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Abstract—Chronically implanted electrode arrays have en-
abled a broad range of advances in basic electrophysiology and
neural prosthetics. Those successes motivate new experiments,
particularly, the development of prototype implantable pros-
thetic processors for continuous use in freely behaving subjects,
both monkeys and humans. However, traditional experimental
techniques require the subject to be restrained, limiting both
the types and duration of experiments. In this paper, we present
a dual-channel, battery-powered neural recording system with
an integrated three-axis accelerometer for use with chronically
implanted electrode arrays in freely behaving primates. The
recording system called HermesB, is self-contained, autonomous,
programmable, and capable of recording broadband neural (sam-
pled at 30 kS/s) and acceleration data to a removable compact
flash card for up to 48 h. We have collected long-duration data
sets with HermesB from an adult macaque monkey which provide
insight into time scales and free behaviors inaccessible under
traditional experiments. Variations in action potential shape and
root-mean square (RMS) noise are observed across a range of time
scales. The peak-to-peak voltage of action potentials varied by up
to 30% over a 24-h period including step changes in waveform
amplitude (up to 25%) coincident with high acceleration move-
ments of the head. These initial results suggest that spike-sorting
algorithms can no longer assume stable neural signals and will
need to transition to adaptive signal processing methodologies to
maximize performance. During physically active periods (defined
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by head-mounted accelerometer), significantly reduced 5–25-Hz
local field potential (LFP) power and increased firing rate vari-
ability were observed. Using a threshold fit to LFP power, 93%
of 403 5-min recording blocks were correctly classified as active
or inactive, potentially providing an efficient tool for identifying
different behavioral contexts in prosthetic applications. These
results demonstrate the utility of the HermesB system and moti-
vate using this type of system to advance neural prosthetics and
electrophysiological experiments.

Index Terms—Electrode recording stability, freely behaving
electrophysiology, neural prostheses, neural recordings.

I. INTRODUCTION

THE development of chronically implantable electrode
arrays for in vivo neural recording in primates (both mon-

keys and humans) has enabled a range of advances, in neural
prostheses [1]–[6] and basic electrophysiology experiments
[7]–[9]. However, most current state-of-the-art experimental
systems require the animal to be restrained, restricting both the
types and duration of experiments. As a result there is limited
data available with which to characterize both the nature and
content of neural recordings over the broader range of time
scales and free behaviors relevant to future prosthetic and
electrophysiology experiments. To make the transition to new
experimental paradigms possible, continuous, long-duration,
broadband [sampled as 30 kS/s (kilosamples per second)] neural
recordings from freely behaving subjects are needed. These
data sets will enable validation of spike discrimination and
decoding algorithm performance in freely behaving subjects,
multiday plasticity and learning experiments, determination
of neural correlates of free behaviors, and direct measurement
of the stability of neural recordings. In this paper, we present
results from the hours of electrophysiological recordings in
monkey with an extensible system, version B (the whole system
was nicknamed HermesB), addressing the latter two questions
to demonstrate the utility of long-duration recording from
freely behaving subjects.

Recording stability is a critical issue for neural prosthetic
systems. Here, we define recording stability, or more specifi-
cally, recording instability, as change in the gross presence or
absence of neural signals off an electrode, time-varying fluctu-
ations of the observed action potential shape, and time-varying
fluctuations in the background noise process on an electrode.
Neural recordings during any given session are considered to be
quasi-stable; there is usually very little change in the numbers of
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Fig. 1. Summary of array lifetime and available data for recording from indi-
vidual, identifiable neurons using a chronically implanted electrode array.

neurons recorded and their action potential shapes during a sev-
eral hour recording session. However, recording instability has
been observed between sessions, likely resulting from the sub-
jects freely behaving in the housing room between sessions [10].
Long-durations data sets will enable us to reconcile the current
assumptions of quasi-stable neural signals during a highly con-
trolled experimental session with the variation in the neural sig-
nals observed between sessions.

Fig. 1 summarizes the significant time scales in the life of
a chronically implanted electrode array. In this paper, we are
only concerned with neural recording stability in the high-yield
recording period during which most experiments are conducted
[11]. Within this window, neural interface systems are poten-
tially affected by recording instability at all three time scales
(short, intermediate, and long). However, current experiments,
with their discrete daily recording periods, are only able to
characterize variations on time scales less than a few hours or
across days. Thus, past studies have only characterized neural
recording stability on short (e.g., seconds or minutes [10],
[12]) and long time scales (e.g., days [10], [13], [14]). Over
very short time scales, observed variations in action potential
waveform shape are a function of the short-term spiking fre-
quency of a neuron [12]; at high frequencies, the waveform
is typically broader (in time) and decreased in amplitude due
to depletion of ion gradients in and around a highly active
neuron. At longer time scales, the variation in spike waveform
is not as systematic, potentially arising from a number of
mechanisms such as neural plasticity, physical movement of
the electrode relative to nearby neurons, chemical degradation
of the electrode tip, or immunological reactions to the implant
[11], [15]. Studying neural stability at intermediate time scales
will enable characterization (along with existing short and long
time scale data) of the full range of time scales relevant to a
neural interface system and may also provide insight into long
time scale phenomena.

Experimental protocols in which the subject is retrained limit
the types of behaviors that can be observed. Long-duration data
sets recorded during free behavior provide neural data associ-
ated with a broader range of behaviors than traditionally pos-
sible. To maximize system performance, prostheses must be
sensitive to behavioral and neural changes across the day and
must react robustly in the face of variable background condi-
tions. For example, such systems should reliably detect different
behavioral contexts such as whether the user is awake or asleep,
or intends to be active or not. If a neural prosthetic attempts

Fig. 2. HermesB block diagram. The neuroport is a custom 96 channel zero in-
sertion force connector which mates to the electrode array connector. The analog
signal conditioning and digitization and storage are implemented on separate
circuit boards to reduce noise and provide modularity.

to decode the users intentions during sleep, it may waste bat-
tery power or cause undesired behaviors. Alternatively, if such
a system does not reliably detect waking periods, the user may
lose the ability to interact with the world. The ability to record
neural activity across a variety of different behaviors and con-
texts will be allowed for characterization of the true neural en-
vironment in which chronic implantable systems will operate.

Long-duration data sets are of considerable interest for
certain multiday electrophysiology experiments. Chronically
implanted electrode arrays can support multiday learning or
plasticity experiments. However, because the time between
traditional daily recording periods is unobserved, there is no
reliable method to track single neurons over multiple days.
Recording systems for freely behaving subjects can allow
researchers to record while the animal is in its home cage, pro-
viding continuous monitoring of neurons identified during an
active experiment. Without such monitoring, it is not possible
to certify that the same neuron is being observed day-to-day
and thereby reliably state that the adaption is not the result of
recording instability in the system.

Recording systems have been developed for freely behaving
animals [16]–[18]. However, these systems often have one or
more of the following limitations: 1) they cannot sample at full
broadband (30 kS/s), potentially missing relevant signal fea-
tures; 2) their battery life or storage capacity is limited to a few
hours or less for broadband recording; 3) they cannot switch
recording parameters, such as input channel, autonomously,
limiting the range of possible experiments; and 4) they are not
designed or tested for portable use with primates.

In this paper, we describe the first generation of a portable
recording system, dubbed HermesB. HermesB addresses the
limitations of previous systems by providing a full broadband,
long-duration, autonomous recording platform for use with
chronically implanted electrode arrays in primates. An ex-
tensible system, HermesB can easily evolve to include new
components such as experimental analog front ends (e.g.,
[19]), making HermesB a useful prototyping platform as well.
Importantly, the system interfaces (although not exclusively so)
with the popular 96 channel electrode array manufactured by
Cyberkinetics Neurotechnology, Inc. (CKI, Foxborough, MA).
This implant has been adopted by many electrophysiology
research laboratories and is now Federal Drug Administration
(FDA) approved for clinical trials with humans [6]. Under-
standing the characteristics of this array and the stability of
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Fig. 3. HermesB components. (a) Illustration of enclosure mounted on monkey’s head along with side profile showing the stack up of the various components.
The space labeled ICS denotes the intracranial space between the dura and skull. This space is larger in humans compared to monkeys and may be a source of
greater recording variability when electrode-based systems transition to the clinical domain. (b) Aluminum enclosure with centimeter ruler. (c) Custom low-profile
neuroport connector. (d) Digital board. (e) Analog board.

signals recorded from it can provide great benefit for translating
the technology to the clinical setting.

To demonstrate the utility of HermesB, we present prelimi-
nary results derived from multiday broadband recordings from
a freely behaving macaque monkey which provide insight into
previously unobserved time scales and behavioral contexts. A
macaque was chosen as it is generally accepted as the ideal
animal model for researching neural prostheses for humans
[1]–[5], [20]–[22]. In particular, we present data quantifying
the stability of neural recordings over time scales from 5 min to
54 h. We address three aspects of recording stability identified
in [15]: the change in mean waveform shape over time, changes
in the background noise process, and changes in the waveform
shape due to electrode movement. We illustrate the ability to
identify contextual periods in our long-duration neural record-
ings and specific attention is paid towards identifying and
understanding systematic differences in firing rate and local
field potential (LFP) during active and inactive periods.

II. METHODOLOGY

A. System Description

The HermesB system is composed of three distinct modules,
a custom 96-pin neural microconnector, an analog signal con-
ditioning module, and a digital signal acquisition unit. A block
diagram of the HermesB recording system is shown in Fig. 2.
The system and its placement on the animal are shown in Fig. 3.
The schematics for the analog and digital modules are shown in
Fig. 13. System specifications are summarized in Table I.

1) System Overview: The HermesB is architected to be a
flexible, modular, extensible experimental platform. Although
capable of interfacing with any electrode array, the current Her-
mesB system is designed to work with the 96-channel chronic
electrode array manufactured by CKI (wired to a CerePort™

TABLE I
HERMESB PARAMETERS

connector pedestal). The HermesB system provides two inde-
pendent neural recording channels and a three-axis accelerom-
eter. The two neural recording channels are selected electron-
ically from a subset of 16 channels, with the particular 16 of
the 96 selected mechanically through interchangeable printed
circuit boards (PCBs). The neural and acceleration data is digi-
tized and written to a nonvolatile type I compact flash card (CF).

2) Neural Connector: The space available on the animal’s
head limits the size of the neural interface connector. Thus, al-
though the electrode array provides 96 channels, only a subset
of channels can be physically accessed at one time. Commer-
cially available connectors are too large for a compact self-con-
tained implementation, requiring a custom design. A low-pro-
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file zero-insertion-force (ZIF) connector was developed, shown
in Fig. 3(c). The new connector is comprised of a mechanical
component which allows access to all 96 electrodes and a set of
three PCBs interface that provide access to 32 channel subsets
(PCBs are interchanged manually). Of those 32, a subset of 16
is selected with a second PCB for input to the analog module.

3) Analog Module: The analog signal conditioning path is
shown in the upper dashed box of Figs. 2 and 3(e) [schematics
are shown in Fig. 13(a)]. The necessary amplification and
filtering is determined by the characteristics of neural signals
recorded from chronic silicon electrode arrays. Neural signals
have strong spectral power content up to 8 kHz, thus a minimum
sampling rate of 15 kS/s is required. In the HermesB system,
as in many commercial systems, we chose to oversample
(30 kS/s) to relax the specifications for the antialias filter.1 All
16 accessible electrode channels undergo immediate impedance
conversion using a unity gain source follower complimentary
metal–oxide–semiconductor (CMOS) op–amp (TLC2254,
Texas Instruments, Dallax TX). The electrodes have a high
impedance (100–300 k ), which must be reduced to control
noise. The desired channels are digitally selected using 8 : 1
analog multiplexers (ADG658, Analog Devices, Norwood,
MA). After the multiplexers, the selected signals are passively
high-pass filtered with a cutoff of 0.5 Hz to remove electrode
dc bias [which would otherwise exceed the analog-to-digital
converter (ADC) dynamic range]. The main amplification stage
uses differential instrumentation amplifiers (Texas Instruments
INA121) with gain of 98.8. Three path-matched references
are provided—two reference signals and analog ground—se-
lectable via a jumper. The two references are platinum–iridium
reference wires that accompany the electrode array and provide
an electrical reference local to the implantation site. Afterward,
the signals were actively low-pass filtered with a cutoff 7.5 kHz
and amplified with a gain of 6.2 (using Texas Instruments
OPA2344). The 7.5-kHz cutoff ensures all of the important
spectral content is preserved, while providing excellent sup-
pression at the Nyquist frequency. Resistor and capacitor values
and filter topologies are shown in the schematics. The total
gain is determined by the ADC dynamic range (2.5 V) and the
maximum amplitude of the local field potential (estimated at
3000 V).

4) Digital Module: The digital module is shown in the
lower dashed box of Figs. 2 and 3(d) [schematics are shown in
Fig. 13(b)]. Neural signals are digitized at 30 kS/s by a 12-bit
successive approximation ADC integrated in the ARM mi-
crocontroller, which is clocked at 22.5 MHz (Analog Devices
ADUC2106). The dynamic range for the ADC is 2.5 V, which
with the total gain of 610 provides an input referred resolu-
tion of 1 V/lsb for the neural signals. The 6 g three-axis
accelerometer (ST Microsystems STM9321) is mounted on
the digital board. Each accelerometer channel is also digitized
by the microcontroller at 1 kS/s and has a nominal resolution

1Rack-mounted commercial systems (which are not power limited) typically
use sampling rates in 30–40-kS/s range. In addition to relaxing the required
order of the antialias filter, the higher sampling rate reduces the need to inter-
polate and align spike snippets during postprocessing. To ensure maximum per-
formance, however, we continue to interpolate and align, even with the higher
sampling rate.

Fig. 4. Sample program for autonomous execution. The initial standby period
is added to allow the experimenters sufficient time to close up the protective
enclosure before recording commences.

of 0.003 g/lsb. The HermesB system is controlled by custom
firmware written in C.

5) Software Control: The firmware includes a simple com-
mand interpreter which allows the user to interact with the
system in real time when tethered to a portable computer (via
RS-232 serial port), as well as write simple sequencing pro-
grams for autonomous execution. A sample program is shown
in Fig. 4. The system is highly configurable. Parameters such
as neural sampling rate and accelerometer sampling rate can be
set to balance sampling precision against data storage capacity.
The experimenter can then specify a sequence of epochs, each
either a data sampling period or quiescent standby period, to
balance data set continuity against battery lifetime.

6) Power Supply: The positive and negative power supplies
are provided by separate lithium ion batteries (positive: LG
Chem ICP633450A1; 49.0 33.6 6.8 mm ; 24.3 g; 4.2 V;
1120 mAh; negative: Varta EasyPack; 43.5 35.4 5.8 mm ;
14 g; 4.2 V; 570 mAh). The 3.3-V digital supply voltage and
2.5-V analog supply voltage are provided by linear voltage
regulators (LTC1844 series, Linear Technology, Milpitas, CA).
The 2.5-V analog supply voltage is provided by a third linear
regulator (Linear Technology LT1961). HermesB draws a
constant 5.3 mA from the negative battery and 38.8, 11.4, and
71 mA from the positive battery during idle upon reset, standby,
and active sampling periods, respectively.

7) Physical Construction: The entire system is housed
in a lightweight, protective aluminum case, shown in
Fig. 3(a) and (b), secured with methyl methacrylate, which
was in turn secured to the skull. The enclosure was sealed
with a watertight gasket and grounded to the monkey to pro-
vide electromagnetic (EM) shielding for the electronics. The
electronics are tightly packed in the case with nonconductive
foam to prevent vibration, shown in Fig. 3(a).2 The entire
system weighs 200 g, which is light enough that no behavioral
differences were observed (ensuring collected data represents
natural behavior).

8) Limitations and Future Work: The tight space, weight,
and power constraints force a number of design limitations on
the HermesB system. However, many of these limitations can

2Thus, we can safely state that our accelerometer records head motion and
not any residual board vibrations.
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be addressed in future designs by leveraging improving com-
mercial-off-the-shelf (COTS) technology, or recently developed
neural recording specific integrated circuits.

The number of neural channels is determined by the foot-
print of an analog signal path. In the present design, only two
channels could fit within the available space (the size of which
is set by the animal’s head). Future versions of the HermesB
system can replace the current discrete analog signal paths with
soon to be available custom integrated circuits (such as [19])
enabling 16 or more channels to be recorded simultaneously
within the same overall footprint. Although not needed for the
current system (since only two channels can be recorded simul-
taneously), more channels than the current 16 can be made avail-
able by replacing the current connector PCB and headers with a
more dense design.

The ability to digitally select among the 16 channels enables
time multiplexing of the neural recording paths. However, the
switching speed is limited by the slow dynamics of the large
capacitor in the 0.5-Hz high-pass filter. More complex circuits
are under development to increase switching speed for the cur-
rent analog signal path. Switching speed is not a problem for
the integrated analog front end approach which uses indepen-
dent per-channel amplifiers and filters.

The system is very sensitive to the write latency of the com-
pact flash card. “Fast” cards intended for use in high-end digital
cameras are required to supply the necessary write bandwidth.
However, the capacity and performance of CF cards is con-
stantly improving allowing the capabilities of HermesB to scale
as well without redesign or remanufacturing. In future designs,
the CF recording will be supplanted by wireless transmission to
eliminate storage limitations and enable real-time interaction.

By utilizing modular construction (separate analog and dig-
ital PCBs) and standard interfaces like CF, the HermesB system
can be easily upgraded. The future work would only require
replacement of the analog module or the substitution of a CF
form factor wireless transceiver for the current flash card. Ad-
ditional ADC channels are available to support new analog data
sources, such as chronically implanted electromyogram (EMG)
electrodes.

B. Recordings and Analyses

Primary data for this report was collected from an adult
female macaque monkey (monkey D) freely moving in a
home cage. All experiments and procedures were approved
by the Stanford University Institutional Animal Care and Use
Committee (IACUC, Stanford, CA). We performed a sterile
surgery to implant a head restraint system. At this time, we
also implanted a silicon 96-electrode array. The electrode
array (Cyberkinetics, Foxborough, MA) was implanted in a
region spanning the arm representation of the dorsal aspect
of premotor cortex (PMd) and primary motor cortex (M1), as
estimated visually from local anatomical landmarks. Surgical
methods are very similar to that described in [9].

HermesB was used to record starting in August 2005. A
number of recording profiles were used. One profile con-
sisted of recording at a 67% duty cycle (5 min of recording
followed by 2.5 min of standby). Total experiment duration

was approximately 54 h, broken up into three 18-h sessions.
The duty cycling is a compromise between memory capacity
and battery life constraints. When recording continuously, the
current memory capacity can be quickly exhausted. At very
low duty cycling, the battery is discharged by the static power
consumption before the CF card is full, despite putting the
microcontroller in standby between recording blocks. Between
each session, the monkey was transferred from the home cage
to the training chair to replace the battery and download the

4 GB of recorded data. During these “pit stops,” recording
was continued with a second smaller CF card and new battery to
maintain data set continuity. Other profiles include round-robin
recording of 4–8 channels over a 24-h schedule. Two neural
channels were recorded per data set in full broadband (0.5 Hz
to 7.5 kHz at 30 kS/s with 12-bit resolution) and a three-axis
accelerometer fixed to the monkey’s head was sampled (1 kS/s
with 12-bit resolution) and stored to compact flash.

Accelerometer data was used from each 5-min data block
to label the blocks as either “active,” “inactive,” or “mixed.”
Blocks in which the maximum accelerometer magnitude
(MAM) was greater than 1.25 g were labeled active, blocks in
which the MAM was less than 1.15 g were labeled inactive,
and blocks that were within these bounds were labeled mixed.
These thresholds were selected to roughly balance the number
of active and inactive blocks with the ratio of day (lights on)
versus night (lights off) blocks (as we expect low activity when
the lights are off), while retaining a 0.1-g margin between
classifications.

The recorded neural signals from each 5-min block were
postprocessed with the Sahani spike-sorting algorithm, which
is an unsupervised clustering algorithm [23], [24]. Spike times
were identified using a threshold determined from data across
the block ( with respect to the RMS noise estimate from
filtered data). A spike waveform, or snippet, comprised of
a 32-sample window around the threshold event, and was
extracted and aligned to its center of mass (COM). Snippets
were projected into a 4-D robust, noise-whitened principal
components space (NWrPCA) and clustered using a maximum
a posteriori (MAP) clustering technique. Well-isolated units
were identified and cross referenced across blocks by hand.
For LFP analyses, broadband data was filtered by applying
Chebyshev type I low-pass and bandpass filters with a passband
ripple of 1 dB. Power spectral density estimates were calculated
using the Welch periodgram method.

C. Recording Stability Analyses

To quantify the stability and consistency of waveforms
recorded from our electrode array, we analyzed data from our
long-duration recordings in several ways. First, snippets from
the entire session were extracted using a threshold and
projected into a single 2-D principal components subspace.
By graphing a 2-D histogram of the snippets in this subspace,
snippets with similar waveform shapes are grouped into distinct
clusters. Movement of these clusters across the session indi-
cates drift in the waveforms. The magnitude of the shifts were
then assessed by examining the actual waveform shapes over
these periods of interest. Second, to observe more continuous
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shifts in waveform shape, we chose a feature of the average
waveform shape, the peak-to-peak voltage , and plotted
this quantity over the course of the recording session. The
was determined on a block-by-block basis by using the Sahani
algorithm per block, providing local estimates of the average
waveform shapes.

Last, to search for potentially abrupt changes in waveform
shape, the neural recordings were analyzed in conjunction with
the accelerometer data. An abrupt change in electrode array
position in the cortex would presumably manifest itself as an
abrupt change in waveform amplitude, as the neuron–electrode
distance would change. If such changes do occur, we addition-
ally presume they are correlated with high acceleration events
such as vigorous head movement. Therefore, we examined the
neural recordings straddling high acceleration events ( 3 g
threshold) and examined the metric around these events.
To help search for events of interest, we computed the local
change of the metric , constructed from
200 snippets before and 200 snippets after the acceleration
event. This allowed us to narrow in on high acceleration events
that coincided with large shifts in action potential waveform
shape.

Single neural units were used for these analyses to observe
the recording stability from our chronic implant. One important
concern is that if a unit is automatically identified by the spike
sorter, large changes in the unit’s waveform shape could cause
the unit to no longer be classified correctly, thereby obscuring
the analyses. Thus, the NWrPCA projections of the selected
units were examined separately by the experimenters to ensure
that snippets were not ignored or improperly included. This
was accomplished by ensuring all units included in the afore-
mentioned stability analyses were well-isolated, high-firing-rate
single neurons, and sufficiently distinct from other signals on
their respective electrodes such that reasonably large variations
would not result in a high rate of misclassification.

III. RESULTS

A. System Verification

Fig. 5 shows example data recorded from our animal subject
freely moving in her home cage. The top traces [Fig. 5(a)] show
the three-axis acceleration of the monkey’s head over a 10-s
period. This data segment was recorded in the early evening
during a period in which the monkey was quite active. Fig. 5(b)
shows 100 ms of broadband neural data recorded from a single
channel on the electrode array. The LFP is easily visible as is
a number of spikes “riding” on top of the LFP. Fig. 5(c) shows
the same data segment filtered with a 250-Hz high-pass infinite
impulse response (IIR) filter, which is the same filter used for
spike sorting.

Data sets, like that shown in Fig. 5, were used as part of
a three step verification process to ensure the accuracy of
HermesB recordings. The steps were as follows: 1) measure
HermesB circuit parameters, 2) compare recordings of the CKI
Neural Simulator made with HermesB and our standard labora-
tory recording system (CKI Cerebus System), and 3) compare
HermesB recordings of neural activity in a rhesus monkey to
recordings made by the fixed laboratory system.

Fig. 5. Sample neural and accelerometer data recorded from a freely behaving
monkey. (a) Accelerometer channels: (blue), (green), and (red). The direct
current (dc) levels on the channels are due to the particular orientation of the
accelerometer with respect to Earth’s gravity vector. (b) Unfiltered broadband
neural data taken from the middle of the recording period. (c) Filtered broadband
neural data.

Fig. 6. Comparison of snippets recorded with CKI Cerebus system (left) and
HermesB (right). (a) Snippets recorded from CKI Neural Simulator. (b) Snip-
pets from four neurons recorded from a single electrode channel in a monkey
comfortably in a chair with head restrained. Snippets have been sorted and
the 10th–90th percentile in amplitude indicated by the colored region for each
waveform.

The measured circuit parameters are summarized in Table I.
The input referred noise, measured with grounded inputs, is
comparable to or better than current state-of-the-art commer-
cial (CKI Cerebus System) and research systems [19]. The CKI
Neural Simulator is a neural recording playback device that
provides 128 channels of simulated neural signals at typical
amplitudes for array recordings (e.g., maximum of 500 V
peak-to-peak for spikes) and similar output impedance to a stan-
dard electrode array. Fig. 6(a) shows a side-by-side compar-
ison of Neural Simulator recordings made with the CKI Cerebus
system (left) and with HermesB (right). The three spike wave-
forms are clearly visible, with comparable levels of noise (mea-
sured as the spread of the curves) between the two systems.
Fig. 6(b) shows a similar comparison for a channel from the
electrode array, recorded from a monkey sitting quietly in a pri-
mate chair. The figure shows the 10th–90th percentile in am-
plitude of action potential waveforms recorded from a single
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Fig. 7. Neural recordings over a period of 48 h (data set D20051008). (a) Histogram of spike waveform projections into a fixed 2-D NWrPCA space. PCA space
determined using 20 000 snippets uniformly selected across the time period. Each plot is the projection of 5 min of data recorded from a signal channel at the
time shown. The green and blue circles denote identifiable single neurons that are analyzed in the bottom panel. (b) Spike waveforms of two neurons for selected
5-min blocks. To better isolate the selected units, spike sorting was performed strictly within a block and irrespective of the data in other blocks. Colored region
indicates 10th–90th percentile in amplitude. Horizontal lines indicate maximum and minimum voltage for each unit. Waveforms shown are recorded from a single
channel using the same signal conditioning path. Note that between 17:44 (day 1) and 07:04 (day 2) , the peak-to-peak voltage of the green waveform increases,
while of the blue waveform decreases, showing that waveform changes cannot be attributed to fluctuations in signal conditioning pathway (connectorization,
amplifiers, ADC, battery power, etc.).

channel on the electrode array. A 5-min recording was sorted
using the Sahani algorithm which classified the spikes as be-
longing to one of four units (indicated by different coloring).
There were four separable units. The spike snippets were pro-
jected into a lower dimensional subspace to verify that they
originated from separable clusters (data not shown). The wave-
forms are very similar between the two systems, indicating that
HermesB is comparable to current state-of-the-art commercial
laboratory equipment. Furthermore, the ability of HermesB to
distinguish between several units on a single electrode builds
confidence that this apparatus can serve to address the scientific
goals posed earlier in this paper.

B. Recording Stability

Fig. 7 shows neural recordings made over the course of 48
h in October 2005. Fig. 7(a) shows a time series of NWrPCA
cluster plots for 5-min data segments recorded at the times
shown. Each cluster corresponds to a single neuron, and the
movement (drift) of the relative distance between these clusters
is readily seen by scanning across the snapshots. The drift of the
clusters in NWrPCA space reflects changes in spike waveform
shape. Fig. 7(b) shows action potential shapes (voltage versus
time) from the same recording period. The colored region
indicates the 10th–90th percentile in amplitude. The lines of
constant voltage provide a reference against which one can see
the large changes in waveform amplitude. These changes in
action potential shape have been previously observed across
once-daily recordings [10]. Here, preliminary results from

these continuous neural recordings of a freely behaving pri-
mate indicate substantial variation in spike waveforms over
intermediate time scales as well.

Fig. 8 shows a more continuous representation of the wave-
form changes over time. Fig. 8(c) shows the normalized peak-to-
peak voltage for the neuron identified in Fig. 8(a), recorded
from a single channel over 54-h periods. The normalized
is simply the mean for each block, normalized by of
the mean waveform for that neuron across the entire 54-h data
set. Variability in waveform amplitude, up to 30% relative to the
mean, is observed over a range of time scales. There is a clear
variation on the order of a single block (5-min recording with
2.5 min of standby) as well as changes on the order of several
blocks, and even several hours. Fig. 8(d) shows the RMS voltage
of filtered neural recordings from the same channel. All spikes,
identified with thresholding at of RMS noise, have been re-
moved from the data set prior to the RMS calculation shown.
Without the spikes, the RMS value should offer a better measure
of the true background noise process [25]. Even after removing
identifiable spikes, the RMS noise is correlated to neural activity
(as measured by mean firing rate).3 These variations ( 5 V)
can partly result from distant spike activity (i.e., neural activity
is sensed by the electrode, but the signal does not rise above the

3The RMS voltage rises on average during the day and falls during the night.
The neural activity, shown for the same neurons in Fig. 11(d) and (g), follows
a similar pattern (higher firing rate during the day when the animal is awake,
less at night). Since nearby neural activity contributes to the RMS noise, the
correlation is expected, as the firing rate of nearby neurons is likely correlated
with the firing of the unit under consideration.
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Fig. 8. Variation in and RMS. (a) and (b) Histogram of spike waveform projections into NWrPCA space from two different electrodes recorded for different
54-h data sets (D20060225.ch1 and D20060302.ch2). Selected neurons are indicated by arrows. These neurons were well isolated. (c) Normalized of
neuron #1 recorded over the 54-h session. (d) RMS noise of recorded channels over same period. (e) and (f) Same two plots second data set. The wide light gray
regions indicate night and the thin pink regions indicate “pit stops,” when the monkey was taken from the home cage and placed in a primate chair to service the
recording equipment.

Fig. 9. Variation in waveform amplitude straddling high acceleration events.
(a) Local change in mean waveform amplitude for 200 snip-
pets before and after 3 g acceleration events (data set D20060225.ch1u1).
(b) Same as previous panel for data set D20060302.ch2u1. Arrows in (b)
indicate events of interest. Similar gray and pink shading as in Fig. 8.

spike threshold because the spike amplitude is to small or the
neuron is too far away). Furthermore, depending on which data
block is analyzed to set the threshold, there can be differences
greater than 15 V for a threshold. Fig. 8(e) and (f) shows
similar results for the neuron identified in Fig. 8(b) which was
recorded from a different electrode during a different 54-h pe-
riod. Similar characteristics have been observed for other chan-
nels (data not shown), indicating that the changes in waveform
amplitude observed in Fig. 8(c) and (e) are not unique to those
channels. The large change observed at 13:00 (day 1) in Fig. 8(e)
is coincident with a vigorous head movement, and may have
resulted from abrupt movement of the array (a possibility dis-
cussed in the following section).

In our analysis of abrupt waveform changes, examination of
recordings straddling high acceleration events show, in nearly
all cases, far smaller changes in waveform amplitude than
those observed over the intermediate time scales of Fig. 8.
For example, Fig. 9(a) and (b) shows the local changes in

for all 3 g acceleration events for the
same two neurons in Fig. 8(c) and (e). Over a recording period
of 50 h for each session, there were 1700 and 800 high
acceleration events for Fig. 9(a) and (b), respectively.

For nearly all events shown in Fig. 9(a) and (b), there is less
than a 5% change in mean waveform amplitude straddling the
acceleration event. There are, however, two events in Fig. 9(b)
that show much larger changes (labeled event 1 and 2). For
the first of these events, the NWrPCA projections of the be-
fore (blue) and after (green) snippets for the events indicated

Fig. 10. Variation in waveform amplitude for events identified in Fig. 9(b).
(a) NWrPCA projection of 200 before (blue) and 200 after (green) snippets
straddling acceleration event overlaid on NWrPCA histogram for all snippets
in 5-min block. Data set D20060302.ch2. (b) Peak-to-peak voltage of mean
waveform amplitude averaged over 200 spikes centered around time point
shown, for the neuron of interest in (a). The red vertical line marks the 3 g
acceleration event. (c) and (d) Similar plots for event 2 in the same data set.

by the arrows are shown in Fig. 10(a). The significant change in
waveform amplitude (1.25 increase) is clearly reflected in the
NWrPCA projection. A second unit on this channel (the other
cluster in the NWrPCA projection) shows a smaller change in
amplitude (only a 1.1 increase) across the same acceleration
event suggesting that the observed variation does not result from
changes in the signal conditioning pathway (not shown). For ex-
ample, a common shift in signal gain would result in equivalent
waveform amplitude change for both units, which was not the
case here.

Fig. 10(b) shows a 200 spike moving average of for the
block in which the event was recorded. The close alignment be-
tween the acceleration event (indicated by the red vertical line)
and the step change in waveform amplitude strongly suggests
that the relationship between the change in waveform amplitude
and the high acceleration event is not coincidental. The profile
is consistent with an abrupt change in array position. Well be-
fore and after the shift, the array was in a stable state, evidenced
by the near-constant waveform amplitude, while at the time of
the large acceleration event there is a step change in the .
Fig. 10(c) and (d) shows similar results for the second event in
Fig. 9(b).

The same analysis was repeated for a larger set of channels
and neurons, compromising 84 h of recording. Many tens of
events showed 10% change in average waveform amplitude
coincident with a 3-g acceleration measurement.
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Fig. 11. Neural and accelerometer data recorded from a freely behaving monkey. (a) and (b) Histogram of spike waveform projections into NWrPCA space from
two different electrodes recorded for different 54-h data sets (D20060225.ch1 and D20060302.ch2). Selected neurons are indicated by arrows. These neurons
were well isolated. (c) Firing rate of the neuron shown in (a) calculated over a 1-s interval using a Hamming window. Red and blue data points were recorded
in time periods labeled as “active” and “inactive,” respectively. Green data points were recorded during unlabeled periods. (d) Accelerometer magnitude over
the recording period downsampled to 100 Hz. (e) LFP power per block, recorded from the same electrode, calculated by integrating the power over the 5–25-Hz
frequency band. (f)–(h) Same plots for second data set. Similar gray and pink shading as in Fig. 8.

Fig. 12. LFP analyses for data set D20060302.ch2. (a) Power spectral density (PSD) recorded during “active” (red) and “inactive” (blue) periods. The thin
lines are the mean PSDs and the standard error of the mean is represented by their thickness. The thickness of the wider translucent lines are the standard deviations.
Each PSD is calculated over 5 min of data and their distributions were taken from data across the 54-h data set for neuron 1. (b) Spectral power recorded during
“active” (red) and “inactive” (blue) periods for the 5–25-Hz frequency band. The dotted line represents the learned classification threshold between “active” and
“inactive” blocks.

C. Neural Correlates of Behavioral Contexts

Fig. 11 shows data from two 54-h recordings. For the neuron
1 data set [presented in Fig. 11(a) and (c)–(e)] there were 438
data blocks. Active blocks, in which the monkey was putatively
moving in its home cage, constituted 40% of the blocks while
52% of the blocks were inactive. From the accelerometer data
[Fig. 11(d)], it is clear that the monkey is more physically ac-
tive during the day, and as expected, firing rates tend to be higher
during these periods. Note that LFP power was generally lower
during these periods as shown in Fig. 11(e). During the “pit
stops” (battery swap periods) the monkey’s head was comfort-
ably restrained in a fixed position (the time duration indicated by
the pink bands); therefore, accelerometer magnitude remained
flat at 1 g. Likewise, few movements were made, and conse-
quently, firing rates were suppressed. These trends were con-
sistent across two data sets collected from different electrodes
and at different times. Neural activity recorded from a second
channel show similar patterns [Fig. 11(b) and (f)–(h)].

As shown in Fig. 12(a), the mean LFP power differed between
“active” and “inactive” periods in the 2–30-Hz and 50–100-Hz
frequency bands. For the majority of this range, the standard
deviations are large relative to the difference in the mean; this
relationship makes power modulation in these bands an unreli-
able classifier for per-block behavior (i.e., “active” versus “in-

active”). However, the 5–25-Hz band was well separated, so the
power in this range can be used to develop a reliable classifier.
This differentiation in LFP power was observed across multiple
channels and multiple days, and is consistent with previous re-
sults showing that 10–100-Hz LFP activity diminished during
movement [26], [27] and increased during sleep [28].

Fig. 12(b) plots 5–25-Hz LFP power versus MAM for each
5-min block. When we classified the activity level of blocks
by thresholding LFP power at 56.5 dB, 93% (131/141) of
“active” blocks and 92% (175/191) of “inactive” blocks were
correctly classified. Results were similar for a second channel
for a different session: 89% (150/169) of “active” blocks and
88% (81/92) of “inactive” blocks were correctly classified with
a threshold of 57.1 dB. These results were obtained by picking
the optimal linear classification boundary using the first 40 ac-
tive and first 40 inactive blocks and testing on the remaining
blocks. Head posting during “pit stops” can create confound
since the accelerometer was held in a fixed position even if the
monkey was otherwise active during these periods. Hence, these
periods were removed prior to the aforementioned analysis.

A similar classification was not as successful when using the
average firing rate over a 5-min block (data not shown). The
mean and variance of the MAM increased as the firing rate in-
creased, but the likelihood of a small MAM (i.e., an inactive
period) remained relatively high even for high firing rates (data
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not shown). Recall that the electrode was implanted in a re-
gion spanning PMd and M1, which is strongly believed to be
involved in motor planning and execution of arm movements
[29]–[34]. If arm movements are made while the head position
remains fixed, firing rates could increase without large accel-
eration events. Also, motor plans can be generated and subse-
quently canceled. Thus, absolute firing rate may not be the best
proxy for activity level.

Given that “active” and “inactive” periods tended to occur
during day and night, respectively, the variations in firing rate
and LFP might be explained, in part, by circadian rhythms
(or direct modulation by light level). One might hypothesize
that 5–25-Hz LFP power is increased and firing rates are
depressed in association with day–night cycles. However, for
blocks within a single activity condition (either “active” or
“inactive”), the differences between day and night for both LFP
and firing rate were at least an order of magnitude smaller than
the difference between “active” and “inactive” blocks during
either time period. This suggests that circadian rhythms do not
heavily influence these effects.

IV. DISCUSSION

In this paper, we report HermesB, a new, self-contained, long-
duration, neural recording system for use with freely behaving
primates. HermesB records dual channel broadband and three-
axis head acceleration data to a high density compact flash card.
Controlled by simple sequencing programs written by the exper-
imenter, HermesB can autonomously change recording channel
and pause recording during the experiment. With a single bat-
tery charge, HermesB can record for up to 48 h (at a low duty
cycle). With short breaks to replace the batteries and compact
flash card, HermesB can record nearly continuously for an in-
definite period.

The high quality of the broadband recordings, despite being
in the electrically noisy environment of the home cage room
(e.g., florescent lights), enables results from HermesB to be in-
tegrated into experiments using the traditional laboratory rig.
There are varieties of applications for such a platform. For ex-
ample, the long-duration recordings, in concert with traditional
experiments, enable important multiday learning and plasticity
experiments, an application not explored in detail in this paper.
Researchers can use HermesB to record during periods when
the animal is outside the rig to provide continuous monitoring
of significant neurons identified during active experiments.

To demonstrate the utility of HermesB, we analyzed the first
set of multiday broadband neural and accelerometer data from
area PMd in a freely behaving primate. In one set of analyses,
we showed how HermesB can be useful in exploring the dif-
ferent neural contexts of a freely behaving subject. Practical
neural prosthetic systems need to work well under varied con-
ditions. We can begin to understand these conditions as con-
texts, defined here as a set of behavioral states and/or goals
(such as active versus inactive or keyboard typing versus free-
hand drawing). A switch in context may change the dynamics
of observed neural signals and a neural prosthetic must be sen-
sitive to these changes.

We examined a very simple pair of contexts—physically ac-
tive and inactive. The monkey moved freely, so we could register

these periods with an accelerometer. For an immobile patient,
however, we would have to determine the intent to be physi-
cally active or inactive. As shown in Fig. 12, LFP is a promising
proxy for activity level. Firing rate can also be used for this pur-
pose. However, LFP power measurement consumes less battery
power than firing rate measurement (a low-power LFP power
measurement circuit is described in [35]), potentially enabling
a power efficient implant “standby” mode when the user is in-
active. When LFP power falls below a defined threshold, indi-
cating that the user is, or intends to be, active, the prosthetic
can switch out of this “standby” mode. Furthermore, using LFP
thresholding could help prevent undesired movements from the
prosthetic system during “inactive” periods.

In future studies, we plan to examine subtler context changes.
Some contexts may require fewer neurons for acceptable perfor-
mance; under these conditions, we can conserve power by dis-
abling a subset of the neural channels. Under different contexts,
users may require different sets of behavioral responses (such as
discrete target selection versus continuous motion) or the under-
lying dynamics of the observed cortical area may change drasti-
cally; we would like to respond to these concerns by switching
the decoding model according to context. By identifying con-
texts and adjusting hardware configuration accordingly, it may
be possible to boost performance in terms of power consump-
tion and decoding accuracy.

We were able to identify natural behavior across multiple
days using accelerometer measurements and correlating these
to neural recordings. Such an ability coupled with more ad-
vanced behavioral monitoring, such as chronically implanted
EMG electrodes [36], [37] or motion tracking, can enable the
exploration of questions that have been unapproachable until
now. Mining large data sets of free behavior to find neural cor-
relates may help us develop new controlled experiments; these
data sets are also necessary for testing and developing neural
prosthetics systems with the ability to operate autonomously
over extended periods of time. Similar investigations are already
underway by other researchers and HermesB can serve as an-
other tool in these types of experiments [38], [39].

Our most novel investigation were our analyses of neural
recording stability. It is in this particular class of experi-
ments that HermesB is most differentiated from other portable
recording systems currently in use. In particular, we addressed
three aspects of recording stability identified in [15] and listed
earlier: the change in mean waveform shape over time, changes
in the background noise process, and changes in waveform
shape due to electrode array movement. Initial analysis shows
significant nonabrupt variation in waveform amplitude and
RMS noise at intermediate time scales, along with step changes
in waveform amplitude coincident with high acceleration
movements of the head. Although some of these instabilities
have been observed previously (or speculated), they have
not been specifically, quantitatively measured. The results
presented here provide preliminary characterization of neural
recording stability, providing a meaningful starting point for
both electrophysiology work and prosthetics oriented postpro-
cessing algorithm development. In the following paragraphs,
we describe some of the potential causes of these variations
and their potential implications for prosthetic systems.
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What might be the cause for these variations in waveform
amplitude? The step changes in waveform amplitude appear,
in some cases, to result from abrupt shifts in electrode posi-
tion caused by head movement. For the nonabrupt variation in
waveform shape and RMS noise, we believe there could be a
number of factors that may play a significant role, including
changes in the cortical environment in response to subject ac-
tivity, including “brain bounce,” changes in intracranial pres-
sure (ICP), and other homeostatic factors. At short-to-interme-
diate timescales (i.e., longer than bursting periods), Lewicki
[15] suggests that array movement, or more specifically changes
in the neuron–electrode distance, might play a role in waveform
shape change. Fluctuations in the ICP could potentially move
the cortex tissue relative to the array (or vice versa). Confirming
such a relationship is beyond the scope of this work, though may
be of interest in future studies.

Since so few of the high acceleration events were coincident
with large changes in waveform amplitude, there is the tempta-
tion to dismiss these events as rare and unimportant. However,
it is important to note that a practical neural prosthesis will have
to operate 24 h a day and 7 days a week. As such, the prosthetic
system must be able to recognize the 3–4 abrupt changes that
might occur in a week, especially as such systems are used for
more ambulatory patients. In fact, in one stretch of 84 h of
recording, we found that there were many tens of events that
showed abrupt waveform change coincident with high acceler-
ation movements of the head. Our results are only preliminary,
however, and will require more data sets and more animals for
comprehensive characterization.

Traditional experimental protocols that utilize discrete, daily
recording periods have provided limited information regarding
neural recording stability. The daily sampling limits the po-
tential characterization of variations to time scales of either
minutes or days. It is important to note that similar variations
were not observed, however, in the hour long broadband
recordings described in [10]. However, those recordings were
made under a more traditional experimental protocol in which
a restrained monkey performed a repetitive reaching task. It is
possible that the more controlled and consistent environment
of those recordings, in contrast to the animal freely behaving
in the home cage, produces a more consistent cortical environ-
ment (e.g., less “brain bounce,” smaller changes in intracranial
pressure, etc.) and thus reduced variation in waveform shape.

We have shown examples from preliminary data sets of sig-
nificant waveform shape and RMS noise variation at all three
time scales. Both types of variation can have adverse effects on
spike-sorting performance, either through the use of an inap-
propriate threshold or outright misclassification. The improved
statistical characterization of the stability of neural recordings
enabled by these new long-duration data sets will allow the prin-
cipled design and evaluation of sorting algorithms. Tolerance to
some instabilities in neural recordings has already been incor-
porated into sorting algorithms. The short-time-scale variations
in spike shape can be addressed by incorporating firing statis-
tics into the spike-sorting algorithm [40] and changes in RMS
voltage (from which the threshold is typically derived) can be

addressed through adaptive thresholding [25]. Long-term vari-
ation, however, may require periodic retraining of the spike-
sorting parameters. With such readjustments, experimenters re-
port the ability to track single neurons across months or even
years (although experimenters cannot be sure the same neurons
are being observed without constant tracking, a capability now
available with HermesB). There does not appear to be a con-
sensus on exactly what retraining period is required. Current
experiments that use discrete daily recording periods naturally
update once per day.

The quality of the trained spike-sorting parameters is para-
mount. Poor classification parameters, and thus poor classifi-
cation performance, will affect all aspects of neural prosthetic
system performance. This does not imply that systems should
retrain arbitrarily often. Frequent retraining can have significant
costs. For advanced spike-sorting algorithms [23], the training
algorithm is computationally expensive. Although our recent
power feasibility study has shown that the power consumption
of the algorithm in [23] is small relative to real-time classifi-
cation, it was assumed that retraining would be required only
every 12 h [24]. If a much shorter training period is required,
the power consumption of training could quickly become signif-
icant, making these advanced algorithms inappropriate for fully
integrated and implantable prosthetic systems.

Sorting algorithms with an adaptive training approach that
continuously integrates over an extended period, similar to the
method proposed in [41], as opposed to discrete retraining,
might be the best approach in light of the instability of neural
recordings. A suitable adaptive algorithm would have an ef-
fective training interval short enough to track variations in
waveform shape and background process, without the cost of
traditional discrete retraining. The apparent sparsity of abrupt
changes in waveform shape due to rapid array movement may
reduce the occurrence of a potential problem scenario in which
abrupt retraining is required. Nonetheless, the presence of
these abrupt changes in waveform shape does suggest that, to
maximize spike classification accuracy, any algorithm would
benefit from the ability to initiate discrete retraining when
step changes in the waveform shape are observed. As these
chronic electrode arrays are implanted in amputees (rather than
tetraplegics), the head will move substantially. It is worthwhile
to note that the space between the brain and the dura is larger
in humans than monkeys. Therefore “brain bounce” and other
nonstationarities may be a larger issue.

At present, HermesB is in active use supporting a number
of experiments, as well as ongoing development to increase
recording capabilities. As CF technology and battery energy
density improve, recording duration will be expanded. Future
generations of HermesB will also incorporate wireless telemetry
and more simultaneous recording channels.

APPENDIX

The schematics for the analog signal path and the digital
module are shown in Fig. 13(a) and (b). For simplicity, the
initial impedance conversion op–amps, reference circuitry, and
power conditioning circuits are not shown.
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Fig. 13. Schematics for (a) analog signal path (i.e., one of the two channels) and (b) digital module. For simplicity, the initial impedance conversion stage (op–amps
in a unity gain configuration) in the analog signal path is not shown. The left most unit is the multiplexer feeding into the high-pass filter, main instrumentation
amplifier, secondary amplifiers, and filter. The reference for the instrumentation amplifier is selected via a jumper and is path matched to the neural signal (i.e.,
passed through an identical high-pass filter). In (b), the left most unit is the three-axis accelerometer, feeding into the microcontroller, along with the neural signals
from the analog board. The microcontroller drives the compact flash interface on the far right. Power conditioning circuits are not shown.
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