
Multi-unit Auctions with Unknown Supply

[Extended Abstract]

Mohammad Mahdian
Microsoft Research
Redmond, WA, USA

mahdian@microsoft.com

Amin Saberi
Stanford University
Stanford, CA, USA

saberi@stanford.edu

ABSTRACT
We study multi-unit auctions for perishable goods, in a set-
ting where the supply arrives online. This is motivated by
its application in advertisement auctions on the internet.

We give a 1
4
-competitive algorithm for computing the op-

timal single price auction assuming that all the agents re-
port their bids truthfully. We use that algorithm to develop
a truthful auction with a constant competitive ratio com-
pared to the optimum offline single-price auction.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis Of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Algorithms, Theory, Economics

1. INTRODUCTION
The main source of revenue for search engines such as

Google, Yahoo!, or MSN is a simple auction through which
they allocate the advertisement space. In fact search engines
run a very busy auction house. Every time a user searches
on a keyword, an auction takes place to choose the adver-
tisements that will be showed to the user along with the
search results.

The goods that are being sold in these auctions – the
search queries – have very interesting characteristics: they
should be allocated to the buyers in a fraction of a second
or they will perish instantly. Moreover, they arrive in an
online fashion and their total supply – the number of times
the users search for a specific keyword – is unknown.

The online nature of these auctions gives rise to several
interesting and challenging theoretical problems (see, for ex-
ample, [12]). In this paper, we study the problem of finding
optimum reserve prices for keywords. In many situations,
having a reserve price, or equivalently reducing the supply

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06,June 11–15, 2006, Ann Arbor, Michigan, USA.
Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

of a good, can potentially increase the revenue. In our con-
text, reducing the supply could be particularly useful to in-
crease the competition for keywords with a few number of
interested bidders.

The problem of optimizing the revenue of auctions using
competitive analysis has received a lot of attention in the
computer science community [5, 6, 7, 8, 10]. These mecha-
nisms were initially motivated by their application in selling
digital goods. They can also be used in scenarios in which
the total supply of goods is fixed. In this paper, We will
extend the framework of those models to the cases where
the supply of goods is a priori unknown.

We will consider the following simple multi-unit auction:
There are n agents each of them interested in a single unit
of a good. The ith agent has a value of ui for receiving one
unit of this good. At any time a new unit of the good might
arrive. This unit must be allocated to an agent immediately,
or otherwise it will perish. The end of the auction is declared
at the end of the day, and the agents are charged at that
moment. Notice that the online nature of our model is due to
the fact that multiple units of the good arrive online. This
is in contrast to other online multi-unit auction problems
previously considered in the literature (see, for example, [1,
2, 3]) where the number of units (usually infinite) is know
in advance, but the buyers arrive online.

Here we have made the simplifying assumption that each
agent is only interested in a single copy of the good. In
practice, agents usually either specify a daily budget limit,
or a limit on the number of units (often more than one)
they are interested in acquiring. We believe that our results
can be generalized to such cases, as long as the portion of
revenue contributed by any single agent is small compared
to the total revenue.

We first study this problem assuming that the agents an-
nounce their utilities to the algorithm truthfully. The ob-
jective is to give an algorithm that charges each winning
agent the same amount, and maximizes the revenue at the
end of the day subject to this constraint. The single-price
requirement is a natural constraint and provides a reason-
able benchmark in settings where the seller does not have
any knowledge about the attributes of the buyers that can
be used for price discrimination (see [2] for a definition of
attribute auctions).

This problem is in fact the online version of optimal om-
niscient mechanism. Assuming u1 ≥ u2 ≥ · · · ≥ un, the
algorithm can achieve a revenue of R(i) = iui by allocating
i units of the good. When a new unit arrives, the algorithm
should decide whether to allocate the unit to the next per-

son and have the total revenue of R(i + 1) = (i + 1)ui+1

or let the good perish and maintain the same revenue. It
is easy to see that R(i) could have several local maxima or
minima with very different values. Using that, we can show
that any deterministic algorithm will have a very small (in
particular, subconstant) competitive ratio.

Interestingly, it is possible to give a randomized algorithm
with a constant competitive ratio for this problem. In Sec-
tion 2, we will give a randomized 1

4
-competitive algorithm

for this problem. In our algorithm, we flip a fair coin to
decide whether or not to allocate the new unit to the next
bidder in certain critical points at which the revenue is at
a local maximum. Roughly speaking, this will ensure that
the algorithm is making the right decision about half of the
times! A more careful analysis shows that the competitive
ratio of our algorithm is 1

4
and it is tight. Using Yao’s princi-

ple, we show an upper bound of e/(e+1) for the competitive
ratio of any online algorithm.

The more difficult problem is to design a truthful mecha-
nism in this setting that has a revenue competitive to that
of the optimal single-price revenue. In Section 3, we use the
idea of random sampling optimal price auctions in [7, 5] to
solve this problem. The idea is to partition the bids into two
subsets A and B randomly and use each subset to compute
the reserve price for the other. The arriving goods will be
offered to the bidders in each subset alternately using the re-
serve price calculated by keeping track of the fictitious run of
our online algorithm (described in the above paragraph) on
the other subset. In case the number of interested bidders
is more than one, we have to adopt a delicate tie break-
ing rule and a non-uniform pricing scheme to maintain the
truthfulness.

2. COMPUTING THE OPTIMAL SINGLE
PRICE AUCTION

In this section, we give a competitive algorithm for com-
puting the optimal single price revenue, assuming that the
utility of the agents are known.

The model. We consider a setting with n buyers, each
interested in a single copy of a perishable good. The util-
ity of the ith buyer for this good is denoted by ui. In this
section, we assume that these utilities are publicly known.
Also, we assume utilities are sorted in non-increasing order
(u1 ≥ u2 ≥ · · · ≥ un). Multiple units of the good arrive on-
line. As each unit arrives, we must decide to either allocate
or discard this unit. The algorithm is constrained to sell the
good at a single price, and is allowed to change the price of
previously sold units over the course of the game. Therefore,
at any point in time, the revenue of the algorithm is kuk,
where k is the number of units sold so far.

Notation. Let OPT(m) denote argmax1≤i≤m{iui} and
OPTR(m) denote max1≤i≤m{iui}. In other words, OPT(m)
is the number of units sold by an optimal single-price auc-
tioneer when the total number of units available is m and
OPTR(m) is the revenue of such an auction.

We use the framework of online competitive analysis to
analyze our algorithms: A (randomized) algorithm is c-
competitive if for any set of utilities and any value of m, the
(expected) revenue of the algorithm after exactly m units of
the good arrive is at least cOPTR(m). The following exam-
ple illustrates the difficulty in solving this problem, and can

Preprocessing:

Sort buyers in decreasing order of their utility
(u1 ≥ · · · ≥ un).

Let m′ := 0 and F := true.

On the arrival of the mth unit:

If m′ < OPT(m) or m′ > OPT(m),

Let m′ := m′ + 1.

Let p := um′ .

Sell the newly-arrived unit to buyer m′ at price p.

Set the price of all previously-sold units to p.

Let F := true.

else if F = true,

flip a fair coin; if the outcome is head, then

Let m′ := m′ + 1.

Let p := um′ .

Sell the newly-arrived unit to buyer m′ at price p.

Set the price of all previously-sold units to p.

else

Let F := false.

Figure 1: The Algorithm BestSinglePrice

be used to show that no deterministic algorithm can achieve
a constant competitive ratio for this problem.

Example 1. Consider a scenario with one buyer with util-
ity u1 = 100 and 999 buyers with utility u2 = u3 = . . . =
u1000 = 1. Any competitive algorithm must allocate the first
unit of the good. When the second unit of the good arrives,
the algorithm must decide whether or not to allocate this
unit. If the algorithm decides to allocate it, then the revenue
suddenly drops from 100 to 2. However, if it decides not to
allocate this unit, then the algorithm has to face the same
decision when the third unit arrives, and so on. If the al-
gorithm never decides to allocate a unit, then after 1000’th
unit arrives, the revenue of the algorithm is 100, while the
revenue of the optimal algorithm is 1000.

The algorithm. We now propose a randomized algo-
rithm (which we call BestSinglePrice). The algorithm keeps
track of three parameters: m, the total number of units of
the good arrived so far; m′, the number of units allocated so
far; and a boolean variable F initialized to true. Any time
a new unit arrives, we do the following: If m′ < OPT(m)
or m′ > OPT(m), then the newly-arrived unit will be al-
located to the next agent (i.e., the agent with the highest
utility that has not received the good yet), and set F to
true. If m′ = OPT(m), then if F is false, we do nothing
(i.e., the newly-arrived unit will not be allocated to any-
one), and if F is true, we flip a fair coin; if it comes head,
we allocate the newly-arrived unit to the next agent, and if
it comes tail, we do not allocate it and set F to false. The
pseudo-code for this algorithm is presented in Figure 1.

Theorem 1. The above algorithm is 1
4
-competitive, i.e.,

for every m, the expected revenue of the solution produced

by the algorithm after m units of the good arrive is at least
OPTR(m)/4.

Proof. Let a1 < · · · < ak be an ordered list of all num-
bers in the set {x : OPT(x) = x, 1 ≤ x ≤ m}. Note
that this definition implies that OPT(m) = ak, and more
generally, for any x ∈ [ai, ai+1), OPT(x) = ai. We define
D := max1≤i<k{ai+1 − ai}. We index the time steps by the
number of units arrived so far, i.e., time t is the time step
at which the t’th unit arrives.

We start by proving the following lemma.

Lemma 1. With probability 1, the algorithm sells at least
ak −D units of the good .

Proof. We prove by induction on i that at the time that
the algorithm has seen exactly ai units, it has sold at least
ai −D units (with probability 1). The basis of induction is
trivial since a1−D = 1−D ≤ 0. Assume at the time that the
algorithm has seen ai−1 units, it has sold x ≥ ai−1−D units.
If x < ai−1, by the description of the algorithm, it will sell
the next ai−1−x units. Therefore, by the time the algorithm
sees ai units, it has sold at least x+min(ai−1−x, ai−ai−1)
units. Since D ≥ ai − ai−1 and x ≥ ai−1 − D, the above
number is at least ai −D.

We now consider two cases based on whether D ≤ ak/2
or D > ak/2.

• Case I: D ≤ ak/2. In this case, by the above lemma,
the algorithm always sells at least ak/2 units, no mat-
ter what random choices it makes. If the algorithm
sells less than ak units, then the price at which it sells
these units is at least the price at which the optimal
algorithm sells, and therefore, the revenue of the algo-
rithm conditioned on it selling less than ak units is at
least OPTR(m)/2.

On the other hand, any sequence of random choices
that causes the algorithm to sell more than ak units
of the good can be matched to a different sequence
with the same probability that causes the algorithm
to sell exactly ak units. This is done by changing the
last random choice in the sequence. This means that
the probability that the algorithm sells more than ak

units is less than or equal to the probability that it
sells exactly ak units. In other words, conditioned on
the algorithm selling at least ak units, the probabil-
ity that it sells exactly ak units is at least 1/2. If
this event happens, the revenue of the algorithm will
be precisely OPTR(m). Hence, the expected revenue
of the algorithm conditioned on it selling at least ak

units is at least OPTR(m)/2 as well. Therefore, the
overall expected revenue of the algorithm is at least
OPTR(m)/2.

• Case II: D > ak/2. First, notice that there can be
at most one i∗ such that D = ai∗+1 − ai∗ . We claim
that every run of the algorithm (independent of the
outcome of random coin flips) will at some time step
t ≤ min(2ai∗ , ai∗+1 − 1) sell exactly ai∗ units. The
reason is that in every step after ai∗ units have arrived,
if the algorithm still has not sold ai∗ units, it will sell
the newly arrived unit with probability 1. Therefore,
at time t = min(2ai∗ , ai∗+1 − 1), the algorithm has

sold at least min(ai∗ , t − ai∗) = min(ai∗ , D − 1) ≥
min(ai∗ , ak −D) ≥ ai∗ units.

Now, consider the first time t ≤ min(2ai∗ , ai∗+1−1) at
which the algorithm sells exactly ai∗ units. In the next
time step, the algorithm flips a coin to decide whether
to sell the t+1’st unit. With probability 1/2, the algo-
rithm decides to sell this unit. In this case, at the end,
the algorithm will sell at least min(ai∗+1, ai∗+m−t) ≥
min(ai∗+1, ai∗ + ak − 2ai∗) = min(ai∗+1, ak − ai∗+1 +
D) ≥ ak/2 units. If the algorithm actually reaches a
point where it has sold exactly ak units, then in the
next step, with probability 1/2 it will not sell the next
unit, hence resulting in the optimal revenue. There-
fore, the expected revenue of the algorithm conditioned
on reaching the point where it sells ak units is at least
OPTR(m)/2. On the other hand, if it does not reach
this point, then the selling price will be at least that
of the optimal algorithm, and since the algorithm sells
at least ak/2 units, it achieves at least half the opti-
mal revenue. Therefore, the overall expected revenue
of the algorithm in case II is at least OPTR(m)/4 (the
extra factor of 2 comes from the probability 1/2 with
which the algorithm decides to sell the t + 1st unit).

The following example shows that our analysis of this al-
gorithm is tight.

Example 2. The following example shows that the com-
petitive ratio of the above algorithm is not better than 1

4
. As-

sume the utilities of the bidders are given as follows: u1 =
1000, ui = 1 for 2 ≤ i ≤ 1001, and ui = 0 for i > 1001.
Assume that the number of units is 1002. When the sec-
ond unit arrives, the algorithm sells this unit with probabil-
ity 1/2. If it decides not to sell this unit, it won’t sell any
unit before the 1001st unit, and it will sell units 1001 and
1002, ending up with a revenue of 3. On the other hand,
if it decides to sell the second unit, then at time 1002, it
will again flip a coin and sells the 1002th unit with proba-
bility 1/2. If this happens, the revenue is 0; otherwise, the
revenue is 1001. Therefore, the overall expected revenue is
1001/4 + 3/2, whereas the optimum is 1001.

3. A COMPETITIVE TRUTHFUL AUCTION
In the previous section, we showed how we can approx-

imate the maximum revenue in a setting where the true
utilities of the buyers are known, and the good must be
sold at the same price to different buyers. In situations
where the true utilities of the buyers are not known in ad-
vance, auctions provide a suitable way to price the good. In
such cases, the challenge is to design a competitive truth-
revealing mechanism for the auction, i.e., a mechanism which
incentivizes the buyers to bid their true utilities, and then
computes a solution which (in expectation) achieves a rev-
enue at least a constant fraction of the optimal single-price
auction. In this section, we present such a mechanism and
prove that it is truthful and competitive.

The mechanism is as follows: First, randomly partition
the set of agents into two sets A and B. Also, fix an arbi-
trary (bid-independent) ordering of the agents in each set.
The units will be allocated alternately to A and B, i.e.,
odd-numbered units can only be allocated to A and even-
numbered units can only be allocated to B. The algorithm

also keeps track of two fictitious runs of the algorithm BestS-
inglePrice of the previous section on A and B (run in paral-
lel). As the (2k− 1)’st unit arrives, we use the fictitious run
of the algorithm on B (by fictitious run, we mean a run of
BestSinglePrice that does not actually allocate the good, but
calculates the price at which the good would have been allo-
cated) to compute a price pk for this unit. Notice that since
the algorithm BestSinglePrice is randomized, pk is actually
a random variable, and also depends on previous pi’s. We
then find the first agent of A in the fixed ordering that has
utility greater than or equal to pk, and has not received the
good so far. If such an agent i exists, allocate the unit to
this agent at price pk (this price is subject to change in sub-
sequent steps), and reset the price of every agent before i in
the ordering that has received the good in previous rounds
to pk.1 If no such i exists, do not allocate the unit, and
reset the price of every agent that is allocated the good pre-
viously to pk. The pseudo-code for this mechanism, denoted
by CompMechanism, is shown in Figure 2.

Theorem 2. The mechanism in Figure 2 is truthful and
has a constant competitive ratio, i.e., for any set of utilities
and any m, the expected revenue of this mechanism after the
arrival of m units of the good is at least a constant fraction
of OPTR(m).

Proof. First, we show that the mechanism is truthful.
Assume, for contradiction, that there is a scenario with a
bidder i that can benefit by mis-reporting her utility. As-
sume, without loss of generality, that i ∈ A. Notice that the
price sequence (p1, p2, . . . , pk) computed from the fictitious
run of the algorithm on the set B is entirely independent
of the bid of i. Since the mechanism does not use the in-
formation about the bid of i in its decisions about bidders
that come before i in the ordering, the allocation and the
price of these bidders must be the same in the truthful and
non-truthful scenarios. This implies that bidder i receives
a sequence of offers (p′1, p

′
2, . . .) that is independent of her

bid. She receives the good as soon as she accepts one offer
(i.e., she sees one offer with p′j less than or equal to her util-
ity), and her price is determined by the last offer she sees.
Thus, if i wins a unit of the good, she has to pay a fixed
amount, independent of her bid. Hence, i cannot benefit by
mis-reporting her utility.

We now prove that the mechanism has a constant compet-
itive ratio. We analyze the expected revenue from bidders
in A. By symmetry, the overall expected revenue will be
twice this amount. Also, without loss of generality, we as-
sume that all bids are distinct (We can always add a small
symbolic value εi to the bid of agent i to make the values dis-
tinct. These values will not change the payment of an agent,
and will only change the allocation if the price is equal to
the bid, hence not impacting the incentive properties of our
algorithm).

1Notice that in order to achieve truthfulness, it is essential
not to reduce the price for agents that are after i in the
ordering. To see this, consider a scenario with two agents
of utility 4 in A and two agents of utility 5 and 3 in B. If
the number of units that arrive is 4 (i.e., 2 for each set),
then our mechanism allocates only one unit of the good to
A. Thus, the second agent in A (in the fixed ordering) has
an incentive to bid a higher value, say 5, to receive the first
unit of the good and not let it perish, knowing (or hoping)
that the price will later drop to 3.

Preprocessing:

Partition the set of bidders randomly into two sets
A and B by putting each bidder in one of the sets
independently with probability 1/2.

Let (π1, . . . , πn) be an arbitrary bid-independent
ordering of buyers.

Let m′
A = m′

B = 0 and FA = FB = true.

On the arrival of the mth unit:

If m is odd,

Let C := A and D := B.

else

Let C := B and D := A.

// compute the sale price p from D:

If m′
D < OPT(dm/2e) or m′

D > OPT(dm/2e),
Let m′

D := m′
D + 1.

Let p be the m′
Dth largest utility in D.

Let FD := true.

else if FD = true,

flip a fair coin; if the outcome is head, then

Let m′
D := m′

D + 1.

Let p be the m′
Dth largest utility in D.

else

Let FD := false.

// offer to C at price p:

for i = 1 to n do if πi ∈ C,

if πi has already received the good,

reduce the price of πi to p.

else

if uπi ≥ p, then

sell the newly-arrived unit to πi at price p.

break out of the “for” loop.

Figure 2: The mechanism CompMechanism

Fix any price vector (p1, p2, . . . , pk) computed from the
fictitious run of the algorithm on the set B (i.e., pi is com-
puted when the (2i − 1)st unit arrives, or in other words
when the fictitious run of the algorithm on B has seen i
units). We define ai (bi, respectively) as the number of el-
ements of A (B, respectively) with utility at least pi. Also,
let kA and kB denote the number of units sold to A and
B, respectively, assuming that the price offered for the i’th
unit is pi (Hence, kA is the actual number of sales to bid-
ders in A, and kB is the final value of the variable m′

B in
the algorithm in Figure 2). Notice that ai’s, bi’s, kA, and
kB are all functions of the sequence (p1, . . . , pk). We have
the following two lemmas.

Lemma 2. If (p1, p2, . . . , pk) is an arbitrary price vector
computed from the fictitious run on B (i.e., the fictitious run
outputs this sequence of prices with non-zero probability),
then kB = bk.

Proof. This follows from the fact that the algorithm
BestSinglePrice never decreases the price to anything below
the “next” bidder’s utility. In other words, bi+1 is at most
bi + 1. (Notice that here we are using the assumption that
bids are distinct). Therefore, at the end, every agent with
bid at least pk receives a unit of the good in the fictitious
run.

Lemma 3. We have kA = k−max0≤i≤k{i−ai} and kB =
k −max0≤i≤k{i− bi}.

Proof. Construct a bipartite graph with bidders in A
on the first side, and units of the good on the second side.
Connect a bidder to a unit if the price offered for that unit at
the time of its arrival is at most the utility of the bidder. It
is easy to see that kA is the size of the maximum matching in
this bipartite graph. By Hall’s condition, this value is equal
to k − maxS{|S| − |N(S)|}, where the maximum is taken
over all subsets of vertices of the second side (i.e., units of
the good), and N(S) is the set of neighbors of vertices in S.
Because of the special structure of this graph, this maximum
is always achieved when S is the set of i most expensive
units, for some i. This gives |S| = i and |N(S)| = ai.
Hence, kA = k−max0≤i≤k{i− ai}. The equation for B can
be proved similarly.

We also use the following lemma, which is a consequence
of the main lemma proved in [5].

Lemma 4. For any price p, let ap (bp, respectively) de-
note the number of agents in A (B, respectively) with bid
greater than or equal to p. Then with probability at least a
constant, for every price p, |ap−bp| is at most min(ap, bp)/10.

Let E denote the event that for every price p, |ap − bp| ≤
min(ap, bp)/10. The previous lemma guarantees that this
event happens with constant probability. Notice that the
event E only depends on the random partitioning of the set
of bidders into A∪B, and does not depend on other random
choices of the algorithm. Now, we fix a partitioning A ∪ B
of the bidders satisfying E , and compute the expectation
of the revenue of the mechanism, where the expectation is
taken over other random choices of the mechanism (other
than choosing A and B). For such A and B, we have

|kA − kB | =

���� max
0≤i≤k

{i− ai} − max
0≤i≤k

{i− bi}
����

≤ max
0≤i≤k

|(i− ai)− (i− bi)|

≤ max
0≤i≤k

{min(ai, bi)

10
}

= min(ak, bk)/10

≤ kB/10.

Now, notice that if the total number of units is 2k − 1
or 2k, and the sequence of prices computed by the fictitious
run on B is (p1, . . . , pk), then our mechanism sells kA units
to bidders in A each at a price greater than or equal to pk.
Therefore, the expected revenue derived from bidders in A is
E[kApk] ≥ 9

10
E[kBpk]. But E[kBpk] is the expected revenue

of the fictitious run on B, which by the result of the previous
section, is at least 1/4 times the optimal offline revenue for
bidders in B, assuming that k units arrive. Therefore, for

any fixed A and B satisfying the event E , the expected rev-
enue from bidders in A is at least a constant fraction of the
optimal single-price revenue of selling k units to the bidders
in B.

Now, assume that the optimal solution (for all bidders)
sells k∗ units and has revenue OPT . If event E happens,
the number of units sold to bidders in B in the optimal
solution is at least 9

20
k∗ and at most 11

20
k∗. Therefore, for

any A and B satisfying E , the revenue of selling at most
k∗/2 units to bidders in B is at least 10/11 of the revenue
derived from the bidders in B in the optimal solution, which
in turn is at least 9/20 of OPT . Therefore, with constant
probability, our algorithm derives a revenue of at least

9

40
× 10

11
× 9

20
OPT > OPT/20.

Hence the competitive ratio of this mechanism is a con-
stant.

4. AN UPPER BOUND USING LINEAR
PROGRAMMING

In this section, we study upper bounds on the competitive
ratio of the maximum single-price revenue problem studied
in Section 2, and give a linear programming-based approach
for computing the optimal competitive ratio on a given in-
stance of the problem. Our upper bound for this problem is
e/(e+1), leaving a gap with the lower bound of 1/4 given in
Theorem 1. We suspect that the upper bound of e/(e + 1)
is indeed the right answer.

Assume we are given the utilities u1 ≥ · · · ≥ un of the
buyers. For every m ≤ n, we let R(m) = mum be the
revenue of selling exactly m units. Let A be an algorithm
for solving the problem. For j ≤ i ≤ n, we define xij as the
probability that A sells exactly j units after it sees the i’th
unit of the good. If the number of units that arrive is m,
then the expected revenue achieved by A is precisely

mX
j=0

R(j)xmj .

Furthermore, for xij ’s to correspond to the probabilities de-
fined above, there must be yij0 and yij1 such that for every
i and j,

xij = yij0 + yij1

and

xij = yi−1,j,0 + yi−1,j−1,1.

Therefore, the competitive ratio of any algorithm A on the
instance u1, . . . , un is at most the solution of the following
linear program.

maximize z

subject to ∀m :

mX
j=0

R(j)xmj ≥ OPTR(m)× z

∀ 0 ≤ j ≤ i ≤ n : xij = yij0 + yij1

∀ 1 ≤ j ≤ i ≤ n : xij = yi−1,j,0 + yi−1,j−1,1

∀ 0 ≤ i < j : xij = 0

∀ 1 ≤ i : xi,0 = yi−1,0,0

x0,0 = 1.

In fact, it is not hard to see that for any feasible solu-
tion of the above program, there is an online algorithm that
achieves a competitive ratio of z on the given set of utilities.
Therefore, the optimal competitive ratio of any online algo-
rithm on the instance u1, . . . , un is precisely the solution of
the above linear program. We call this program the factor-
revealing linear program (see [11] for a discussion about such
programs).

Using this approach, we can compute an upper bound
on the best competitive ratio achievable for this problem by
solving the program 4 on a particular instance. In particular,
if we solve this program on an instance consisting of one
bidder with value M = 3, 4 and a large number of bidders
with value 1, we obtain the upper bounds of 6/7 and 9/11. In
fact, in order to get an upper bound on the competitive ratio,
instead of solving the above linear program, it is enough to
find a feasible solution for its dual. It is not hard to see
that this is essentially the same as using Yao’s principle [13].
Using this idea, we are able to prove the following upper
bound on the best competitive ratio for this problem.

Theorem 3. Any algorithm for computing the maximum
single-price revenue with unknown supply has a competitive
ratio of at most e/(e + 1), where e is the base of natural
logarithm.

Proof. Consider an instance that consists of one bidder
with utility M and an infinite number of bidders with utility
1. The number of units of the good is a random variable with
the following distribution: the probability that this number
is i is proportional to e−i/M max(1, i

M
). In other words, this

probability is equal to

pi = c e−i/M max(1,
i

M
), (1)

where c is chosen so that

∞X
i=1

pi = 1. (2)

By Yao’s principle, the competitive ratio of the best de-
terministic algorithm on this instance is an upper bound on
the competitive ratio of the best randomized algorithm for
the problem. It is easy to see that the best deterministic
algorithm on this instance is of the following form: the algo-
rithm sells the first unit of the good, does not sell the next
k − 1 units, and sells every unit after that. The expected
competitive ratio of this algorithm can be written as follows:

ALGk =

kX
i=1

pi ·
M

max(M, i)
+

∞X
i=k+1

pi ·
i− k + 1

max(M, i)

=

kX
i=1

ce−i/M +

∞X
i=k+1

ce−i/M i− k + 1

M

Therefore, we need to compute the maximum of ALGk

over all k, where c is defined using equations (1) and (2).
Letting M tend to infinity, this value can be approximated
by the following integral expression:

γ := max
t≥0

�Z t

0

ce−xdx +

Z ∞

t

ce−x(x− t)dx

�
,

where c is given by

c ·
Z ∞

0

e−x max(1, x)dx = 1.

Simple calculation gives γ = c = e/(e+1). Therefore, the
expected competitive ratio of any deterministic algorithm
on this instance is at most e/(e + 1). Thus, no randomized
algorithm can guarantee a competitive factor larger than
e/(e + 1) on every instance.

5. CONCLUSION
In this paper, we studied multi-unit auctions for perish-

able goods, when the supply arrives online. We derived a
competitive algorithm for this problem when the utilities
are known, and a truthful mechanism when the utilities are
private information. We showed lower and upper bounds
of 1/4 and e/(e + 1) on the best competitive factor for this
problem (in the case of known utilities). It would be inter-
esting to close this gap. Our conjecture is that the upper
bound is the right answer.

Another interesting direction is to generalize this result to
the setting where there are multiple types of goods. Unfor-
tunately, even defining a benchmark similar to the optimal
single-price revenue in this case becomes a challenge, as it
is related to the envy-free pricing problem defined in [9].

Finally, it is curious to notice the similarity between the
problem studied in Section 2 and the classical ski rental
problem [4]. It would be interesting to find a common gen-
eralization of both problems.

Acknowledgments. We would like to thank Nicole Im-
morlica for helpful discussions.

6. REFERENCES
[1] Z. Bar-Yosef, K. Hildrum, and F. Wu.

Incentive-compatible online auctions for digital goods.
In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002),
2002.

[2] A. Blum and J.D. Hartline. Near-optimal online
auctions. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), 2005.

[3] A. Blum, V. Kumar, A. Rudra, and F. Wu. Online
learning in online auctions. In Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), 2003.

[4] R. El-Yaniv, R. Kaniel, and N. Linial. Competitive
optimal online leasing. Algorithmica, 25(1):116–140,
1999.

[5] U. Feige, A. Flaxman, J.D. Hartline, and R.D.
Kleinberg. On the competitive ratio of the random
sampling auction. In Proceedings of the 1st Workshop
on Internet and Network Economics (WINE 2005),
2005.

[6] A. Fiat, A.V. Goldberg, J.D. Hartline, and A. Karlin.
Competitive auctions and digital goods. In
Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC 2002), 2002.

[7] A.V. Goldberg, J.D. Hartline, and A. Wright.
Competitive auctions for multiple digital goods.
Technical report, Technical Report

STAR-TR-00.05-02, InterTrust Technologies Corp,
2000.

[8] A.V. Goldberg, J.D. Hartline, and A. Wright.
Competitive auctions and digital goods. In Proceedings
of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001), 2001.

[9] V. Guruswami, J.D. Hartline, A. Karlin, D. Kempe,
C. Kenyon, and F. McSherry. On profit-maximizing
envy-free pricing. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), 2005.

[10] J.D. Hartline and R. McGrew. From optimal limited
to unlimited supply auctions. In Proceedings of the 6th
ACM conference on Electronic commerce (EC 2005),
pages 175–182, New York, NY, USA, 2005. ACM
Press.

[11] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V.V. Vazirani. Approximation algorithms for facility
location via dual fitting with factor-revealing LP.
Journal of the ACM, 50(6):795–824, November 2003.

[12] A. Mehta, A. Saberi, U.V. Vazirani, and V.V.
Vazirani. Adwords and generalized on-line matching.
In Proceedings of the 46th Annual Symposium on
Foundations of Computer Science (FOCS 2005), pages
264–273, 2005.

[13] A.C. Yao. Probabilistic computations: Towards a
unified measure of complexity. In Proceedings of the
17th Annual Symposium on Foundations of Computer
Science (FOCS 1977), 1977.

