
on Learning Problems in Mathematics
Wlnter Edibon 1987, Volume 9 Number 1
OCenter for Teach~ngILearn~ng of Mathemahcs

The Buggy Path t o The
Development of Programming

Expertise

Roy D. Pea
Bank Street College of Education

Elliot Soloway
Jim C. Spohrer
Yale University

In the U.S. over a million precollege students take computer pro-
gramming courses each year. and more than 50,000 teachers are
involved with programming instruction. Unlike mathematics educa-
tion, in which decades of research have led to a deepening under-
standing of the development of early number acquisition. algebraic
cognition. and geometric problem-solving, cognitive research on the
development of programming skills is an infant field. Nonetheless. a
broad range of investigations within the last five years. as well as
informal reports from programming educators in practitioner journals
and at national meetings of NECC and AERA, have begun to illus-
trate the host of conceptual difficulties programming novices encoun-
ter in learning to program.

For programming, as in other domains from mathematics to the
physical and engineering sciences, students are engaged through
their learning activities in actively building a knowledge system of
concepts and procedural skills. This domain-specific constructivist
orientation is a pervasive component of modern cognitive science
theories of learning (e.g., Glaser. 1984) and has been applied suc-
cessfully to school learning of various topics in mathematics and
science education (e.g., Carey. 1985; Carpenter, Moser, & Romberg,
1982; Resnick, in press). One phenomenon that such an orientation
is designed to explain is the nature of student "errors" or "miscon-
ceptions." i.e., faulty answers to problems posed in the domain of
study. Although some "errors" are slips in the mechanics of problem
solving, it now appears that most faulty answers arise from systematic
applications of the knowledge a student currently does have to the
problem at hand. If one looks closely enough at the distribution of a

student's answers to problem types, one can see that the student has
what various investigators have called a "theory," "belief system."
or "schema," in terms of which they understand the phenomenon at
hand, and which leads to the answers he or she gives. Such a view
leads to a positive characterization of a student's current under-
standing in terms of the knowledge he or she is utilizing to make
sense of the problem solving activities in computer programming.
While such answers are "errors" from the canonical perspective,
they are sensible generalizations from what the student currently
knows.

By analogy to computer programs that d o not run to specification,
students' noncanonical answers have been called "buggy." These
responses are due to "bugs" in the sense that if the students' knowl-
edge structures used to generate answers are revised, canonical per-
formances can be expected to result.

Our aim in this essay is to provide an overall scheme of interpreta-
tion that can "raise the consciousness" of programming instructors
and others interested in programming education, so that the kinds of
conceptual bugs students develop and manifest in programming can
be "seen" more readily. We will address the following questions:
What are the types of programming bugs in early programs and in
programs of intermediate complexity, and what are their likely
sources? What might instructors d o to identify these bugs and to help
students develop better programming understanding so that these
buys are n o longer manifest? What kinds of knowledge does pro-
gramming instruction need to convey to help students overcome
these buggy tendencies?

As in the case of mathematics learning, many instructors are likely
to be aware of such bugs only tacitly, and may view them as "mis-
takes" on the student's part rather than in terms of systematic appli-
cations of the student's current understanding of programming
concepts and procedures. By making the tacit explicit, we hope to
provide a better definition than is now available of the pedagogical
problem facing programming educators. I f these "bugs" persist, we
expect programming students are more likely to lose interest in fur-
ther developing their programming skills because of their recurrent
failures in making their programs run.

Charting the buggy terrain: An overview

Many research projects are underway in artificial intelligence. cog-
nitive science, and software psychology to identify types and exam-
ples of programming bugs, to trace their sources and mechanisms of
construction by the learner, and to work on defining their optimal
paths to remediation. But little synthesis is available to offer signposts
pointing to bug locations for the observer of students' programming
practices. What we begin to provide in this paper is a sketchmap of

the terrain: what types of bugs might the programming instructor
expect to encounter and what might be their sources? Although such
a map is likely to need elaboration, refinement, and much more
experimental testing, we can already begin to see some patterns of
bug clustering, and get some sense of why novices' early programs
are rife with bugs.

Bugs in program creation and program comprehension will be
surveyed in three major categories. First, we will discuss program-
ming language-independent conceptual bugs, that is. those
which appear to arise in consequence of learning to implement goals
in a formal programming system per se, rather than being due to
specific features of the programming language being learned. Sec-
ondly, we consider the category consisting of knowledge unavaila-
bility bugs, arising from an inadequate knowledge base, and
ranging from semantics, syntax, and plans. to whether students have
a realistic view of flow of both control and data as programs are
interpreted by the computer. Finally, the third category, which com-
prises knowledge retrieval bugs will be outlined. In this category.
students often have available the relevant knowledge for solving a
programming problem but d o not access that knowledge.

Programming language-independent conceptual bugs

The prospective programmer quickly meets what might be called
the "conversational metaphor" for writing programs (Hutchins. Hol-
Ian, & Norman, 1986). One creates a set of instructions according to
the rules of an input language, and the computer interprets these
instructions and executes them according to the programming lan-
guage's conventions for command interpretation. This conversa-
tional metaphor is a powerful one indeed. since the programmer is a
natural language user who has communicated throughout an entire
lifetime in a conversational manner.

But in contrast to programming discourse, various techniques
have evolved among natural language communities for managing
and repairing misunderstandings that arise when the utterances a
speaker offers a s communicative acts are not understood by the
listener. The listener can say "Huh?," ask the speaker questions. or
use any one of a number of other natural language devices (e.g..
elaborations, contradictions) to try to establish the intentions of the
speaker. And often a listener can correctly impute meaning to the
speaker's utterance in a conversation without the speaker ever ela-
borating on what he or she has said - the listener fills the gap, and
the communicative act is successful, conveyed without explicit-
ness . At the extremes of mutual understanding achieved in intimate
communication, truncated speech is the rule, a s Vygotsky (1962)
reminds us in his reference to Kitty and Levin's laconic conversations
in Tolstoy's Anna Karenina.

A central component of such human activities of discourse repair
and communicative interpretation is that the listener has a deep
understanding of what the speaker could mean in a given context.
Typically, the-bo participants in the discourse share a common field
of obiects and events. the conversation has a historv in which certain
knoiledge is assumed as shared, and the speakerkstener pair also
bring a powerful background of interpretive frames that help guide
their activities of speech interpretation and repair in a conversation.

We thus see a major discrepancy between conversation in natural
language, and the writinglreading of programs in terms of a conver-
sational paradigm. Whereas the speaker-listener pair can negotiate
what was meant interactively, in terms of a rich common knowledge
base of intemretive conventions. the "listener" side of the com~uter

task is seriously impoverished. This point of corkrast
between the natural language and programming discourse is a major
hurdle the novice programmer must overcome, and as we shall see,
the solitary path to explicating all of one's meaning to make a pro-
gram run as intended is bug-ridden. In sum, whereas the "debug-
ging" of natural language discourse is socially accomplished, and
often inexplicit, the novice programmer must go it alone in total
explicitness, since the program interpreter requires complete
specification in programming code of the programmer's intent.

What we find in novice programming are a host of bugs that
appear as consequences of the programmer's attempts to general-
ize from natural language to programming discourse. These bugs
are evident in the early programs of novice programmers from ele-
mentary school to adulthood. and they can even appear on occasion
when the programmer has developed expertise.

The pragmatic strategies for creating and understanding natural
language serve them poorly when they begin to program, because
computers interpret their programs of instructions by means of
mechanistic rules. For the programming languages typically learned
by novices (e.g., BASIC, Pascal. Logo), there are deterministic rules
for interpreting commands in a specific sequential order defined by
how flow of control is dealt with in the language. While people are
intelligent interpreters of conversations, programming languages are
not. Humans fi l l the gaps of inexplicitness, helping repair the ambi-
guities of speaker utterances by supplying background knowledge on
what the speaker would be likely to mean in that interpretive context.

This nondiscursive feature of programming thus violates human
conversational maxims, such as the principles of cooperation out-
lined by Grice (1975) and developed in theories of sociolinguistics
and natural language pragmatics (Cole, 1981; Searle, 1983). The
computer cannot infer what a speaker means if she is totally explicit,'
whereas the listener cooperates to make possible an interpretation of
the speaker's talk.

Pea (1986) has outlined three major classes of programming stu-
dents' conceptual bugs that appear to derive from the "superbug" of
negative transfer of such natural language interpretive conventions to

the formal domain of computer programming. The classes of Ian-
guage-independent conceptual bugs that spring from this generaliza-
tion are Parallelism Bugs, Intentionality Bugs, and Egocentrism Bugs.
Unless noted, observations reported below took place in research
with students learning Logo (ages: 8-12 year-olds, 14-17 year-olds)
or BASIC (high school students).

Parallelism Bugs

The parallelism bug appears in various contexts. Its central feature
is that the student assumes that different program lines can be active
or known by the computer at the same time. in other words. in
parallel. One often finds the parallelism bug in programs where con-
ditional statements (IF ... THEN) occur outside loops. For example.
picture a case in which the conditional statement appears early in a
program:

IF SlZE = 10, THEN PRINT "HELLO"
Then, a countup loop comes later in the program: the variable is
incremented by one each time until i t has a value of ten:

FOR SIZE = 1 TO 10, PRINT "SIZE"
NEXT SlZE
Now we may ask what students think the computer will d o as i t

interprets this program. I f they understand the control structure of the
programming language (BASIC), they know that the IF statement is
first evaluated for its truth. If SlZE is equal to ten. HELLO is printed.
and control passes to the next statement. I f the variable is not equal
to ten, nothing is printed, and control passes to the next statement.
After the test of the IF line of the program is executed. that line of
code is inactive. irrelevant to whatever the remaining lines of the
program instruct since control never returns there.

But high schoolers in their second year of computer science faced
with such a problem predicted a surprising result. In one study. eight
out of the fifteen students interviewed predicted that during the loop-
ing process, when the variable SlZE becomes equal to ten, HELLO
would be printed. When explaining why. i t was noted that since
variable SIZE was now equal to ten (i.e.. within the loop) and the IF
statement was "waiting for" the SlZE to be equal to ten. it could now
print HELLO. But in fact, once the IF statement was evaluated and
found false, the computer never read it again. It appears these stu-
dents believe that all program lines are simultaneously active. and
that the program has the intelligence to monitor the action status of
every program line at once. Similar findings have been reported for
novice Pascal programmers, where as many as a third of the college
students mistakenly assumed for simple Pascal programs that the
actions in the while loop were continuously monitored for the exit
condition to become true (Bonar & Soloway, 1983: Soloway. Ronar.
Barth, Rubin, & Woolf, 1981).

We can see in these cases how students are biased by natural
language conversational strategies, where expectations of what will
come later can guide the interpretation of what occurs early in a
conversation or text. Apart from quasiprocedural natural language
such as building plans, spatial directions, and recipes, there is often
no reason not to skip ahead for interpretation. In natural language,
one hardly violates a text's meaning by reading parts of i t out of
order; we even teach the reading strategy of scanning ahead for text
structure. But the strict flow of control for command interpretation
defined for the specific programming language must be adhered to.
To forecast program outcomes, the student must ask only what con-
ditions regarding inputs are in effect a s each line is executed.

Intentionality Bugs

Another class of bugs is revealed when the student attributes goal
directedness or foresightedness to the program. By analogy to the
natural language listener, the novice programmer assumes the com-
puter can go beyond the information given in the code to a program
interpretation. The novice treats the complex system represented by
the programming language from an "intentional stance" (Dennett,
1978), granting it human interpretive capacities.

Kurland and Pea (1985) asked preadolescents judged to be "good
programmers" by their teachers to think out loud as they draw on
graph paper what the graphics pen will draw as the following tail-re-
cursive Logo program is executed. When one types SHAPE 40, the
program draws a large square, a medium-sized square inside it, and
then stops. More specifically:

TO SHAPE: SIDE
IF: SlDE = 10 S T O P
REPEAT 4 [FORWARD: SlDE RIGHT 901
SHAPE: SIDE12
END

The program draws a square with a variable side that, when initial-
ized on the first call, is 4 0 units long. The second line of the program
is a conditional counter with the purpose of stopping the drawing
after two squares are drawn. The third line draws a square, the side
qf which is the length of the variable SIDE (i.e., 40). The fourth line
divides the variable SIDE by two. Since the program begins with a
conditional statement that says when the variable SIDE equals 10
stop, the program draws the two squares (of size 4 0 and 2 0) and
terminates, because the variable SIDE then equals 10.

When predicting the effects of the program's second line, some
students mistakenly suggest that the program will draw a box of size
10. Their explanations reveal intentionality bugs. They have looked

ahead in the program to a familiar programming plan - the third line
that usually results in the drawing of a square: REPEA-T 4 [FOR-
WARD (SOME DISTANCE) RIGHTANGLE TURN (90 DEGREES)].
They then read the IF statement in the second line as i f the program
is commanding the computer to draw a square with sides equal to
ten, because "it will draw a square." or "because it wants to draw a
square." Other students recognize that the variable value at the IF
statement is 40, but then say that the program "sees" the box state-
ment line ahead which i t wants to draw, but has to stop at 10. In each
case, the student imbues the program with the status of an inten-
tional being which has goals, and knows or sees what will happen
elsewhere in itself.

Sleeman, Putnam, Raxter, and Kuspa (1986) describe similar
"deep" errors for high-school novice Pascal programmers after a
semester-long introductory course. Students often erroneously in-
ferred the function of a program from only a few instructions, or even
from the name of the program, assuming they needed to read no
further to find the intention of the program. Kuspa and Sleeman
(1985) report comparably inappropriate, semantically-driven inter-
pretations of procedure functions among Logo learners. Another
common misconception Sleeman et al. found was that a READ state-
ment used with a meaningful variable name causes the program to
select a value based o n the name's meaning from a list of values in
the DATA statement.

Egocentrism Bugs

Whereas intentionality bugs are revealed in comprehending and
tracing what a program will lead the computer to do, egocentrism
bugs emerge in creating a program to d o something. Both bug types
presuppose that the computer can d o what it has not been told to d o
in the program. "Egocentrism" is an overemphasis on one's own
perspective relative to that of others. It is a widespread trait of
children's thinking, in early spatial cognition (Piaget & Inhelder,
1967), communication (Flavell et al., 1968). and other problem do-
mains. Under the strenuous cognitive demands of a new task envi-
ronment, it may also surface a s a characteristic of the performances
of adolescent or adult novice programmers. We are thus not sur-
prised to find egocentric biases in novice programming. Egocentrism
bugs reveal students' beliefs that more of their intention expressing
what they want to accomplish is resident in the programming code
than is actually present. For example, they omit lines of code. varia-
ble names or values. and other key instructions, assuming the corn-
puter "knows" or can "fill in," a s a human listener can. what the
student wishes it to do.

Students revealing egocentrism bugs d o not say outright that the
program knows what to do. Such bugs are virtually perceptual - the
students' current conceptions d o not guide their attention to these
omissions a s causally responsible for the bugs in their programs. A
common problem of this kind is the omission of punctuation or
control characters, and the nonprovision of values for variables (e.g..
Kuspa & Sleeman. 1985) . Lest these omissions be thought of only as
careless work, one can then probe the students to test.this hypoth-
esis, which attributes more significance to these lacunae than clerical
oversight. When one asks students to predict the outputs of pro-
grams they have written with these omissions. they gloss over the
specific commands in a line of Logo code just written, e .g. . asserting
that a line of graphics code draws a square when they have included
a move comand to send the turtle forward but no turn command for
making the necessary right angles:

REPEAT 4 [FORWARD 301
It is as i f they d o not see that the necessary specifications are missing.
They have provided only a program skeleton, trusting that the com-
puter can fi l l the gaps.

Carver and Klahr (in press) found two similar tendencies in their
examinations of 8-year-old Logo programmers' debugging. Children
would make predictions for the graphics turtle that matched their
goal rather than what the program code said, and would skip com-
mands that called other procedures, assuming the turtle would ig-
nore any commands which they did not understand.

Bonar and Soloway (1983) have documented egocentrism bugs
for college students writing Pascal programs, again involving the
student's beliefs that the programming language can know more
about intentions than i t possibly can, given available code. Soloway,
Ehrlich, Bonar, and Greenspan (1982) found novice Pascal pro-
grammers incorrectly using the same variable for more than one role.
e.g., to store a value being read in [read (X)] and to hold a running
total [X: = X + XI. It was as i f the students assumed that the
computer would recognize that the same variable played two differ-
ent roles and could know when to change the role of the variable to
make the program work a s intended. Such multiple-valued variables
are also common conceptual bugs by high school novice program-
mers in BASIC (Putnam, Sleeman, Baxter, & Kuspa, 1985) and
Pascal (Sleeman, Putnam, Baxter, & Kuspa, 1986).

The "Hidden Mind" Superbug

These three classes of language-independent conceptual bugs ap-
pear to stem from what might be called a superbug: the idea that
there is a hidden mind in the machine that has intelligent, interpretive
powers. This benevolent being knows what has happened or will
happen in program lines other than the one being executed: it can go

beyond the information given to help the student achieve his or her
goals in writing the program.

But d o students literally believe that the computer has a mind. can
think, and interpret the unstated? Novice programmers will vehe-
mently deny that the computer has these mentalistic traits. Instructors
are very good at explaining that computers are dumb and can d o
nothing but what they are told. However, students' behaviors when
working with programs betray their denials, for they act as i f the
programming language provides more than a mechanistic route to
intention-expression. The student's default strategy for making
sense when encountering difficulties of program interpretation or
when writing programs is to resort to the powerful analogy of natural
language conversation, to treat the computer as a disambiguating
mind that can understand. The central point is that this analogy is
predictable rather than bizarre behavior, for the students have no
other analog, n o other procedural device than the "person" to which
they can give instructions that are then followed. Rumelhart and
Norman (1981) have similarly emphasized the critical role of analo-
gies in early learning of a domain - making links between the
to-be-learned domain and known domains perceived by the student
to be relevant. But in the case of programming, mapping conven-
tions for natural language instructions onto programming results in
error-ridden performances.

Metacognitive aspects of computer programming

Another language-independent set of conceptual problems that
can arise in learning to program surrounds metacognitive skills.
Brown (1978), Flavell (1976). and Garafalo and Lester (1985) char-
acterize two distinctive components of metacognition. The first con-
cerns "executive skills," that is, those skills involved in regulating and
controlling one's mental activities during problem solving. The sec-
ond component consists of one's beliefs and knowledge about cogni-
tion. Flavell (1979) observed that students prior to middle school
reveal little knowledge of cognitive processing, and rarely monitor
their memory and comprehension. Schoenfeld (1985) found that
college students solving mathematical problems engage in little self-
monitoring of their problem solving processes.

There are various kinds of bugs in learning to program that either
result from or are perpetuated by the minimal use of metacognitive
processes during programming. Difficulties have been documented
for program writing, reading. and debugging. For example. Kurland
and Pea (1985) had middle school age Logo programmers with 5 0
hours of programing behind them hand-simulate a progressively
more complex series of brief recursive Logo graphics programs. pre-
dicting what will be drawn when the program is run. Students often
did not adequately monitor their comprehension of the program. in

that they would skip lines and not check their work. Similar findings
emerged for high school students learning Logo programming
(Kurland, Clement, Mawby, & Pea, in press; Kuspa & Sleeman.
1985). Using a similar method, Carver and Klahr (in press) found
that 8 year-old Logo programmers made many "placekeeping" er-
rors in-both a program comprehension task and a debugging task.
These included redoing commands, skipping commands (especially
those calling other procedures), doing the wrong number of itera-
tions in a REPEAT statement, forgetting the final turn in a REPEAT
statement, and losing track of the current variable value in a recursive
procedure. They note that few students used written placekeeping
marks to note their progress.

One possible pedagogical response to these difficulties is to use
explicit prompts in early stages of programming instruction aimed to
provide explicit metacognitive "scaffolding" for novice program-
mers. For example. in Logo graphics programming, McBride (1985:
also see Hillel, 1985) recommends using strategy prompts such as
"Is a setut, needed?" to block the novice's tendencies to t,av exclu- . ,
sive attention to the object to be drawn while ignoring the necessary
reorientation of the turtle to the appropriate startup state. Such exter-
nal modeling of what would be self-regulatory activity for an expert
programmer is consistent with Vygotskian approaches to instruction
(Rogoff & Wertsch, 1984) and has been applied to early program-
ming (Delclos, Littlefield, & Bransford, 1985).

Metacognition in programming has been little studied to date. and
the above remarks have emphasized self-regulatory components of
metacognition. It is likely that metacognitive activities involving
reflection on the state of one's knowledge and skills in programming
are central to the development of programming expertise. For exam-
ple, careful program documentation should emerge after a program-
mer discovers t h e difficulty in tracing program bugs without it.
Explicit awareness of the strengths and limitations of one's program
design and program debugging strategies should lead one to seek
out help in order to learn to more effective program.

GoalIPlan Merging Bugs: Tackling Complex Programs

In the previous section we described language-independent bug
types that were typically encountered when the students were in the
early phases of learning to program. In this section, we describe a
prevalent type of bug that arises as students are attempting to write
more complex programs. However, we need to first develop some
new vocabulary to describe this new class of bugs.

GoallPlan Analysis: An Example

In moving from a problem to a coded program, there is strong
empirical evidence that experts (and novices) develop an intamedi-

ate level representation that facilitates the mapping of problem to
program. This intermediate representation is referred to as a goall
plan analysis. In the rest of this section we offer an example of a
goallplan analysis. Our method is to present a "mental trace" of an
Idealized Expert Programmer (IEP) writing a program for a problem.

Consider, then, the following problem:
Write a Pascal program that will read a set of integers and output
the average of those numbers. Stop reading input when the
number 99999 is read.

The first task to perform would be to abstract the essential goals of
the problem. Using knowledge about what characteristics of a prob-
lem statement indicate major problem goals, the following two key
goals would be abstracted from the problem specification

Goal: compute average - - - > Goal: output average

This notation indicates that achieving the goal of computing the
average is a necessary precondition of being able to achieve the goal
of outputting the average. Notice that the stopping condition on the
loop is not yet considered. A loop stopping condition is a detail that
can be handled once other decisions about how to realize the main
goals have been made.

Once the major goals have been decided upon. these can be
further transformed. In particular, world knowledge about the
definition of an average would generate the following subgoals:

Subgoal: compute sun of numbers input -
Subgoal: compute count of numbers input -

- - > Subgoal: compute sum divided by count

Again, we have goal enablement: to achieve the subgoal of doing the
division one must compute the sum and compute the count. I t is
important to separate out the types of knowledge being used. The
knowledge about averages comes from world knowledge. and is not
programming specific. However. to straighten out the data types of
the average, count, and sum. programming specific knowledge plus
world knowledge must be used. Programming knowledge suggests
that a count of discrete items should be of type integer. World knowl-
edge, on the other hand. suggests that dividing two numbers might
not necessarily result in a whole number: programming knowledge
would suggest that the result variable be of type real. The problem
statement itself says that the numbers read in are integers.

The next task is to retrieve from memory a programming plan that
will achieve the subgoal of computing the sum of the numbers input.
The activity of summing successively read inputs is one that is used in
many programs, so it is not surprising that IEP has a "compiled"
routine for carrying out such an activity. We have called this pla~i the

running total loop plan The name we use facilitates our understand-
ing of the plan, but the human expert probably retrieves the plan via
key features such a s function. stereotypicality. etc. A representation
of the running total loop plan is given below:

goal: achieve initialize (runningtotal: = 0)
loop until stopping condition = true

goal: achieve input (new value)
goal: achieve update (running total: - running total + new

value)
end loop

The plan is not specific to any programming language. Rather. a form
of goal-language/pseudocode is used. Transforming from a lan-
guage-independent representation into Pascal requires more than
just a knowledge of the syntax and semantics of Pascal: we will see
that it also requires knowledge ot the pragmatics of Pascal.

The running total loop plan has buried in it two variable plans: a
new value uariable plan and a running total uariable plan. The for-
mer plan specifies a variable whose role it is to hold each successive
input value. The latter plan specifies a variable whose role it is to hold
the accumulated sum. The definition of a runninu total variable en-

d

tails the fact that the new value is to be accumulated into it.
Still pursuing the subgoal of computing the sum of the input. IEP

returns to the problem specification to determine what the stopping
condition of the loop is - reading the value 99999. This form of
 loo^ termination is a standard one: i t uses a sentinel value. The
default programming knowledge about sentinel values is that they
should not participate in the actual computation (i.e.. the sentinel
should not be included in the sum). Since sentinel termination is a
standard way to stop a loop, instead of customizing the more general
plan, a specific sentinel controlled running total loop plan may be
retrieved.

The translation of this abstract plan into Pascal requires knowledge
of the "pragmatics" of Pascal. While any of Pascal's looping con-
structs (e.g. , for, repeat, and while) could be coerced into use, knowl-
edge of pragmatics suggests that one construct is better suited than
the others: while is especially suited for an unspecified number of
iterations, with the possibility of terminating before performing any
iterations at all. This sort of knowledge goes beyond syntax and
semantics in that one needs to understand the goal behind each of
the constructs; we have labeled this sort of knowledge as pragmatic
knowledge: knowledge of when to use a construct in contrast to
knowledge of how toeuse it (Soloway, Bonar. & Ehrlich, 1983).

The translation of the goal to get input from the user also requires
additional programming knowledge. While the problem specification
makes no mention of it, a prompt is required before reading in values
from a user in an interactive run-time environment. The additional
prompt goal goes beyond the goals mentioned explicitly in the prob-

lem specification and is based on both programming and world
knowledge. After generating subgoals, retrieving plans. and trans-
forming abstract plans into code the following code would result for
the sentinel controlled running total plan:

total : = 0;
writeln ('please input a number');
read(new);
while new <> 99999 d o

begin
total : = total + new;
writeln('please input a number');
read(new);

end:

Now. IEP turns to the subyoal of counting the number of numbers
read in. The programming plan retrieved for this subgoal is the
counter loop plan, and it is structurally very similar to the running
total loop plan. Transforming the plan to Pascal results in the follow-
ing code:

count : = 0:
writeln('please input a number');
read (new);
while new < > 99999 d o

begin
count : = count 1 1
writeln('p1ease input a number').
read(new):

end

A major problem solving feat is about to take place. IEP realizes
that since each plan assumes the data will be available, the sentinel
controlled running total loop plan cannot occur separately before the
sentinel controlled counter loop plan. The data is coming in as a
stream, and thus can only be read (accessed) once. This understand-
ing suggests to IEP that the two looping plans need to be combined.
This is in effect an optimization for the computer's benefit, since the
more natural human procedure is to make two separate passes over
the data. Here we see for the first time the need to integrate two
plans. We d o not mean "compose" two plans; rather, we see that
two plans need to b e woven together into one piece of code. In order
to weave together these two plans, we claim that IEP must "decom-
pile" both plans and reason causally about the elements of each
plan. The following are examples of the type of reasoning that IEP
needs to carry out in order to be assured that the two plans can be
integrated:

IEP must realize that the goal of each loop plan is the same:
namely, process just one item on each iteration.
IEP must realize that i t is OK to put the counter update any-
where in the loop for the following reason: the flow of data in
the loop is such that the counter update will not interfere with
any calculation in the loop.

The reader may rightfully point out that if IEP is really an expert
then a compiled looping plan with both sum and count would al-
ready exist. Thus, the integration scenario just described would not
take place. However, for the following reasons we felt it to be criti-
cally important to include, in a discussion of the knowledge used in
programming, a description of the process of integrating two plans:

In the initial creation of a looping plan that did combine both the
summing and counting actions, the expert would most likely
have had to go through the sort of reasoning process outlined
above.
We felt it instructive to see how plans are integrated together.
since most programs are not built from totally standard compo-
nents that can simply be composed together; some new con-
struction must take place.
We wanted to illustrate the legitimate use of "double duty," i.e.,
a situation in which one piece of code is used for two purposes.
The illegitimate use of a double duty can lead to code that is
hard to understand (Soloway & Ehrlich, 1984).
As we shall see in more detail in the next section, many bugs in
novice programs appear at just those points in the design of the
program that requires the integration of two plans. Some bugs
arise because the integration of plans is done incorrectly
(Spohrer, Soloway, & Pope, 1985), and other times because
integration was necessary and the novices failed to d o it (John-
son et al., 1983).

Another issue with respect to integrating the two loop plans con-
cerns knowledge of programming discourse rules - rules of style.
While on theoretical grounds the counter update and the running
total update could go anywhere inside the loop, in practice they are
grouped together. To d o otherwise would violate a rule of program-
ming discourse that says group code together that has a common
role. Both the counter plan and the running total plan have subgoals

?hat correspond to the role of updating a variable inside the loop, so
they should be grouped together.

After achieving the subgoals of computing the sum and count of
the numbers input, the subgoal of dividing the sum by the count is
enabled. To prevent a run-time error of division by zero, program-
ming knowledge gives rise to another implicit subgoal: guard the
average calculation. The division and the output it enables must be
nested inside the division by zero guard. Integrating the output plan

with a division by zero guard plan requires that something be printed
out when a division by zero might occur. Thus, what appears to be a
simple plan to output a value becomes more complicated because
another print statement is needed in the leg of the guard plan in
which the error might occur:

count : = 0;
total : = 0;
writeln('p1ease input a number');
read(new);
while new <> 99999 d o

begin
total : = total + new;
count : = count + 1:
writeln('p1ease input a number');
read(new);

end;
i f count > O then

begin
average : = total/count;
writeln('average is ', average);

end
else

writeln('n0 valid inputs; no average calculated'):
end.

As presented above, the program is now complete: it will solve the
problem i t was intended to solve.

Bugs Arising From GoalIPlan Merging

The vocabulary developed in the previous section provides us with
important tools for describing classes of novice programming bugs
(Spohrer. Soloway, & Pope. 1985). In particular. we have found that
a large percentage of bugs arises because students have difficulty
coordinating and composing plans to achieve goals (Spohrer & So-
loway 1986a, 1986b). Essentially, the students seem to understand
the pieces that make up a program. e.9.. the language constructs
themselves, but they have difficulty in putting the pieces together.

Merging is a complex plan composition strategy. Put simply. merg-
ing occurs when novices decide to achieve two different goals with a
single, integrated plan. Often novices think that the merged plan will
be shorter and more efficient than the unmerged. separate plans.
Possibilities for merging arise when two goals share some similar
subgoals. Unfortunately, there are often some differences as well as
similarities, and novices may over-look the differences. Thus. one
type of bug that can result from merging is subgoal d r o p o u t bugs.

For example, consider the Tax Problem in which multiple records
of information had to be processed (giving rise to an outer loop goal),
and when each record of information was input it had to be checked
for errors (requiring a valid data entry goal). The outer loop goal
would be responsible for asking the user "Do you have more tax
data to be processed?", and the input record consisted of marital
status and income information for an individual.

To see why these two goals present an opportunity for merging we
must examine the subgoal structure of each goal. First, consider the
three subgoals of a sentinel controlled outer loop goal: (1) an initial
input of the loop control variable before the while loop, (2) a test of
the loop control variable to see if i t is the sentinel value, and (3)
inside the loop at the bottom the input must be read in again. These
three subgoals are very similar to the three subgoals of a standard
valid data entry goal, which ensures that input read into a program is
valid. The three subgoals of a valid data entry goal are: (1) an initial
input that reads in a value, (2) a test of the value to determine if it is
valid or invalid (usually a while-do loop). and (3) a retry input inside
the loop in case the input value is invalid. A language independent
representation of the plans of these two goals is shown below:

plan for sentinel controlled outer loop goal
goal: achieve get first value of loop control variable
loop until value = sentinel value

...

goal: achieve get next value of loop control variable
end loop

plan for valid data entry goal
goal: achieve get first value of input variable
loop until value = valid value

goal: achieve get new value of input variable
end loop

Note that both goals deal with similar tasks - loops - and that the
three subgoals of each of the goals are also similar in function.

When the two goals are achieved using separate plans, the valid
data entry goal is achieved inside the outer loop goal. However,
when novices merge the goals they create the buggy plan shown
below:

01 program Tax (input, output);
02 var Status: char; Income, Tax; real;
0 3
0 4 begin

end

The bug in this merged plan is that the retry subgoal of the valid data
entry goal is not achieved - the subgoal has been "dropped-out".
In other words, instead of asking the user to retry entering valid data,
the program will just skip the loop when an illegal value of marital
status is entered. The novice was able to capture most, but not all, of
the functionality of the two goals in the merged plan.

There are many explanations for why novices make this bug when
they merge: losing the final subgoal of valid data entry could be an
undetected loss of information from working memory due to the
overload imposed by merging (see Anderson & Jefferies. 1985).
maybe the novices were aware of the bug but rationalized away the
need for the subgoal or changed the over-all goal since merging
seemed more efficient and required less code ("deplanning": Noss.
1984), or maybe the novice thouqht the retry subgoal had been
achieved by the "get next value" of the loop control variable sub-
goal, since it would "get the next value if it were needed."

Perhaps the student consciously carried out the merge on the two
goals. When students try to produce efficient, optimized code. they
often will consciously attempt to merge goals. However. in this in-
stance we think it more likely that the student simply did not distin-
guish enough subgoals - and may have been lured into this way of
thinking just because the two goals had similar subgoals. Finally, of
the 43 college subjects who attempted to d o the Tax Problem. 36
attempted to merge the main, sentinel loop, with the marital status
process; of those 36 only 4 were able to d o so correctly on their first
syntactically correct program. Thus, students have a propensity to
attempt merging, and moreover, they have a poor track record for
being able to carry it out.

We refer to the above situation a s a bug prone pattern. That is. we
have observed a "merge subgoals, drop out last subgoal" bug in
other programs. In particular, whenever a program to be solved has a
structure where subgoals of two goals are similar, there is a great risk
that students will commit a merging bug, where the last subgoal is

dropped off. Because opportunities for merging depend on similar
subgoal structures and not any particular language constructs. bugs
that result from merging are language independent. Furthermore,
the process of merging goals is not limited to just programming.
When one needs groceries. one does not make a separate trip to the
store for each item, but instead merges each of the separate trips into
a single integrated plan. The common subgoals of going to the store
and returning from the store permit merging. However, i f the store
did not supply shopping bags to carry the grocery items all at once,
then the merging might have led to a bug (i.e., too much to carry).
We are in the process of looking to see i f similar bugs arise in non-
programming situations.

Language-dependent conceptual bugs

In this section, we describe two major sources of bugs, and offer
examples for each of a number of different categories of bugs that
have been observed. The distinction we will make - between bugs
due to knowledge unavailability and bugs due to knowledge
inaccessibility - is a common-sensical one. Sometimes students
d o not have knowledge they should, and the bugs we see in their
programs derive from gaps in their understanding. On other occa-
sions, problems with students' programs derive from knowledge
inaccessibility bugs, where sometimes students have available
the relevant knowledge for solving a programming problem but d o
not access it.

Knowledge unavailability bugs

The varieties of knowledge unavailability are as vast as the varie-
ties of knowledge, but a brief list is nonetheless helpful. Students may
lack knowledge of the programming language syntax, such as how to
use primitives, how to assign and use variables (Hillel & Samurcay,
1985; Kuspa & Sleeman, 1985) , and how to define and call proce-
dures (Sleeman, Putnam, Baxter, & Kuspa, 1986).

Students may lack knowledge of the semantics of the program-
ming language commands. For young students of graphics program-
ming in Logo, these difficulties can involve spatial cognition and such
bugs as turning from the absolute angle rather than the relative angle
specified by the turtle's position (Carver & Klahr, in press: Fein &
Scholnick. 1985; Gregg. 1978; Roberts, 1984). Sometimes semantic
errors are due to a confusion of the technical meaning of the pro-
gramming language command and its natural language meaning
(e.g., S T O P and END in Logo: Kurland & Pea, 1985. Kuspa &
Sleeman, 1985; WHILE in Pascal: Soloway et al., 1981) .

Students may not have available an adequate mental model of the
information processing that transpires between the input of a pro-
gram and its output. In all languages studied. students appear to
construct noncanonical models of how computers interpret pro-
grams. Kurland and Pea (1985) found that child Logo programmers
interpreted embedded recursion as a looping construct. Bayman and
Mayer (1983) describe bugs in novice BASIC programmers' mental
models of flow of control and data. These included fallacious beliefs
that " INPUTA means the letter A is input and stored in memory.
reading of conditional GOTOs as unconditional GOTOs. confusing
LET assignment statements with equation storage in memory. and
confusions of "PRINT C" and "PRINT 'C' ". The assignment confu-
sions lead some BASIC students to argue that counters (i.e.. a com-
mon programming plan expressed as "LET C = C + 1") are
impossible (Putnam. Sleeman. Baxter. & Kuspa. 1985)! 70 over-
come such problems, DuBoulay. O'Shea. and Monk (1981). Mayer
(1984), Mioduser, Nachmias. and Chen (1985). among others. have
recommended explicit training with a concrete model showing the
important computer locations (e.g. . mcmory spaces. input stack).
visible enactments of program statements that involve transactions of
control and data, and student "role-playing" of command interpre-
tation by the computer.

Students may lack an understanding of programming discourse.
those tacit rules that distinguish programs that (only) run from those
run but are also well-structured so that they communicate well to
program readers (Joni & Soloway. in press). Students may also 110i
know the types of recurrent plans that are embodied in programs for
that language, such as numeric plans like the KUNNING-TOTAL
LOOP PLAN in Pascal (Soloway & Ehrlich. 1984). or plans in LISP
with lists as their main data type (Soloway. 1985).

Furthermore, students may lack the knowledge of program struc-
ture required for using program cues to narrow their search space
during debugging for the source of a programming bug. This contrib-
utes to the common haphazard or linear approach to debugging
observed by researchers and programming instructors (Carver &
Klahr, in press; DuBoulay, 1986: Kurland et al.. in press: Sleeman ct
al., 1986), and the "deplanning" phenomenon. whereby students
modify their goal in preference to debugging their program (Noss.
1984).

Knowledge ir~accessibility bugs

Novice programmers may often have knowledge to briny to bear
on a programming problem but not use it. Among other reasons. this
may be due to the storage of that knowledge in such a form that its
applicability to the problem at hand is not obvious. For example.
many young Logo progt-ammers will use a REPEAT coninland for

squares (a common activity) but do not utilize it for other multisided
figures. Perkins and Martin (1985) have called this phenomenon
"fragile knowledge. "

Analogical reasoning is central to good programming, since one
often has worked on a similar problem before. and a retrieval of what
was done in that case can significantly contribute to success with the
current problem. One possible pedagogical strategy is to encourage
analogical thinking in programming by example. An instructor could
exemplify a newly-introduced command or programming plan
across a wide range of discrepant problem contexts. thereby dimin-
ishins the likelihood that a student will encode the command or ~ l a n -
as specific to one type of problem. Such undergeneralization is a
general feature of procedural learning by novices (Langky. 1985).
Students could also be encouraged to share programming code and
plans, discussing in a group the broader applications of selected
student ideas.

Another case of knowledge inaccessibility is the well-known ten-
dency of child Logo programmers to write s imple programs using
Logo primitives rather than hierarchically organized superprocedures
that call other procedures, even after examples of superprocedures
and discussions of their merits for saving work have been offered
(Hillel, in press; Hillel & Samurcay, 1985; Kurland, Pea, Clement. &
Mawby, in press; Leron. 1983; Pea, 1983). The reasons for this
preference for nonmodular. "linear programming" (Kurland. Clem-
ent, Mawby, & Pea, in press) are not currently understood.

Conclusions

We have canvassed the available literature on the kinds of concep-
tual bugs students manifest as they learn to program. Examples were
offered of language-independent bugs arising from a "hidden mind"
superbug that overgeneralizes the human conversational metaphor
to programming, of "goal-plan merge" bugs, and of bugs due to
insufficient metacognitive activity during programming. We also
described language-dependent bugs due to either knowledge un-
availability or lack of knowledge retrieval. Beyond pedagogical rec-
ommendations made within these sections, what are some further
implications of these findings for programming instruction?

Once programming instructors realize the prevalence and syste-
maticity of student bugs in understanding programming. the need for
new kinds of programming instruction become apparent. We believe
bug persistence is in part linked to the infrequency with which they
are explicitly confronted by students and teachers. Teachers can bet-
ter snare bugs if they adopt research methods. These include having
students do hand-simulation (line by line) of the predicted outputs of
programs designed to elicit specific misunderstandings, debugging
activities with the same aim, and think-aloud explanations of a pro-

gram (defined to include a target programming construct) as it is
being written by the student. Having students in a clinical interview
situation explain what output will be produced by relatively short (5
to 15 line) programs is the technique used by many programming
cognition researchers, and could also be used to advantage by pro-
'gramming instructors - both as a diagnostic tool for learning and as
an expository method in teaching.

There are additional pedagogical complexities in addressing the
"hidden mind" superbug: The programmer does not have to specify
every operation to be carried out, since programming languages
automatically carry out many things (e.g., physical address man-
agement; stack storage allocation). So the novice programmer has to
learn a subtle lesson: some meanings do not need to be explicitly
expressed in his or her code, while others do. Since the boundaries
of required explicitness vary across programming languages. the
learner must realize the necessity of identifying in exactly what ways
the language he o r she is learning "invisibly" specifies the meaning
of code written.

More research is needed o n how to help students see that com-
puters read programs through a strictly mechanistic and interpretive
process. There is some evidence that this goal can best be achieved
by providing "virtual machines," i.e., clear physical models (Du-
Boulay. O'Shea. & Monk, 1981) or computer simulated physical
models (Mioduser e t al., 1985) that show how the processing of
control and data is regulated by the specific programming language
under study. These explanations can be supported by explicit think-
aloud examples of how the f a d e programmer thinks about and
makes decisions with respect to program creation and program un-
derstanding, similar to those that have been effective for written
language understanding (Palincsar & Brown, 1984) .

Finally, the programming language-independent goal-plan merg-
ing bugs that have been identified point to the need for new kinds of
knowledge programming instructors should explicitly aim to convey.
Students need more help learning that goals and plans are impor-
tant intermediates between the problem statement and the comple-
ted program, they need to be taught recurrently-useful plans. they
need to learn about the pragmatic rules for programming discocrrse.
and they need to monitor and test subgoal satisfaction when integrat-
ing programming plans - recognizing this common situation as a
"bug prone pattern." By making the tacit explicit. and going beyond
today's primary emphasis on teaching syntax and semantics of pro-
gramming languages to the goal-directed and planful aims of pro-
gramming action, we can expect more effective understanding and
practices of programming.

Acknowledgements

The research discussed in this article by the first author and col-
leagues was supported by the Spencer Foundation and the National

-25-

Institute of Education (Contract No. 400-830016). The studies by
the second and third authors and their colleagues were supported by
the National Science Foundation under Grant MDR-8470150.

FOOTNOTES

1. Several counterexamples are Teitelbaum's DWIM (Do What I
Mean) systems added to the Interlisp programming environment.
which corrects spelling errors by using syntactic context. and com-
mercially available syntax-correcting compilers. Such painless error
revisions are the subject of feverous debates among programmers.

References

Anderson, J .R. , & Jefferies, R. (1985). Novice LISP errors: Unde-
tected losses of information from working memory. Human Com-
puter Interactions, 1 (2) , 107-131.

Byman. I?, & Meyer, R.E. (1983). A diagnosis of beginning program-
mers' misconceptions of BASIC programming statements. Com-
munications of the ACM, 26(9), 677-679.

Bonar, J . , & Soloway, E. (1983). Uncovering principles of novice
programming. Paper presented at the 10th Annual Symposium
SIGPLAN-SIGACT o n Principles of Programming Languages,
Austin, TX.

Brown, A.L. (1978). Knowing when, where, and how to remember:
A problem of meta-cognition. In R. Glaser (Ed.), Advances in
instructional psychology (Vol. 1) (pp. 77-165). Hillsdale, NJ: La-
wrence Erlbaum.

Carey, S . (1985). Conceptual change in childhood. Cambridge, MA:
MIT Press.

Carpenter, TI?, Moser, J.M., & Romberg, TA. (Eds.). (1982). Addi-
tion and subtraction: A cognitive perspective. Hillsdale, NJ: La-
wrence Erlbaum.

Carver, S.M., & Klahr, D. (in press). Assessing children's Logo de-
bugging skills with a formal model. Journal of Educational Com-
puting Research.

Cole, I? (1981). Radical pragmatics. New York: Academic Press.
Delclos, VR., Littlefield, J . , & Bransford, J .D. (1985). Teaching think-

ing through LOGO: The importance of method. Roeper Review,
7(3), 153-156.

Dennett, D. (1978). Brainstorms. Montgomery, VT: Bradford Books.
DuBoulay, J.B.H. (1986). Some difficulties of learning to program.

Journal of Educational Computing Research, 2(1), 57-73.
DeBoulay, J.B.H., O'Shea, T , & Monk, J . (1981). The black box

inside the glass box: Presenting computing concepts to novices.
International Journal of Man-Machine Studies, 14, 237-249.

Fein, G., & Scholnick, E. (1985, June) . Computing space. Paper
presented at the Fifteenth Annual Symposium of the Jean Piaget
Society, Philadelphia, PA.

-26-

Flavell, J.H. (1976). Metacoynitive aspects of problem solving. In
L.B. Resnick (Ed.) , The nature of intelligence (pp. 231-235). Hills-
dale, NJ: Lawrence Erlbaum.

Flavell, J .H. (1979). Metacognition and cognitive monitoring. Arneri-
can Psychologist, 34, 906-91 1.

Flavell, J .H., Botkin, PT, Fry, C.L. , Wright, J .W. & Jarvis, PE.
(1968). The development of role-taking and communication skills
in children. New York: Wiley.

Garafalo, J . . & Lester, EK. , Jr. (1985). Metacognition, cognitive
monitoring, and mathematical performance. Journal for Research
in Mathematics Education, 16, 163-176.

Glaser, R. (1984). Education and thinking: The role of knowledge.
American Psychologist, 39, 93- 104.

Gregg, L.W. (1978). Spatial concepts, spatial names, and the devel-
opment of exocentric representations. In R.S. Siegler (Ed.) , Chil-
dren's thinking: What develops? (pp. 275-290). Hillsdale, NJ:
Lawrence Erlbaum.

Grice, H.P (1975). Logic and conversation. In I? Cole & J .L. Morgan
(Eds.), Syntax a n d semantics, Vol. 3: Speech acts (pp. 41-58).
New York: Academic Press.

Hillel, J. (1985). On Logo squares, triangles and houses. For the
Learning of Mathematics, 5(2), 38-45.

Hillel, J . (in press). Mathernatical and programming concepts ac-
quired by children, aged 8-9, in a restricted Logo environment.
Recherches en Didactique des Mathematiques.

Hillel, J. , & Samurcay, R. (1985, October). Analysis of a Logo envi-
ronment for learning the concept of procedures with variable
(Tech. Rep.). Montreal, Quebec: Concordia University, Mathe-
matics Department.

Hutchins, E.L., Hollan, J.D., & Norman. D.A. (1986). Direct manip-
ulation interfaces. In D.A. Norman & S.W. Draper (Eds.), User-
centered system design: New perspectives in human-computer
interactions (pp. 87-124). Hillsdale, NJ: Lawrence Erlbaum.

Johnson. W.L., Soloway. E., Culter. B., & Draper, S. (1983). Bug
Catalog: 1 (Tech. Rep. No. 298) . New Haven, CT. Yale University,
Department of Computer Science.

Joni, S.A.. & Soloway, E. (1986). But my program runs!: Discourse
rules for novice programmers. Journal of Educational Computing
Research, 2(1), 95-125.

Kurland, D.M., & Pea, R.D. (1985). Children's mental models of
recursive Logo programs. Journal of Educational Computing Re-
search, 1 (2), 235-243.

Kurland, D.M., Clement, C.A., Mawby, R., & Pea. R.D. (in press).
Mapping the cognitive demands of learning to program. In J .
Bishop, D. Perkins, & J. Lochhead (Eds.) , Thinking: Progress on
research and teaching. Hillsdale. NJ: Lawrence Erlbaum.

Kurland, D.M., Pea, R.D., Clement, C., & Mawby. R. (in press). A
study of the development of programming ability and thinking

skills in high school students. Journal of Educational Computing
Research.

Kupsa, L., & Sleeman, D. (1985). Novice Logo errors (Tech. Rep.).
Palo Alto, CA: Stanford University, Department of Computer Sci-
ence.

Langley, I? (1985). Learning to search: From weak methods to do-
main-specific heuristics. Cognitive Science, 9, 217-260.

Leron, U. (1983). S o m e problems in children's Logo learning. In
Proceedings of the 7th International Conference of the PME (pp.
346-351). Shoresh, Israel.

Mayer, R.E. (1981). The psychology of how novices learn computer
programming. Computing Surveys. 13(1), 121-141.

McBride, S.R. (1985, June) . A cognitive study of children's com-
puter programming (Tech. Rep. No. 8502) . Newark, DE: Univer-
sity of Delaware, Cognitive Science Program.

Mioduser, D., Nachmias, R., & Chen, D. (1985, February). Teaching
programming literacy to nonprogrammers: The use of a computer-
ized simulation (Tech. Rep. No. 15). Tel Aviv, Israel: Tel Aviv Uni-
versity, Center for Curriculum Research and Development, School
of Education.

Noss. R. (1984). Children learning Logo programming (Interim Rep.
Nos. 1 & 2) . Hatfield, England: Advisory Unit for Computer-Based
Education, Chiltern Logo Project.

Palincsar. A.S., & Brown, A.L. (1984). Reciprocal teaching of com-
prehension-fostering and comprehension-monitoring activities.
Cognition a n d instruction, 1, 117-175.

Pea, R.D. (1983, April). Logo programming and problem-solving.
Paper presented at the American Educational Research Associa-
tion, Montreal, Canada. (Available as Technical Report No. 12,
Center for Children and Technology. New York. NY Bank Street
College of Education.)

Pea, R.D. (1986). Language-independent conceptual "bugs" in
novice programming. Journal of Educational Computing Re-
search, 2 (1) , 25-36.

Pea. R.D.. & Kurland, D.M. (1983). On the cognitive prerequisites of
learning computer programming. (Tech. Rep. No. 18). New York,
NY Bank Street College of Education, Center for Children and
Technology. (ERIC Document Reproduction Service No. ED 249
931)

Pea, R.D., & Kurland, D.M. (1984). On the cognitive effects of learn-
ing computer programming. New Ideas in Psychology, 2, 137-
168.

Perkins, D.N.. & Martin, E (1985). Fragile knowledge and neglected
strategies in novice programmers. (Tech. Rep.). Cambridge, MA:
Harvard University, Educational Technology Center, Graduate
School of Education.

Piaget, J., & Inhelder, B. (1967). The child's conception of space.
New York: W W. Norton.

Putnam, R.T. Sleeman. D.. Baxter. J.A.. & Kuspa. L.K. (1985) . A
summary of misconceptions of high school BASlC programmers.
(Tech. Rep.). Palo Alto. CA: Stanford University. Department of
Computer Science.

Resnick, L.B. (in press). The development of mathematical intuition.
In M. Pelmutter (Ed.) , Minnesota symposium of child psychology
(Vol. 19). Hillsdale, NJ: Lawrence Erlbaum.

Roberts, R.J. (1984) . Young children's spatial frames of reference in
simple computer graphics programming. Unpublished doctoral
dissertation, University of Virginia.

Rogoff. B., & Wertsch, J .V (Eds.) . (1984). New directions for child
development, No. 23: Children's learning in the "Zone of proxi-
mal development. " S a n Francisco. CA: Jossey-Bass.

Rumelhart, D.E., & Norman. D.A. (1981). Analogical processes in
learning. In J.R. Anderson (Ed.) . Cognitive skills and their acquisi-
tion (pp. 335-359). Hillsdale, NJ: Lawrence Erlbauni.

Schoenfeld, A. (1985). Mathematical problem solving. New York:
Academic Press.

Searle, J.R. (1983). Intentionality. Cambridge, England: Cambridge
University Press.

Sleeman, D., Putnam, R.T , Baxter, J .A.. & Kuspa. L.K. (1986) .
Pascal and high-school studelits: A study of errors. Journal of
Educational Computing Kesearch. 2 (1) , 5-23.

Soloway, E. (1985). From problems to programs via plans: The
content and structure of knowledge for introductory I-ISP pro-
gramming. Jourrlal of Educational Computing Research. l (2)
157.172.

Soloway, E.. Bonar, J . , Barth. J . , Rubin, E., & Woolf, B. (1981) .
Programming and cognition: Why your st~ldents write those crazy
programs. In Proceedings of the National Educational Computing
Conference (pp. 206-219). Toledo, OH: NECC.

Soloway, E., Bonar. J . . & Ehrlich, K. (1983). Cognitive strategies and
looping constructs: An empirical study. Communications of the
Association for Computing Machinery. 26, 853-861.

Soloway. E., & Ehrlich. K. (1984) . Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering. SE-
1 O(5), 595-609.

Spohrer, J.C., & Soloway. E. (in press). Novice mistakes: Are the folk
wisdoms correct? Cornrnunications of the Association for Comput-
ing Machinery.

Spohrer, J .C. , & Soloway, E. (1986). Analyzing the high-frequency
bugs in novice programs. In E. Soloway & S. lyengar (Eds.).
Empirical studies of programmers (pp. 230-251). Norwood, NJ:
Ablex, Inc.

Spohrer, J.C., Soloway. E., & Pope, E. (1985). A goallplan analysis
of buggy Pascal programs. Hunmn Computer Interactions. l (2) .
163-207.

Vygotsky, L.S. (1962). Thought and language. Cambridge. MA: MIT
Press.

Focus on Learning Problems in Mathematics
Winter Ed~tion 1987, Volume 9: Number 1
OCenter for TeachinylLearning of Mathematics

