intuition behind DOF.

3.1 Intuition

The key insight behind DOF is that almost every radio protocol
used for communication has hidden repeating patterns. For exam-
ple, an OFDM PHY (used in WiFi) has a cyclic prefix (CP) where at
the end of each OFDM symbol block, the symbols from the start are
repeated. The CP serves two purposes, first it helps in avoiding inter-
symbol interference, and second it helps in preserving orthogonality
of the OFDM subcarriers [26]. Thus a CP is an important attribute of
the OFDM PHY itself, and necessary for its correct operation. Sim-
ilarly, every other protocol operating in the ISM band has repeating
patterns, that are unique and needed for their correct operation.

Note that these patterns are fundamental to the corresponding phys-
ical layers and are present in every packet (data, ACK and for every
bitrate). These patterns are not some quirk of a specific hardware im-
plementation or PHY layer parameter setting (e.g. different channel
transmission times for a 1500B packet based on what bitrate is used
in WiFi). Hence these patterns can potentially form a robust signature
that is invariant to differences in hardware or PHY layer parameters.

How can we use the existence of these hidden patterns to detect
the signal type, occupied spectrum and angle of arrival? We can use
the following key trick from cyclostationary signal analysis [9]: if a
signal has a repeating pattern, then if we correlate the received signal
against itself delayed by a fixed amount, the correlation will peak
when the delay is equal to the period at which the pattern repeats.
Specifically, lets denote the raw signal samples we are receiving by
z[n]. Consider the following function

Ri(r)= Y a[n]lz"[n—7]le 72" (1)

For an appropriate value of 7 corresponding to the time period
between the repeating patterns, the above value will be maximized,
since the random patterns in z:[n] will be aligned. Further, these peak
values occur only at periodic intervals in n. Hence the second expo-
nential term e~ 2™ is in effect computing the frequency « at which
this hidden pattern repeats. We define such a frequency as a pattern
frequency, and Eq. 1 is known as the Cyclic Autocorrelation Function
(CAF) [9] at a particular pattern frequency « and delay 7. The CAF
will exhibit a high value only for delays and pattern frequencies that
correspond to repeating patterns in the signal.

Figure. 1 shows the 2-D CAF plots for a received signal that has
WiFi and Zigbee signals interfering with each other. As explained
above, WiFi uses OFDM, and has a repeating cyclic prefix, as well as
other repeating patterns. In the CAF plot, we see spikes correspond-
ing to these repeating patterns at different pattern frequencies and
delays. Similarly, the Zigbee signal shows spikes at pattern frequen-
cies corresponding to how its pulse repeats. Note the stark difference

Cyclic Autocorrelation Function

1 i1 ==0 WiFi
: —o ZigBee

0.5

A

. ""’”ﬁﬁi;f .

Time Delay (1)

wo

-20 1 Pattern Frequency (-x/Fs)

Figure 1: Cyclic Autocorrelation Function for WiFi and Zigbee - The
spikes at different pattern frequencies are due to the repeating OFDM
CP, and the repeating pulse on which QPSK symbols are modulated in
Zigbee.

in the locations of the spikes for pattern frequencies for WiFi and
Zigbee. The differentiability in spike locations enables DOF to dis-
tinguish both signals even when they are interfering with each other.

DOF uses the locations of these pattern frequencies as signatures
for different signal types. In the following sections we expand on this
insight and explain the design of the classifier, spectrum occupancy
and AoA detection algorithms, which are DOF’s main and novel con-
tributions. However, to make these algorithms practical, we first need
to efficiently evaluate the Cyclic Autocorrelation Function at the rel-
evant pattern frequencies. Hence we first discuss DOF’s feature ex-
traction step, which borrows ideas from cyclostationary signal pro-
cessing to design an efficient extraction algorithm.

4. DESIGN

DOF’s design consists of 4 stages and an overview of the architec-
ture is shown in Figure 2.

4.1 Feature Extraction

DOF’s feature extraction component computes feature vectors from
the digital samples delivered by the ADC. Our algorithm builds on a
rich body of prior work in cyclostationary signal analysis [9], and is
conceptually similar to recent work in whitespace radios that uses cy-
clostationary analysis to detect primary TV transmitters. Our main
contribution here is the adaptation of the algorithm to work for the
multitude of signals in the ISM band and an efficient implementation
that works on a 100MHz wideband radio.

As described in 3.1 the feature extraction step is supposed to find
the prominent pattern frequencies which represent the frequencies at
which repeating patterns manifest in the different PHYs. However,
instead of using the CAF defined in Eq. 1, we use an equivalent rep-
resentation called the Spectral Correlation Function (SCF) [9]:

Se(f) =22 RY(r)e T )

The SCF is equal to the frequency transform of the CAF. Since fre-
quency transforms are unitary, both representations are equivalent. If
the CAF peaked for a certain value of 7, then the SCF will peak for
a particular value of f that is inversely proportional to 7. Intuitively,
the reason for this is that if a hidden pattern repeats at a lag of 7, then
by definition it repeats for every integer multiple of 7.

The reason for moving to the SCF is that it can be computed effi-
ciently [21] for discrete time windows as follows

L—1
2N =7 3 Xin(H)Xin(f — a) 3
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Figure 2: Overview of DOF showing the overall architecture and where it sits in the stack. Extracted features are first classified by signal type and
then processed to determine which wireless degrees of freedom are in use. DOF then passes the distilled information up to the MAC layer which can

utilize the information as it sees fit.

where X;n (f) is the FFT of the received signal for the I’th time win-
dow of length N samples, * is the complex conjugate, and the sum-
mation is over L consecutive time windows of the received signal.

The key thing to note in Eq 3 is that the SCF can be expressed as
a product of the FFTs of the received signal. Hence to compute the
SCF at any pattern frequency c, one just has to take the product of
the received signal’s FFT with itself albeit shifted in the frequency
domain by «. FFTs are very efficient to implement in hardware [13],
and any wireless PHY that would use OFDM would already have
an FFT hardware module. Hence we believe that the SCF can be
easily computed using existing hardware. We compute and evaluate
the computational complexity and verify the above claim in Sec. 5.
Feature Extraction: Finally, we summarize DOF’s feature vector.
Given the universe of signal types to detect (WiFi, Zigbee, cordless
phones, microwaves and Bluetooth currently), we first determine the
union of the unique sets of pattern frequency and frequency tuples
contained in each type’s signature. Let this union consist of the fol-
lowing M tuples, (a1, f1), ..., (aar, far), then the feature vector Ia
is defined as:

F(i) = (S (fi))  Yi=1,....M )

The components of the feature vector are values of the SCF at differ-
ent points, unique to the corresponding signal types.

4.2 Estimating Signal Type

DOF designs a novel decision tree based on SVMs [5] which al-
lows it to classify multiple component signal types in an interfered
signal using the extracted feature vectors. A SVM classifier takes an
input feature vector, F, and predicts the signal type 7' if any that ex-
ists in the received signal. These classifiers are trained using a small
labeled dataset. It’s common to regularize the feature vectors using
a kernel function such as a Gaussian kernel [5] and project them to
higher dimensions to make the feature vectors belonging to different
types linearly separable, we use the same technique in DOF.

A naive method of using these classifiers is to train a SVM classi-
fier using labeled data collected by transmitting from a particular ra-
dio and computing the corresponding feature vector from the received
signal, and doing so for different radio types and locations. However,
this generic off-the-shelf SVM design fails to work. The reason is
that DOF expects to accurately detect signal types even when the re-
ceived signal has multiple interfering signals in it. Interference sig-
nificantly distorts feature vectors and throws off the SVM classifier.
Specifically, the SCF for an interfered signal at a particular pattern
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frequency « can be shown to be equal to [9]:

S%(f) =a’S%, (f) +0°S%, (/) + R Q)

where X, and X are the interfering signals with amplitudes a and b.
R is a residual term representing cross-talk between the two signals.
Thus the feature vector will be a sum of the feature vectors if the
signals alone had been present without interference scaled according
to their respective powers, plus a term that represents the crosstalk.
The unique pattern frequencies for each component signal type are
retained, but after kernel regularization, the test feature vector itself
will not correspond to any of the training feature vectors the SVM
classifier has been trained on.

One naive approach to this problem would be to train SVMs for
all possible combinations of signals. However, this approach quickly
gets out of hand, since the classifier has to account for the fact that
the interfering signals will have different unknown powers, and con-
sequently the feature vectors will be clustered differently for each
combination of powers. Training classifiers for all possible signal
combinations and powers is prohibitively expensive.

4.2.1 Robust & Efficient Classification

DOF builds a decision tree that can efficiently identify multiple
component signal types in an interfering signal via two steps:
1) Exploiting Asynchrony: Transmissions from different nodes in
the real world rarely overlap with each other perfectly since transmis-
sions from two independent nodes will very likely be asynchronous
as shown in Fig. 3. DOF exploits this idea to compute two quan-
tities: the number of component signals in the received signal, and
their average individual power.

To determine how many signals are present, DOF uses the follow-
ing idea: if a new signal starts interfering, then the feature vector
DOF extracts will start showing many new non-zero components due



to the unique features belonging to the new signal. Hence, we can use
the following algorithm to compute the number of interfering signals:

1. Keep track of the [y norm (i.e. the number of non-zero compo-
nents) of the computed feature vector.

2. If the Iy norm exhibits a sudden shift, then declare a change
in the number of interfering signals. If the [y norm shift is
positive, then a new signal has started interfering, if the change
is negative, then one of the interfering signals has stopped.

The above algorithm begins by initializing the counter for the number
of signals to zero. Hence, the algorithm continuously keeps track of
the number of interfering signals at any point.

Second, DOF exploits the fact that the total power of the received

signal is equal to the sum of the powers of the constituent signals
and noise. Hence, as the received signal samples are received, DOF
keeps a moving window average of the power at that point. If DOF
detect a new signal, it estimates the power of the new signal, as the
new received signal power minus the received signal power before the
presence of a new signal was detected. Thus, DOF detects the number
of component signals, as well as their powers in the received signal.
It exploits this information in classifying the constituent signal types,
as we explain next.
2) Constructing the SVMs: DOF exploits knowledge of the number
of signal types and their powers computed above to design an effi-
cient SVM decision tree for classification. The basic idea is to train
a small number of classifiers equal to the number of signal types we
wish to detect (currently five signal types in our implementation): one
classifier for the case where the received signal has zero or one signal
type, another classifier when the received signal has two signal types
and so on. These classifiers are trained with labeled datasets that
are generated by taking labeled data from experiments where there
is a single signal type in the collected data, and adding them up af-
ter normalizing their powers. For example, if we have labeled data
containing WiFi signals at power P; and another labeled dataset con-
taining Zigbee signals at power P, to create one labeled data point
for the classifier meant for two signals, we would add the two datasets
above after normalizing their powers to be equal. By taking different
numbers and combinations of signal types and repeating the above
procedure, we create five training sets for the five SVM classifiers.

The above technique has two advantages. First, we only need to
train five classifiers, significantly smaller than the naive approach
which needs at least 31 different SVM classifiers (one for each com-
bination of signal types and possibly more for different powers). Sec-
ond, collecting training data is relatively easy, since we only have to
collect data from controlled experiments where there is a single radio
operating, and we can artificially add them up later to generate data
for classifiers attempting to detect multiple interfering signal types.

To use these classifiers in practice however, we need to normalize
the amplitudes of the computed feature vectors since the classifiers
were trained on data where the component signals had equal power.
To accomplish this, we exploit that we can compute the powers of the
individual signals using asynchrony as we explained in the previous
section. For example, lets say we are classifying a signal which we
have estimated to have two different component signals with powers
P: and P», and the signal X starts before X». Due to asynchrony,
we have an interference free part of X; and consequently an inter-
ference free estimate of the corresponding feature vector ;. When
we get to the part of the signal where these two signals interfere,
we multiply the components of the new feature vector that were also
non-zero in the original feature vector by P», and the remaining com-
ponents by P;. In effect, we have normalized the feature vectors
corresponding to both components to have the same amplitude P; Ps.
Now, the classifiers that were trained on normalized data can proceed
to classify the component signal types.

The above technique recursively generalizes to any number of in-
terfering signals, since we can use the above procedure whenever we
detect that a new signal has started interfering. Similarly, we can
reverse the technique when we detect that one of the signals has
stopped. Specifically, if we detect via the Iy norm technique that
the number of signal types has reduced by 1, and the total observed
power drops by P’, then we just normalize the remaining feature vec-
tor components by 1/P’.

4.3 Estimating Spectrum Occupancy

After identifying signal type, DOF computes the carrier frequency
and bandwidth of each signal type. The key idea is that the feature
vectors that were extracted for detecting type also encode information
about the carrier frequency and the bandwidth of the signal. The
reason is that almost every wireless communication signal modulates
constellation symbols (e.g. QAM) on top of standard bandwidth-
limited pulses such as raised cosine filters. The pulse rate is directly
proportional to the bandwidth for that signal (e.g. SMHz for Zigbee).
This repeating pulse gives rise to specific pattern frequencies whose
value is a function of the bandwidth and the carrier frequency of that
signal. For OFDM signals like WiFi, instead of a pulse we have the
CP that repeats at a frequency proportional to the bandwidth of the
signal. DOF leverages these relationships in building its spectrum
occupancy estimation algorithm.

To see why feature vectors encode information about the carrier
frequency and bandwidth, consider the following BPSK signal that is
representative of transmitted wireless signals

5(t) = beos(2m fyt)e? ™t (6)

where b = +1 represents the bits and the cos(27 ft) represents the
pulse on which the bits are modulated, and f is the bandwidth used
for transmission, and f. is the carrier frequency. Note that typically
for spectrum masking purposes more specialized pulses than simple
cosines are used, but for our explanation, this representation suffices.

Lets assume the center frequency of our detector is f.» and the gap
with the transmitted signal’s carrier frequency is 0f = |fe — fo|-
This gap just shifts the FFT of the signal by the same amount ¢ f. To
see how the SCF for the received signal looks, lets first compute the
CAF for this with 7 = 0

CAF(s(t)) = be 2™t 4 b2 cos(dn fit) (7

As discussed before, the SCF is just the FFT of the CAF. From the
above equation it becomes clear that when we take its FFT, we will
see two spikes, one at § f, and one at 2 f;, giving us two prominent
pattern frequencies at these locations. The location of the two pat-
tern frequencies along with the knowledge of the detector’s center
frequency f./ is sufficient to compute the bandwidth and carrier fre-
quency of the transmitted signal.

The above technique generalizes to every communication radio (in-
cluding analog radios such as cordless phones), i.e. the Spectral Cor-
relation Function of a signal will exhibit a prominent value at a pat-
tern frequency corresponding to some function of f., f;. Table 1 lists
the pattern frequencies that are observed in the SCF which are direct
functions of the carrier frequency and occupied bandwidth for differ-
ent signal types. This table serves as the basis of DOF’s algorithm for
spectrum occupancy and carrier frequency estimation.

However, the above technique has two caveats. First, for Bluetooth
signals which employ frequency hopping over 1 MHz intervals at a
rate of 1600 hops/second, the per hop period is 1/1600 = 625us. In
our current implementation, our spectrum occupancy algorithm runs
over a window of roughly 1ms intervals. Hence, DOF may estimate
multiple spectrum occupancies for Bluetooth signals, since a Blue-
tooth signal could hop multiple times in 1ms. Second, the above



Table 1: Relationship between Pattern Frequencies and Bandwidth/Car-
rier Frequency

Signal Type Pattern Frequency Locations
WiFi all a’s between [f. — EW | f, + BW
Bluetooth fes fe + BW fL BW
Analog Phone fes fe + BW, fo — BW
ZigBee 2fc + BW,2f. — BW

intuition does not work for non communication signals such as mi-
crowave ovens because we are unable to exploit packet asynchrony
to determine the number of signals present in the time window. How-
ever, as prior work has shown [25], microwave signals can be mod-
eled as FM signals with a sweeping bandwidth that is equal to the AC
power switching frequency. We can leverage this model to initialize
our asynchrony detector counter based on the number of feature vec-
tors when the counter is set to zero, and also compute the occupied
spectrum for microwave signals due to these feature vectors.

Finally, note that one cannot determine bandwidth occupancy di-
rectly from signal type. While the detected signal type (e.g. WiFi)
can tell us what is the expected signal bandwidth (e.g. 20MHz for
Wifi), it cannot tell us what carrier frequency is used since WiFi has
11 different channels. The above technique determines both band-
width and carrier frequency directly from the feature vectors.

4.4 Estimating Angles of Arrival

The final component of DOF is angle of arrival (AoA) estimation
for each signal type detected. DOF designs a novel and efficient al-
gorithm that extends cyclostationary analysis to also compute AoAs.
The key insight is that we can leverage already known information
about the unique pattern frequencies corresponding to a signal type
to extract their AoAs. We demonstrate the basic idea using a simple
uniform linear MIMO antenna array (ULA) [23] as our antenna ge-
ometry. Our algorithm generalizes to any antenna geometry, but ULA
suffices for exposition.

Lets assume that we have M antennas and our radio receives N <
M signals that exhibit pattern features at unique oo, Vo = 1,..., N
and arrive at AoAs 6; Vi = 1,..., N respectively. A uniform linear
array by definition has all its antennas on a line with equal spacing
between them as shown in Fig. 4. Because the antennas are equally
spaced, a signal at a particular angle of arrival 6 has a difference in
propagation distance that results in a time delay at the m*" antenna
with respect to the first antenna of

n(0) = (m — 1) 0 ®)
where c is the rate of propagation (speed of light for free space)
through the medium and d is the inter-antenna spacing. A delay in the
time domain manifests itself as a phase shift as long as the narrow-
band assumption holds (the bandwidth of the signal does not exceed
the channel’s coherence bandwidth) and so the received signal at the
M antennas modeled as a summation of all the interfering compo-
nents is equal to

y(t) = SN 6(0n)zn(t) +n(t) ©)
= Px(t) + n(t)

where = [z1 ... zx]7 with each x,, corresponding to the signal ar-
riving at angle 6,,, y = [y1 ... yn]7 is the vector consisting of signals
received at the M antennas, ¢(0,,) = [1 e?2™fem2(0n)
and ® = [¢(61) @(6,)] where f. is the carrier frequency.

The objective of any AoA estimation algorithm is to compute the
N column vectors in the AoA matrix ¢, since they directly provide
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Figure 4: Uniform Linear Array - Sensing a plane wave impinging at an
angle 0

the corresponding AoAs for each of the IV signal types. The typical
approach is to do a search over the space of possible matrices, and al-
gorithms differ in how the search is conducted. The key contribution
in our algorithm is a way to leverage the computed pattern frequen-
cies to significantly reduce the search space and thus enable fast AoA
computation, as well as automatically associate the computed AoAs
with the corresponding signal type.

Lets assume we have detected a particular signal type and that it
has a unique pattern frequency o, and is arriving at a single AoA
0... DOF’s algorithm first computes the Spectral Correlation Matrix
Sy of the received signal at the M antennas " at the unique pattern
frequency «,,. We omit the proof for brevity, but we can show that
this matrix is related to the AoA vector ¢(6.,) as follows:

Sew(f) = ®(0.) 55 (£ @(0.)"

where (-)7 denotes the conjugate transpose operation. Since cv, is
unique to this signal type, Sg* (f) will be a diagonal matrix, which

(10)

implies that ®(6,,) is the eigenvector of the computed matrix 5’;‘“
Hence, in order to compute the AoA for this signal type, we just have
to compute the eigenvector of the matrix computed in Eq. 10. Be-
cause this computation is only performed at the pattern frequencies
corresponding to the received signal and not all possible pattern fre-
quencies, we are able to reduce the overall computation and associate
signal type with each angle.

In practice due to multipath effects, each signal type will arrive at
multiple AoAs. Due to this instead of a single eigenvector as above,
we will have multiple eigenvectors, each corresponding to a different
angle at which this signal arrives.

There are two important takeaways from this section:

e By detecting signal types we obtain a list of corresponding
unique pattern frequencies. These are directly used in the AoA
algorithm described above to efficiently calculate AoAs.

e By the very nature of the algorithm, i.e. our use of the unique
pattern frequencies for the detected signal types, the computed
Ao0As are naturally and accurately associated with the corre-
sponding signal types.

5. IMPLEMENTATION

DOF is implemented in C using a fast FFT implementation from
FFTW [1] on a PC with an Intel Core i7 980x processor and 8GB of
RAM. We use a wideband radio [18] (shown in Fig. 5) with a frontend
bandwidth of 100MHz spanning the entire ISM band. The wideband
radio is a modified channel sounder that was originally designed for
taking channel measurements by sending user specified pilots. We
modify the frontend to be able to send and receive arbitrary wave-
forms in the entire 100MHz ISM band. The frontend has a carrier

'a generalization for MIMO signals of the Spectral Correlation Func-
tion defined in earlier sections for single signals



20MHz 40MHz 60MHz 80MHz 100MHz
0.4 0.8 1.4 1.8 2.5

Table 2: Microbenchmarks - CPU time normalized wrt actual signal
time of the trace

frequency of 2.45GHz and a max output power of 15dBm. How-
ever, similar to other SDR platforms such as USRP2s, the intercon-
nect between the SDR frontend and the PC does not meet the latency
requirements needed to implement timing sensitive MAC functions
such as ACKs. DOF’s algorithms operate on the raw digital samples
collected by the wideband frontend. We provide a microbenchmark
for our implementation in Sec. 5.1.

5.1 Complexity

In this section we discuss the computational complexity of DOF.

We compare DOF’s complexity against the simple and widely used
PSD based edge/energy detector [28, 16, 22]. For AoA estimation,
we compare it against the MUSIC algorithm [23] used in prior work
such as SecureAngle [27].
Computational Complexity: The main computationally intensive
task in DOF is the feature extraction step, which involves comput-
ing Eq. 3 for every component in the feature vector. The complex-
ity is dictated by the choice of the FFT length N and the averaging
window L. Higher values of N and L provide better resolution for
the FFT and SCF respectively [9] and consequently higher accuracy
for DOF, but also increase complexity. In our current implementa-
tion, we find that N = 512 and L = 16 suffices for DOF to work
accurately over the 100MHz ISM band. Prior energy/edge based ap-
proaches [28] use a 256 point FFT, but were implemented over nar-
rowband USRP?2 radios with at most 10MHz bandwidth, while DOF
works over a wideband radio with 100MHz bandwidth. We believe
that prior work would have to use at least a 512 length FFT to oper-
ate over such widebands, otherwise the spectral resolution would be
too low resulting in inaccuracy. (we verified the inaccuracy with 256
length FFTs experimentally for one prior approach [28]).

DOF and edge/energy detection share the same FFT complexity [2]
of 5N log N = 20384 floating point operations per window. Next,
DOF computes the K = 80 feature vector components by averaging
over 16 windows, which costs another 4 * 16 * 80 = 5120 float-
ing point operations. Note that prior FFT based approaches [28, 22]
also have to perform this averaging to smooth the FFT and avoid
false positives. Our radio type classifier has an /o norm estimator
and equalizer, that require K + N ~ 600 comparisons. The SVM
classifiers require KX = 80 real multiplications, while the spectrum
occupancy estimation algorithm requires a small number of extra op-
erations equal to the number of signal types detected. Thus in total,
DOF requires 6000 extra floating point operations, in addition to the
20384 floating point operations that the FFT requires. Hence DOF’s
extra complexity is less than 30% over a standard FFT which we be-
lieve is reasonably modest.

Energy detection of course cannot compute AoAs, hence we com-
pare DOF’s complexity with the MUSIC algorithm [23] that is used
in prior work [27]. The order computational complexity of MUSIC
as well as DOF’s AoA estimation algorithm is O(PM?), where M is
the number of antennas and P is the number of distinct AoAs. How-
ever, we find empirically that the constant in the order notation is
significantly smaller for DOF. This is because the MUSIC algorithm
involves computing eigenvectors for a series of matrices as it con-
verges to the correct AoAs. DOF on the other hand has to compute
the eigenvectors only once as described in Section 4.4.

To summarize, DOF has modestly higher if not similar compu-
tational complexity compared to traditional energy/edge detectors,
and actually lower complexity than other AoA methods. However,
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Figure 5: Testbed layout and wideband software radio

as we will see in the next section, DOF significantly outperforms
energy/edge based approaches and has additional features such as
signal type detection that energy/edge based detectors do not pro-
vide. Hence, we believe that the additional complexity is a reasonable
tradeoff given the significant gains in functionality and accuracy.
Micro-benchmark: Table 2 provides benchmark results for DOF’s
current software implementation. We calculate the normalized time
by dividing the wall clock time used by our system divided by the
actual signal time on the air. The goal is to see how close to “realtime"
our system is. We provide benchmarks as we vary the bandwidth of
the radio from 20MHz to 100MHz in increments of 20MHz. A larger
bandwidth naturally means a faster stream of data to keep up with.
DOF performs in realtime for radios with bandwidths of up to
40MHz and starts falling behind with higher bandwidths. However,
this is a software based implementation of the FFT (which requires
the most computation), and we believe a hardware implementation
would be significantly faster and be able to handle higher bandwidths.
Further these benchmarks compare favorably with prior work [16].

6. EVALUATION

In this section we evaluate the accuracy of DOF and determine
how different factors such as signal SNR, the number of interfering
signals impact its performance using testbed experiments. Our cur-
rent implementation is geared towards 5 common signal types in the
ISM band - WiFi, Zigbee, Bluetooth, analog/digital cordless phones
and microwave signals.

We first summarize our findings:

e DOF’s performance is robust to the SNR of the detected sig-
nals. We find that DOF achieves greater than 85% accuracy
even when the SNR of the detected signals is as low as 0dB.
The best known prior approach have errors greater than 40%
for SNRs below 8dB. [16]

e DOF’s performance is robust to interference between detected
signals. We find that DOF accurately classifies all component
signals with greater than 82% accuracy even with 3 interfering
signals. Prior approaches do not work with interfered signals.

e DOF’s spectrum occupancy estimates are at least 85% accu-
rate, at SNRs as low as 0dB and in the presence of multiple
overlapping and interfering signals. The best known prior ap-
proach achieves an accuracy of 65% under similar conditions.

e DOF’s AoA estimation is as accurate as the best known prior
technique [23]. Further, unlike prior work it accurately asso-
ciates the estimated AoAs with the correct type for the signal
arriving at that angle.

Compared Approaches: We compare against the best known im-
plemented systems for each component in DOF. First we compare
against RFDump [16] which uses timing and phase analysis for de-
tecting radio types. Second, we compare against Jello [28] which
uses edge detection on the FFT to detect occupied spectrum. Finally,
we compare against SecureAngle’s [27] MUSIC technique [23] for
computing AoA.

Testbed: The testbed for the experimental results consists of an in-
door office environment with cubicle-style office rooms (see Fig.5).
The total office size was 105ft x 48ft, the ceiling height was 10ft, and
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Figure 6: DOF has high classification accuracy over a large range of SNRs and for multiple interfered signals.

the height of the cubicle partitions was 5.5ft. Our wideband radio was
placed at three different locations as shown by the shaded circles in
Fig. 5, while the radios that we wish to detect (WiFi, Zigbee, cord-
less phones, bluetooth devices and microwaves) are placed randomly
in the office and allowed to transmit. The measurements were taken
when the office was empty, and ambient interference from sources
outside our control (the departmental WiFi network, microwaves etc)
was absent. While the design of DOF was tested using data from
a 100 MHz channel sounder, note that conceptually DOF will work
with any stream of raw data which can be obtained via commodity
software radios such as USRPs. We used the channel sounder as op-
posed to USRPs because we wanted to demonstrate the full breadth
of DOF’s capabilities and did not want the range of our tests to be
curbed by the limitations of the data acquisition device.

Training Data: The DOF SVM classifiers are first trained with la-
beled data generated via controlled experiments in the testbed. The
training signals are generated by randomly turning on one of the five
radios at a random location with randomly picked PHY parameters
when applicable (bitrate, channel etc). Turning on means continu-
ously transmitting packets for WiFi, Zigbee and Bluetooth radios,
making a continuous call for the cordless phone and powering on for
the microwave oven. We generate 30 labeled points for each radio
type. The SVMs for detecting multiple signal types are trained by
synthetically combining the single signal labeled data as described in
Sec. 4.2. Hence the training complexity of DOF is relatively mod-
est. Note that once DOF is trained, the training data allows DOF to
operate in any physical environment so long as the training is repre-
sentative of all possible parameters that a signal could have (bitrate,
modulations, etc.). But for signals which aren’t FCC-certified (e.g.
microwaves), training has to be done specific to each instance since
those protocols are not governed by a uniform specification.
Calculating SNR: In our plots, the reader will often see measure-
ments at SNRs as low as —5dB. The reason we are able to calculate
such low SNRs is our wideband radio, which is a modified channel
sounder. Specifically, the sounder was initially designed to conduct
wide area surveying for a WiMax network deployment. In such sce-
narios, such low SNRs need to be measured and the sounder comes
equipped with a proprietary technique that allows two sounders to
be placed at separate locations and yet accurately measure the SNR
between them even when it is as low as —5dB. We leverage this ca-
pability to measure the SNRs in our experiments.

6.1 Estimating Signal Types

We evaluate DOF’s accuracy in detecting component signal types
in the received signal and compare it to the accuracy of RFDump [16],
defining accuracy as the probability of correct classification.
Method: For each run, we pick a random subset of the five different
radio types. We place the corresponding radios at a random loca-
tion, randomly set their PHY parameters (bitrate, channel etc) in the

testbed and allow them to transmit. We also measure the SNR of the
channel from each location. The same received samples are passed
to the DOF detector and the RFDump detector - both algorithms are
run at the same bandwidth. Because RFDump was not designed for
such a large bandwidth, it does not work if there are multiple signals
overlapping in time and for legacy radios such as cordless phones
and microwave ovens. Hence for RFDump, we eliminate traces with
multiple interfered signals, or if they have analog phone or microwave
signals in them and compute its accuracy only for the remaining three
signal types. Fig. 6 plots the accuracy of DOF and RFDump against
SNR when there is a single signal. Because SNR doesn’t work as a
metric when there are multiple interfered signals, we plot the CDF of
the error across all experimental runs in Fig. 6.

Analysis: Figs. 6(a) and 6(b) show that DOF has high classification
accuracy over a large range of SNRs and for multiple interfered sig-
nals. DOF achieves an accuracy ranging from 85 — 100%, even for
SNRs as low as 0dB when there is a single signal present. For multi-
ple interfered signals, DOF achieves an accuracy greater than 85% at
least 90% of the time even when there are three interfered signals in
the trace. DOF is robust to SNR because our feature vector compo-
nents are calculated by correlating and integrating repeated patterns
over long intervals, hence even if individual samples have low power,
the integration over the entire interval yields very prominent features.
Also since the repeating patterns are unique to each signal and uncor-
related with other signal types, they are quite robust to the presence
of interfering signals.

RFDump achieves an accuracy of at most 60% when the SNR of
the detected signal is between between —5 to 8dB. RFDump uses
two techniques, timing analysis and phase analysis to classify signal
types. Timing analysis is based on detecting start and end of pack-
ets using energy detection, while the phase analysis component is
dependent on computing statistics of the phases of received samples
which use phase modulation such as Zigbee and Bluetooth. Both
operations are error prone at medium to low SNRs, since noise sig-
nificantly affects the accuracy of energy detection, and distorts the
received phases affecting the phase statistics. Finally, RFDump fails
to work in the presence of multiple interfering signals, since it cannot
detect start or end of packets reliably when signals overlap in time,
and phases are distorted when there is a strong additive interferer.

Why is accuracy slightly lower for interfering signals? DOF’s ac-
curacy is slightly lower when there are multiple interfering signals
present in the received signal. Because DOF’s ability to classify
multiple interfering signals hinges on how well it is able to exploit
asynchrony, at first glance it seems like this may be the root of the
problem. Upon closer inspection, we found that while asynchrony
detection errors are present, they account for a small fraction of the
overall errors. Asynchrony detection errors occur when the offset
between different transmissions is shorter than the cyclic feature pro-
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Figure 7: DOF is more accurate than edge detection at low SNRs and
with multiple interfering signals in estimating occupied spectrum

cessing time. Because an FFT of length 512 using FFTW [1] can be
performed in 4us and the extra complexity of cyclic feature extrac-
tion is < 30% over that of a standard FFT (sec. 5), the probability
of repeatedly missing the offset between asynchronous transmissions
(WiFi, ZigBee, and Bluetooth all have packet lengths on the order of
100’s of s to a few ms) is small.

The main reason for the lower accuracy is that certain low-power
and low-bandwidth signals are not detected in some corner cases
when there is strong frequency overlap. Fig. 6 plots the accuracy
of our classification for different signal types as a function of the
frequency overlap from another signal. Frequency overlap between
signals of the same type is rare because their identical MAC proto-
cols act as a mechanism to prevent this. When signals do overlap, this
is because they are of different types. Referring to Table 1, different
types of signals centered at the same carrier frequency exhibit distinct
patterns. Thus overall, DOF’s classification accuracy does not dete-
riorate drastically when signals overlap, except for Bluetooth, which
we can see drops with increasing overlap. The reason is that Blue-
tooth signals have a low bandwidth of 1 MHz. If the signal is over-
lapped in frequency by a stronger signal like WiFi, then DOF fails
to even detect the Bluetooth signal. Bluetooth signals only have a
few unique features because of their simple structure and small band-
width, while a WiFi signal has a rich feature set some of which are
close to the Bluetooth pattern frequencies. Consequently, DOF ends
up not detecting the Bluetooth signal, resulting in lower accuracy.

6.2 Estimating Occupied Spectrum

In this section, we evaluate the accuracy of DOF’s spectrum oc-
cupancy estimation, and compare it with the edge detection based
approach in Jello [28]. To make a fair comparison, we allow Jello to
use the same 512 length FFT as DOF.

Method: The experiment is conducted similar to the above classi-
fication experiments and the raw dump of the received signal at our
wideband radio is sent to DOF’s and Jello’s spectrum occupancy esti-
mators. We take the estimated occupied spectrum from both systems,
and compute the absolute error for both. The error is computed as
the sum of the estimated occupied spectrum components that are not
actually occupied plus the estimated unoccupied spectrum which is
actually occupied. We normalize the error by the ground truth spec-
trum occupancy. We plot two separate figures, Fig. 7(a) plots the error
vs SNR of the detected signal when there is a single received signal
in the trace and Fig. 7(b) plots the CDF of normalized errors when
there are more than 1 potentially overlapping signals in the trace.
Analysis: Fig. 7(a) shows that DOF is reasonably accurate in estimat-
ing occupied spectrum. The normalized error in estimating occupied
spectrum is around 15% at low SNR and reduces to 5% at higher
SNR, but never approaches 0 because of the FFT size which inher-
ently limits resolution.
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Figure 8: AoA Estimation Accuracy - Single Signal accuracy is accurate
even at low SNRs but when multiple radios are operating, there are often
more significant AoA’s than our detectors are able to discern, a funda-
mental limit due to the number of antennas in our system.

Fig: 7(b) plots the CDF of errors when there is more than one signal
in the received trace. DOF achieves a median error of 15% in these
experiments, slightly higher than the single sender case. Apart from
the FFT resolution, the other contributor to the error is overlapping
signals in the frequency domain. As in the classification case, when
a strong signal overlaps in frequency with a weak signal like Blue-
tooth, it becomes hard to even detect that the Bluetooth signal exists
and consequently we miss its feature vector components. Hence, the
spectrum occupancy error is slightly higher.

Jello performs less accurately, especially at low SNR and with mul-
tiple interfering signals. The reason is that edge detection (the tech-
nique used in Jello) is based on computing the slope of the PSD.
However, at low SNRs noise introduces sufficient fluctuations that
we encounter large slopes in the derivative of the signal at frequencies
away from where the transmitted signal lies. Further, edge detection
can get confused when there are two partially overlapping signals in
frequency. The reason is that when the overlap ends, there will be a
sharp drop in the PSD level (because we went from two signals to one
signal at that frequency). This can be mistaken to be the end of the
occupied spectrum since the PSD is relatively flat after that transition.
Consequently, as we see in Fig. 7 Jello has a higher median error of
40% in our experiments.

6.3 Estimating Angle of Arrival

In this section, we evaluate the accuracy of DOF’s AoA estimation
component. However, unlike the prior experiments, we cannot com-
pare against ground truth here. The indoor environment is a multipath
environment, and a transmitted signal can arrive at multiple angles si-
multaneously. We have no way of knowing exactly what scattering
takes place and consequently the ground truth AoAs. Hence we con-
duct the experiment as follows: We use two of our wideband radios,
one equipped with 4 antennas and another with 8 antennas arranged
in a ULA. As in the previous experiments, we randomly pick a subset
of the radios among our five different types, place them at a random
location and let them transmit. For the trace from the 8-antenna radio,
we apply the standard MUSIC technique [23] to estimate all AoAs.
The reason is that with such a large antenna array, MUSIC is almost
guaranteed to accurately find all the significant AoAs. We consider
these angles to be the ground truth.

Next, we give the trace collected at the 4-antenna radio to DOF as
well as SecureAngle’s [27] MUSIC method. Our logic for picking 4
antennas is to make it consistent with state of the art MIMO hardware,
which comes with around 4 antennas. We then compute the absolute
error of the estimates from DOF and SecureAngle, which is computed
by summing the following values: absolute value of each estimated
angle minus the closest ground truth angle. The absolute error is



normalized by the number of estimated angles. Fig. 8(a) plots the
normalized angle error vs the SNR when the trace contains a single
signal type, while Fig. 8(b) plots the CDF of normalized errors when
it contains more than one signal.

Analysis: Fig. 8(a) shows that DOF computes the AoAs with an ac-
curacy of at least 5 degrees even at low SNRs when there is a single
signal. SecureAngle’s accuracy is similar. The reason for the rela-
tively worse performance at very low SNR is that the estimation al-
gorithm uses projections of the Spectral Correlation Function matrix
to compute angles of arrival, and the projections have a slight contri-
bution from noise. At very low SNRs, the contribution is relatively
significant, and hence causes a higher estimation error.

As we see in Fig. 8(b) both DOF and SecureAngle perform slightly
worse when there are multiple signals. DOF’s median error is around
14 degrees, while SecureAngle’s is 19 degrees. The reason is that
the number of AoAs that can be accurately detected is a function of
the number of antennas a radio has. With 4 antennas, we can detect
at most 4 significant angles of arrival [23]. However with multiple
signals in a rich multipath environment, there will be significant sig-
nal strength along a number of angles, sometimes larger than 4. Both
DOF and SecureAngle get confused in this case. However, we note
that this is a fundamental problem [23], regardless of the algorithm,
the number of antennas a node has places a sharp upper bound on
how many AoAs can be distinguished.

7. APPLICATION TO SMART RADIOS

The most direct uses of DOF are in designing smart radios, net-
work management, indoor localization and performance diagnosis.
While we leave most of these to future work, we design DOF-SR, a
preliminary prototype of a wideband smart radio to demonstrate the
benefits of DOF. Our design is inspired by recent work in smart ra-
dios, including Jello [28] and others [22]. We compare DOF-SR with
Jello [28], the most recent state of the art system for such designs.

7.1 DOF-SR

DOF-SR is a wideband policy-aware smart radio design that op-
erates over the entire 100MHz ISM band. The key technical contri-
bution in DOF-SR is its ability to take advantage of the accurate de-
tecting substrate DOF provides to let users specify a policy that tunes
how aggressive the radio is going to be in scavenging for spectral re-
sources. To demonstrate the policy flexibility, we design three sample
policies and implement them in our current prototype of DOF-SR

1. PO: Only use unoccupied spectrum.

2. P1: Use all unoccupied spectrum. Further use spectrum occu-
pied by microwave oven radiation.

3. P2: Use all unoccupied spectrum as well as parts occupied by
microwave oven radiation. Further, compete for spectrum oc-
cupied by WiFi radios and get half the time share on that part
of the spectrum.

The three policies are ordered in increasing amounts of aggressive-
ness. The first policy plays it safe and is similar to the one used by
Jello. The second is more aggressive, but still avoids harming any
co-existing radio that is used for communication. The third is the
most aggressive, and encodes the notion that since WiFi is also an-
other unlicensed radio, it is fair to compete and obtain half the time
on spectrum used by WiFi too. However, our key point is that there
is no “universal right policy", it will depend on the user’s preferences
and environmental constraints, but DOF-SR provides the flexibility
needed to adapt the policy to those preferences and constraints.

7.1.1 Protocol

Measuring the RF Neighborhood: DOF-SR uses DOF as the sub-
strate to accurately measure the RF environment and create a RF-
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profile. In our design, both DOF-SR sender and receiver radios mea-
sure the environment using DOF, and the receiver sends its measure-
ments to the sender. The measurement consists of the 2-D profile of
the RF environment along the frequency and spatial (AoA) axes that
DOF estimates, with each occupied point annotated by the occupying
signal type. The sender combines the measurements from the receiver
by taking the union of both spectrum occupancy measurements, but
uses the AoA estimates from the receiver since AoA is specific to the
detecting radio and only matters at the receiver for communication.
Estimating what spectral resources to use: Next, the sender uses
the merged RF profile along with the user specified policy to estimate
what spectral resources to use. For policy PO, this would be only the
unoccupied spectrum, while for P1 and P2 this would also include
spectrum occupied by microwave ovens and WiFi respectively.
Creating Packets: DOF uses an OFDM-MIMO PHY layer to create
its packets for transmission. The key challenge here is to adaptively
leverage the 4 antenna MIMO frontend to maximize throughput while
minimizing interference from and to the co-existing radios. We first
discuss how the system would work for the simplest policy P0, and
then extend it to work for the other two policies.

Our current OFDM implementation uses a 1024 point FFT, and di-
vides the 100MHz band into 1024 subcarriers of length 96KHz each.
Among these subcarriers, it marks all subcarriers that intersect with
the occupied parts from the RF profile as unusable. On the remaining
subcarriers it uses MIMO spatial multiplexing to transmit 4 indepen-
dent streams on each subcarrier. We omit the details here, but refer
the reader to [26] for a description of this standard technique.

For policies P1 and P2, we modify the above algorithm to take
advantage of their aggressiveness. Specifically, for P1 we include the
subcarriers that were detected to be occupied by microwave ovens
in the RF profile. However, we cannot use spatial multiplexing on
these subcarriers, since the interference from the microwave signals
would be too strong. Instead we leverage the 4 MIMO antennas to
perform beamforming and null the interference from the microwave
oven signals. Specifically, lets say the microwave oven signals are
arriving at ¢ significant AoAs 61, . .., 8; at the DOF-SR receiver. The
sender calculates antenna weights w‘f = (wls, ws,ws, wy ) for the
subcarrier centered at f,, which is interfered by the microwave oven,
such that the transmitted signal will not arrive at the same angles
as the microwave. The receiver will then calculate antenna weights
antenna weights u’)’{f = (wf, wi, wi, wl) such that the microwave
signal from the estimated AoAs at the receiver will be minimized:

— —

arg,;, min [W(01) + ... +w,(0:)] (11)

where qﬁ(_él) is the AoA vector corresponding to 6; at the 4 antennas
defined in Eq. 10, and @, is the conjugate transpose. The estimated



antenna weights are then applied to the streams on the corresponding
OFDM subcarriers.

For policy P3, the DOF-SR radio will time share the medium with
the co-existing WiFi radio, i.e. it will transmit on that spectrum half
the time. The key parameter here is the time period over which the
smart radio transmits and stays idle. If the time period is too short,
then the WiFi radio won’t have enough time to accurately estimate
the bitrate and correctly utilize its channel time. In our current imple-
mentation we use a conservative period of 200ms, since that gives an
802.11 WiFi radio enough time to estimate the channel and get nearly
80 packets through even at the lowest bitrate. Hence, DOF-SR uses
the WiFi spectrum for 200ms and then stays away for 200ms. During
the time it uses that spectrum, DOF-SR uses spatial multiplexing on
all 4 antennas.

Packet Transmission: Before transmitting the encoded packet, a
DOF-SR sender transmits a short control packet over a predefined
narrowband control channel to the receiver to synchronize state. This
packet contains information on what subcarriers will be used, and the
antenna weights on the used subcarriers. Then the sender transmits
the packet and waits for an ACK, and repeats the above process.
Caveats: The goal of our current DOF-SR implementation is to show
the potential benefits of a smart PHY that leverages the detection ca-
pabilities of DOF. Hence, it does not tackle MAC layer issues such
as finding a usable control channel, rate adaptation on the used spec-
trum and contention among multiple DOF-SR nodes. The full design
and implementation of a smart radio network stack based on DOF is
beyond the scope of this paper and is part of our future work. How-
ever, the current prototype suffices to evaluate the relative benefits of
DOF-SR over the compared state of the art approaches.

Compared Approach: We compare with Jello [28], which is a smart
radio design that estimates unused spectrum using edge detection and
allocates them among multiple radios for communication. We imple-
ment Jello also on our wideband radio. To make a fair comparison,
since DOF-SR weaves non-contiguous spectrum together, we modify
Jello to also weave non-contiguous spectrum using OFDM. Further,
since we are using spatial multiplexing with 4 antennas, we let Jello
also use the same spatial multiplexing capabilities with 4 MIMO an-
tennas. Thus the only differences between DOF-SR and Jello in our
current implementations are that DOF-SR uses DOF as its detector,
while Jello uses edge detection. Second, DOF-SR with policies P1
and P2 uses microwave oven and WiFi occupied spectrum appropri-
ately, while Jello does not since edge detection cannot detect that it is
a microwave oven or WiFi occupied spectrum. Clearly, both these ex-
tra capabilities for DOF-SR come because of the DOF detector, and
therefore help us quantify the benefits of using DOF.

Metric: We cannot use throughput as the metric to compare the two
designs, since a naive scheme that uses no detection will always
achieve the maximum throughput, but harmfully interfere with all
co-existing radios. The right metric is therefore one that allows us to
visualize the tradeoff between throughput and the harmful interfer-
ence which the smart radio causes to co-existing radios. To evaluate
this tradeoff, we compute two quantities and plot them against each
other:

e Normalized Throughput: We compute the throughput achieved
by DOF-SR and Jello, and normalize them by the through-
put an optimal offline scheme implementing our policy would
achieve. To compute the throughput of the optimal scheme,
we take advantage of the fact that we know the ground truth
of what radios are operating and what spectrum they are oc-
cupying. We also feed it the AoA measurements from DOF,
since we cannot know the ground truth due to unknown mul-
tipath effects. We then use this information to compute the
throughput of the optimal scheme which would use exactly the

unoccupied spectrum, and optimally beamforms its signals in
the microwave occupied spectrum.

e Normalized Harmful Interference: We measure the through-
put of the co-existing WiFi and Zigbee radios (which are sup-
posed to be protected according to our policy) when neither
DOF-SR or Jello are operating, and then when they are operat-
ing. We compute the difference in throughput, and normalize
it by the throughput they achieve when the smart radios are
not operating. This quantity represents the normalized perfor-
mance drop due to the operation of DOF-SR or Jello.

The ideal scheme would have a normalized throughput of 1 and a
normalized harmful interference of 0.

7.2 Evaluation

We evaluate DOF-SR and Jello on the same indoor testbed de-
scribed in Sec. 6.
Method: We randomly place a WiFi sender-receiver pair, a Zigbee
sender-receiver pair and a microwave oven in the testbed. The WiFi
and Zigbee radios are operating on randomly picked non-intersecting
channels, and the bitrate depends on their respective channel condi-
tions. The WiFi and Zigbee links are continuously transmitting pack-
ets. We take a raw 10 second dump using our wideband radios at
the sender and receiver, and provide the dumps to DOF and the edge
detection algorithm of Jello. After their respective computations, we
let the two smart radio systems compute what spectral resources they
are going to use and how. They are then allowed to transmit one after
the other for 50 seconds. For DOF-SR, we transmit three separate
times corresponding to the three policies. We then take the traces at
the receiver, decode the signals and compute the goodputs. Simul-
taneously, we measure the throughput of the WiFi and Zigbee links.
We compute the normalized throughput and the normalized harmful
interference as discussed before. We repeat this experiment for 50
such configurations and plot the points in Fig. 10.
Analysis: Fig. 10 plots normalized throughput on the y-axis and nor-
malized harmful interference to the co-existing WiFi and Zigbee links
on the z-axis for DOF-SR and Jello. We have three plots, correspond-
ing to the three policies that DOF-SR currently implements. The blue
circles are for DOF-SR, and the red crosses are for Jello. Note that
the optimal scheme will achieve a normalized throughput of 1 and
normalized harmful interference of 0.

We first summarize the results:

e With policy PO, DOF-SR achieves an average normalized through-

put of 0.93 and the average harmful interference it causes is
around 0.1, i.e. the throughput of the WiFi and Zigbee links
drop only by around 10%. Jello on the other hand achieves a
normalized throughput of 0.82 and causes a harmful interfer-
ence of 0.44. Thus DOF-SR gets a gain of 15% over Jello
purely from more accurate unoccupied spectrum estimation,
and causes 35% less harm than Jello.

e With policy P1, DOF-SR achieves an average normalized through-

put of 0.93 and causes an average harm of 0.1. Jello of course
cannot use this policy and consequently its average normalized
throughput drops to 0.61, while its average harm stays the same
at 0.44. Thus with the ability to use microwave oven occupied
spectrum, DOF-SR provides a 50% increase over Jello, while
still causing minimal harm to co-existing radios.

e With policy P2, DOF-SR achieves an average normalized through-

put of 0.87 and causes an average harm of 0.32. The reason
for the higher harm is that DOF-SR is now competing with
the WiFi device for half the time on the WiFi occupied spec-
trum. Hence WiFi throughput naturally drops compared to P1,
and harm increases. However this is intended, policy P2 was
designed to be aggressive and steal throughput from the WiFi
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Figure 10: Throughputs and Harm with Smart Radios - More aggressive policies enable higher throughput but also cause greater harm to legacy
systems. WiSpy-SR enables users to decide how aggressive their policy should be.

node. The normalized Jello throughput is around 0.5 with the
harm the same at 0.44. Hence with policy P2, DOF-SR pro-
vides a performance gain of nearly 80% over Jello.

The relative gains over Jello help us understand the gains the in-
creasingly aggressive policies provide to DOF-SR. The gain of 15%
with policy PO is purely from DOF’s more accurate spectrum detec-
tion. Further note that we achieve this gain while causing minimal
harm to the co-existing radios, their average throughput loss is less
than 10%. Next, with policy P1, DOF-SR’s gains increase by an-
other 35% to 50%. This gain comes from DOF-SR’s extra capability
of being able to detect microwave oven signals and their AoAs, and
leverage that information to beamform and null the interference to
increase throughput. Finally, with policy P2, DOF-SR gets a gain of
80% over Jello, i.e. an additional 30% over policy P1. However, the
gains come with the price of increased interference to the co-existing
WiFi radio since when competing DOF-SR is likely to cut the WiFi
throughput, and hence the harm increases to 32%.

8. CONCLUSION

Historically, unlicensed band co-existence has been managed “so-
cially". Different protocols would largely use non-overlapping bands,
and given the low density of radios in a neighborhood, the likeli-
hood of radios stepping on each other’s toes was low. However, with
the increasing number of protocols that operate in the ISM band and
the increasing density of radios around us, this assumption is more
and more on shaky ground. DOF provides the accurate substrate that
future ISM band radios would need to operate and co-exist in this
crowded space. DOF opens up a number of avenues of future work,
including designing a generalized policy-aware smart radio, whose
preliminary prototype design we briefly described in this paper. We
also plan to apply DOF to other applications in network management,
performance diagnosis and indoor localization.
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