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In the U.S. over a million precollege students take computer pro- 
gramming courses each year. and more than 50,000 teachers are 
involved with programming instruction. Unlike mathematics educa- 
tion, in which decades of research have led to a deepening under- 
standing of the development of early number acquisition. algebraic 
cognition. and geometric problem-solving, cognitive research on the 
development of programming skills is an infant field. Nonetheless. a 
broad range of investigations within the last five years. as well as 
informal reports from programming educators in practitioner journals 
and at national meetings of NECC and AERA, have begun to illus- 
trate the host of conceptual difficulties programming novices encoun- 
ter in learning to program. 

For programming, as in other domains from mathematics to the 
physical and engineering sciences, students are engaged through 
their learning activities in actively building a knowledge system of 
concepts and procedural skills. This domain-specific constructivist 
orientation is a pervasive component of modern cognitive science 
theories of learning (e.g., Glaser. 1984) and has been applied suc- 
cessfully to school learning of various topics in mathematics and 
science education (e.g., Carey. 1985; Carpenter, Moser, & Romberg, 
1982; Resnick, in press). One phenomenon that such an orientation 
is designed to explain is the nature of student "errors" or "miscon- 
ceptions." i.e., faulty answers to problems posed in the domain of 
study. Although some "errors" are slips in the mechanics of problem 
solving, it now appears that most faulty answers arise from systematic 
applications of the knowledge a student currently does have to the 
problem at hand. If one looks closely enough at the distribution of a 



student's answers to problem types, one  can see  that the student has 
what various investigators have called a "theory," "belief system." 
or "schema," in terms of which they understand the phenomenon at 
hand, and which leads to  the answers he or she gives. Such a view 
leads to a positive characterization of a student's current under- 
standing in terms of the knowledge he  or she is utilizing to make 
sense of the problem solving activities in computer programming. 
While such answers are "errors" from the canonical perspective, 
they are sensible generalizations from what the student currently 
knows. 

By analogy to  computer programs that d o  not run to specification, 
students' noncanonical answers have been called "buggy." These 
responses are due  to "bugs" in the sense that if the students' knowl- 
edge structures used to generate answers are revised, canonical per- 
formances can be  expected to result. 

Our aim in this essay is to provide an  overall scheme of interpreta- 
tion that can "raise the consciousness" of programming instructors 
and others interested in programming education, so  that the kinds of 
conceptual bugs students develop and manifest in programming can 
be "seen" more readily. We will address the following questions: 
What are the types of programming bugs in early programs and in 
programs of intermediate complexity, and what are their likely 
sources? What might instructors d o  to identify these bugs and to help 
students develop better programming understanding so  that these 
buys are n o  longer manifest? What kinds of knowledge does pro- 
gramming instruction need to convey to help students overcome 
these buggy tendencies? 

As in the case of mathematics learning, many instructors are likely 
to be aware of such bugs only tacitly, and may view them as  "mis- 
takes" on  the student's part rather than in terms of systematic appli- 
cations of the student's current understanding of programming 
concepts and procedures. By making the tacit explicit, we hope to 
provide a better definition than is now available of the pedagogical 
problem facing programming educators. I f  these "bugs" persist, we 
expect programming students are more likely to lose interest in fur- 
ther developing their programming skills because of their recurrent 
failures in making their programs run. 

Charting the buggy terrain: An overview 

Many research projects are underway in artificial intelligence. cog- 
nitive science, and software psychology to identify types and exam- 
ples of programming bugs, to trace their sources and mechanisms of 
construction by the learner, and to work on defining their optimal 
paths to remediation. But little synthesis is available to offer signposts 
pointing to bug locations for the observer of students' programming 
practices. What we begin to provide in this paper is a sketchmap of 



the terrain: what types of bugs might the programming instructor 
expect to encounter and what might be their sources? Although such 
a map is likely to need elaboration, refinement, and much more 
experimental testing, we can already begin to see some patterns of 
bug clustering, and get some sense of why novices' early programs 
are rife with bugs. 

Bugs in program creation and program comprehension will be 
surveyed in three major categories. First, we will discuss program- 
ming language-independent conceptual bugs, that is. those 
which appear to arise in consequence of learning to implement goals 
in a formal programming system per se, rather than being due  to 
specific features of the programming language being learned. Sec- 
ondly, we consider the category consisting of knowledge unavaila- 
bility bugs, arising from an  inadequate knowledge base, and 
ranging from semantics, syntax, and plans. to whether students have 
a realistic view of flow of both control and data as  programs are 
interpreted by the computer. Finally, the third category, which com- 
prises knowledge retrieval bugs will be outlined. In this category. 
students often have available the relevant knowledge for solving a 
programming problem but d o  not access that knowledge. 

Programming language-independent conceptual bugs 

The prospective programmer quickly meets what might be called 
the "conversational metaphor" for writing programs (Hutchins. Hol- 
Ian, & Norman, 1986). One  creates a set of instructions according to 
the rules of an  input language, and the computer interprets these 
instructions and executes them according to the programming lan- 
guage's conventions for command interpretation. This conversa- 
tional metaphor is a powerful one  indeed. since the programmer is a 
natural language user who has communicated throughout an  entire 
lifetime in a conversational manner. 

But in contrast to programming discourse, various techniques 
have evolved among natural language communities for managing 
and repairing misunderstandings that arise when the utterances a 
speaker offers a s  communicative acts are not understood by the 
listener. The  listener can say "Huh?," ask the speaker questions. or 
use any one  of a number of other natural language devices (e.g.. 
elaborations, contradictions) to try to establish the intentions of the 
speaker. And often a listener can correctly impute meaning to the 
speaker's utterance in a conversation without the speaker ever ela- 
borating on what he  or she has said - the listener fills the gap, and 
the communicative act is successful, conveyed without explicit- 
ness .  At the extremes of mutual understanding achieved in intimate 
communication, truncated speech is the rule, a s  Vygotsky (1962) 
reminds us in his reference to Kitty and Levin's laconic conversations 
in Tolstoy's Anna Karenina. 



A central component of such human activities of discourse repair 
and communicative interpretation is that the listener has a deep 
understanding of what the speaker could mean in a given context. 
Typically, the-bo participants in the discourse share a common field 
of obiects and events. the conversation has a historv in which certain 
knoiledge is assumed as shared, and the speakerkstener pair also 
bring a powerful background of interpretive frames that help guide 
their activities of speech interpretation and repair in a conversation. 

We thus see a major discrepancy between conversation in natural 
language, and the writinglreading of programs in terms of a conver- 
sational paradigm. Whereas the speaker-listener pair can negotiate 
what was meant interactively, in terms of a rich common knowledge 
base of intemretive conventions. the "listener" side of the com~uter  

task is seriously impoverished. This point of corkrast 
between the natural language and programming discourse is a major 
hurdle the novice programmer must overcome, and as we shall see, 
the solitary path to explicating all of one's meaning to make a pro- 
gram run as intended is bug-ridden. In sum, whereas the "debug- 
ging" of natural language discourse is socially accomplished, and 
often inexplicit, the novice programmer must go it alone in total 
explicitness, since the program interpreter requires complete 
specification in programming code of the programmer's intent. 

What we find in novice programming are a host of bugs that 
appear as consequences of the programmer's attempts to general- 
ize from natural language to programming discourse. These bugs 
are evident in the early programs of novice programmers from ele- 
mentary school to adulthood. and they can even appear on occasion 
when the programmer has developed expertise. 

The pragmatic strategies for creating and understanding natural 
language serve them poorly when they begin to program, because 
computers interpret their programs of instructions by means of 
mechanistic rules. For the programming languages typically learned 
by novices (e.g., BASIC, Pascal. Logo), there are deterministic rules 
for interpreting commands in a specific sequential order defined by 
how flow of control is dealt with in the language. While people are 
intelligent interpreters of conversations, programming languages are 
not. Humans fi l l  the gaps of inexplicitness, helping repair the ambi- 
guities of speaker utterances by supplying background knowledge on 
what the speaker would be likely to mean in that interpretive context. 

This nondiscursive feature of programming thus violates human 
conversational maxims, such as the principles of cooperation out- 
lined by Grice (1975) and developed in theories of sociolinguistics 
and natural language pragmatics (Cole, 1981; Searle, 1983). The 
computer cannot infer what a speaker means if she is totally explicit,' 
whereas the listener cooperates to make possible an interpretation of 
the speaker's talk. 

Pea (1986) has outlined three major classes of programming stu- 
dents' conceptual bugs that appear to derive from the "superbug" of 
negative transfer of such natural language interpretive conventions to 



the formal domain of computer programming. The classes of Ian- 
guage-independent conceptual bugs that spring from this generaliza- 
tion are Parallelism Bugs, Intentionality Bugs, and Egocentrism Bugs. 
Unless noted, observations reported below took place in research 
with students learning Logo (ages: 8-12 year-olds, 14-17 year-olds) 
or BASIC (high school students). 

Parallelism Bugs 

The parallelism bug appears in various contexts. Its central feature 
is that the student assumes that different program lines can be  active 
or known by the computer at the same time. in other words. in 
parallel. One often finds the parallelism bug in programs where con- 
ditional statements (IF ... THEN) occur outside loops. For example. 
picture a case in which the conditional statement appears early in a 
program: 

IF SlZE = 10, THEN PRINT "HELLO" 
Then, a countup loop comes later in the program: the variable is 
incremented by one  each time until i t  has a value of ten: 

FOR SIZE = 1 TO 10,  PRINT "SIZE" 
NEXT SlZE 
Now we may ask what students think the computer will d o  as i t  

interprets this program. I f  they understand the control structure of the 
programming language (BASIC), they know that the IF statement is 
first evaluated for its truth. If  SlZE is equal to ten. HELLO is printed. 
and control passes to the next statement. I f  the variable is not equal 
to ten, nothing is printed, and control passes to the next statement. 
After the test of the IF line of the program is executed. that line of 
code is inactive. irrelevant to whatever the remaining lines of the 
program instruct since control never returns there. 

But high schoolers in their second year of computer science faced 
with such a problem predicted a surprising result. In one  study. eight 
out of the fifteen students interviewed predicted that during the loop- 
ing process, when the variable SlZE becomes equal to ten, HELLO 
would be printed. When explaining why. i t  was noted that since 
variable SIZE was now equal to ten (i.e.. within the loop) and the IF 
statement was "waiting for" the SlZE to be  equal to ten. it could now 
print HELLO. But in fact, once the IF statement was evaluated and 
found false, the computer never read it again. It appears these stu- 
dents believe that all program lines are simultaneously active. and 
that the program has the intelligence to monitor the action status of 
every program line at once. Similar findings have been reported for 
novice Pascal programmers, where as many as  a third of the college 
students mistakenly assumed for simple Pascal programs that the 
actions in the while loop were continuously monitored for the exit 
condition to become true (Bonar & Soloway, 1983: Soloway. Ronar. 
Barth, Rubin, & Woolf, 1981).  



We can see in these cases how students are biased by natural 
language conversational strategies, where expectations of what will 
come later can guide the interpretation of what occurs early in a 
conversation or text. Apart from quasiprocedural natural language 
such as building plans, spatial directions, and recipes, there is often 
no reason not to skip ahead for interpretation. In natural language, 
one hardly violates a text's meaning by reading parts of i t  out of 
order; we even teach the reading strategy of scanning ahead for text 
structure. But the strict flow of control for command interpretation 
defined for the specific programming language must be  adhered to. 
To forecast program outcomes, the student must ask only what con- 
ditions regarding inputs are in effect a s  each line is executed. 

Intentionality Bugs 

Another class of bugs is revealed when the student attributes goal 
directedness or foresightedness to the program. By analogy to the 
natural language listener, the novice programmer assumes the com- 
puter can go beyond the information given in the code to a program 
interpretation. The  novice treats the complex system represented by 
the programming language from an "intentional stance" (Dennett, 
1978), granting it human interpretive capacities. 

Kurland and Pea (1985) asked preadolescents judged to be  "good 
programmers" by their teachers to think out  loud as  they draw on 
graph paper what the graphics pen will draw as  the following tail-re- 
cursive Logo program is executed. When one  types SHAPE 40, the 
program draws a large square, a medium-sized square inside it, and 
then stops. More specifically: 

TO SHAPE: SIDE 
IF: SlDE = 10 S T O P  
REPEAT 4 [FORWARD: SlDE RIGHT 901 
SHAPE: SIDE12 
END 

The program draws a square with a variable side that, when initial- 
ized on the first call, is 4 0  units long. The second line of the program 
is a conditional counter with the purpose of stopping the drawing 
after two squares are drawn. The third line draws a square, the side 
qf which is the length of the variable SIDE (i.e., 40).  The fourth line 
divides the variable SIDE by two. Since the program begins with a 
conditional statement that says when the variable SIDE equals 10  
stop, the program draws the two squares (of size 4 0  and 2 0 )  and 
terminates, because the variable SIDE then equals 10. 

When predicting the effects of the program's second line, some 
students mistakenly suggest that the program will draw a box of size 
10. Their explanations reveal intentionality bugs. They have looked 



ahead in the program to a familiar programming plan - the third line 
that usually results in the drawing of a square: REPEA-T 4 [FOR- 
WARD (SOME DISTANCE) RIGHTANGLE TURN (90  DEGREES)]. 
They then read the IF statement in the second line as  i f  the program 
is commanding the computer to draw a square with sides equal to 
ten, because "it will draw a square." or "because it wants to draw a 
square." Other students recognize that the variable value at the IF 
statement is 40, but then say that the program "sees" the box state- 
ment line ahead which i t  wants to draw, but has to stop at 10. In each 
case, the student imbues the program with the status of an inten- 
tional being which has goals, and knows or sees what will happen 
elsewhere in itself. 

Sleeman, Putnam, Raxter, and Kuspa (1986) describe similar 
"deep" errors for high-school novice Pascal programmers after a 
semester-long introductory course. Students often erroneously in- 
ferred the function of a program from only a few instructions, or  even 
from the name of the program, assuming they needed to read no  
further to find the intention of the program. Kuspa and Sleeman 
(1985) report comparably inappropriate, semantically-driven inter- 
pretations of procedure functions among Logo learners. Another 
common misconception Sleeman et al. found was that a READ state- 
ment used with a meaningful variable name causes the program to 
select a value based o n  the name's meaning from a list of values in 
the DATA statement. 

Egocentrism Bugs 

Whereas intentionality bugs are revealed in comprehending and 
tracing what a program will lead the computer to do,  egocentrism 
bugs emerge in creating a program to d o  something. Both bug types 
presuppose that the computer can d o  what it has not been told to d o  
in the program. "Egocentrism" is an  overemphasis on  one's  own 
perspective relative to that of others. It is a widespread trait of 
children's thinking, in early spatial cognition (Piaget & Inhelder, 
1967), communication (Flavell et al., 1968). and other problem do- 
mains. Under the strenuous cognitive demands of a new task envi- 
ronment, it may also surface a s  a characteristic of the performances 
of adolescent or  adult novice programmers. We are thus not sur- 
prised to find egocentric biases in novice programming. Egocentrism 
bugs reveal students' beliefs that more of their intention expressing 
what they want to accomplish is resident in the programming code 
than is actually present. For example, they omit lines of code. varia- 
ble names or values. and other key instructions, assuming the corn- 
puter "knows" or can "fill in," a s  a human listener can. what the 
student wishes it to  do. 



Students revealing egocentrism bugs d o  not say outright that the 
program knows what to do. Such bugs are virtually perceptual - the 
students' current conceptions d o  not guide their attention to these 
omissions a s  causally responsible for the bugs in their programs. A 
common problem of this kind is the omission of punctuation or 
control characters, and the nonprovision of values for variables (e.g.. 
Kuspa & Sleeman. 1985) .  Lest these omissions be  thought of only as  
careless work, one  can then probe the students to test.this hypoth- 
esis, which attributes more significance to these lacunae than clerical 
oversight. When one  asks students to predict the outputs of pro- 
grams they have written with these omissions. they gloss over the 
specific commands in a line of Logo code just written, e .g. .  asserting 
that a line of graphics code draws a square when they have included 
a move comand to send the turtle forward but no turn command for 
making the necessary right angles: 

REPEAT 4 [FORWARD 301 
It is as i f  they d o  not see  that the necessary specifications are missing. 
They have provided only a program skeleton, trusting that the com- 
puter can fi l l  the gaps. 

Carver and Klahr (in press) found two similar tendencies in their 
examinations of 8-year-old Logo programmers' debugging. Children 
would make predictions for the graphics turtle that matched their 
goal rather than what the program code said, and would skip com- 
mands that called other procedures, assuming the turtle would ig- 
nore any commands which they did not understand. 

Bonar and Soloway (1983) have documented egocentrism bugs 
for college students writing Pascal programs, again involving the 
student's beliefs that the programming language can know more 
about intentions than i t  possibly can, given available code. Soloway, 
Ehrlich, Bonar, and Greenspan (1982) found novice Pascal pro- 
grammers incorrectly using the same variable for more than one  role. 
e.g., to store a value being read in [read (X)] and to hold a running 
total [X: = X + XI. It was as  i f  the students assumed that the 
computer would recognize that the same variable played two differ- 
ent roles and could know when to change the role of the variable to 
make the program work a s  intended. Such multiple-valued variables 
are also common conceptual bugs by high school novice program- 
mers in BASIC (Putnam, Sleeman, Baxter, & Kuspa, 1985) and 
Pascal (Sleeman, Putnam, Baxter, & Kuspa, 1986). 

The "Hidden Mind" Superbug 

These three classes of language-independent conceptual bugs ap- 
pear to stem from what might be  called a superbug: the idea that 
there is a hidden mind in the machine that has intelligent, interpretive 
powers. This benevolent being knows what has happened or will 
happen in program lines other than the one  being executed: it can go 



beyond the information given to help the student achieve his or  her 
goals in writing the program. 

But d o  students literally believe that the computer has a mind. can 
think, and interpret the unstated? Novice programmers will vehe- 
mently deny that the computer has these mentalistic traits. Instructors 
are very good at explaining that computers are dumb and can d o  
nothing but what they are told. However, students' behaviors when 
working with programs betray their denials, for they act as  i f  the 
programming language provides more than a mechanistic route to 
intention-expression. The  student's default strategy for making 
sense when encountering difficulties of program interpretation or 
when writing programs is to resort to the powerful analogy of natural 
language conversation, to treat the computer as  a disambiguating 
mind that can understand. The central point is that this analogy is 
predictable rather than bizarre behavior, for the students have no  
other analog, n o  other procedural device than the "person" to which 
they can give instructions that are then followed. Rumelhart and 
Norman (1981)  have similarly emphasized the critical role of analo- 
gies in early learning of a domain - making links between the 
to-be-learned domain and known domains perceived by the student 
to be relevant. But in the case of programming, mapping conven- 
tions for natural language instructions onto programming results in 
error-ridden performances. 

Metacognitive aspects of computer programming 

Another language-independent set of conceptual problems that 
can arise in learning to program surrounds metacognitive skills. 
Brown (1978),  Flavell (1976).  and Garafalo and Lester (1985)  char- 
acterize two distinctive components of metacognition. The first con- 
cerns "executive skills," that is, those skills involved in regulating and 
controlling one's mental activities during problem solving. The sec- 
ond component consists of one's beliefs and knowledge about cogni- 
tion. Flavell (1979)  observed that students prior to middle school 
reveal little knowledge of cognitive processing, and rarely monitor 
their memory and comprehension. Schoenfeld (1985)  found that 
college students solving mathematical problems engage in little self- 
monitoring of their problem solving processes. 

There are various kinds of bugs in learning to program that either 
result from or are perpetuated by the minimal use of metacognitive 
processes during programming. Difficulties have been documented 
for program writing, reading. and debugging. For example. Kurland 
and Pea (1985) had middle school age Logo programmers with 5 0  
hours of programing behind them hand-simulate a progressively 
more complex series of brief recursive Logo graphics programs. pre- 
dicting what will be  drawn when the program is run. Students often 
did not adequately monitor their comprehension of the program. in 



that they would skip lines and not check their work. Similar findings 
emerged for high school students learning Logo programming 
(Kurland, Clement, Mawby, & Pea, in press; Kuspa & Sleeman. 
1985). Using a similar method, Carver and Klahr (in press) found 
that 8 year-old Logo programmers made many "placekeeping" er- 
rors in-both a program comprehension task and a debugging task. 
These included redoing commands, skipping commands (especially 
those calling other procedures), doing the wrong number of itera- 
tions in a REPEAT statement, forgetting the final turn in a REPEAT 
statement, and losing track of the current variable value in a recursive 
procedure. They note that few students used written placekeeping 
marks to note their progress. 

One  possible pedagogical response to these difficulties is to use 
explicit prompts in early stages of programming instruction aimed to 
provide explicit metacognitive "scaffolding" for novice program- 
mers. For example. in Logo graphics programming, McBride (1985: 
also see Hillel, 1985) recommends using strategy prompts such as 
"Is a setut, needed?" to block the novice's tendencies to t,av exclu- . , 
sive attention to the object to be drawn while ignoring the necessary 
reorientation of the turtle to the appropriate startup state. Such exter- 
nal modeling of what would be  self-regulatory activity for an  expert 
programmer is consistent with Vygotskian approaches to instruction 
(Rogoff & Wertsch, 1984)  and has been applied to early program- 
ming (Delclos, Littlefield, & Bransford, 1985). 

Metacognition in programming has been little studied to date. and 
the above remarks have emphasized self-regulatory components of 
metacognition. It is likely that metacognitive activities involving 
reflection on the state of one's knowledge and skills in programming 
are central to the development of programming expertise. For exam- 
ple, careful program documentation should emerge after a program- 
mer discovers t h e  difficulty in tracing program bugs without it. 
Explicit awareness of the strengths and limitations of one's program 
design and program debugging strategies should lead one  to seek 
out help in order to learn to more effective program. 

GoalIPlan Merging Bugs: Tackling Complex Programs 

In the previous section we described language-independent bug 
types that were typically encountered when the students were in the 
early phases of learning to program. In this section, we describe a 
prevalent type of bug that arises as  students are attempting to write 
more complex programs. However, we need to first develop some 
new vocabulary to describe this new class of bugs. 

GoallPlan Analysis: An Example 

In moving from a problem to a coded program, there is strong 
empirical evidence that experts (and novices) develop an  intamedi-  



ate level representation that facilitates the mapping of problem to 
program. This intermediate representation is referred to as a goall 
plan analysis. In the rest of this section we offer an  example of a 
goallplan analysis. Our method is to present a "mental trace" of an 
Idealized Expert Programmer (IEP) writing a program for a problem. 

Consider, then, the following problem: 
Write a Pascal program that will read a set of integers and output 
the average of those numbers. Stop reading input when the 
number 99999 is read. 

The first task to perform would be to abstract the essential goals of 
the problem. Using knowledge about what characteristics of a prob- 
lem statement indicate major problem goals, the following two key 
goals would be abstracted from the problem specification 

Goal: compute average - - - > Goal: output average 

This notation indicates that achieving the goal of computing the 
average is a necessary precondition of being able to achieve the goal 
of outputting the average. Notice that the stopping condition on the 
loop is not yet considered. A loop stopping condition is a detail that 
can be handled once other decisions about how to realize the main 
goals have been made. 

Once the major goals have been decided upon. these can be 
further transformed. In particular, world knowledge about the 
definition of an average would generate the following subgoals: 

Subgoal: compute sun of numbers input - 
Subgoal: compute count of numbers input - 

- - > Subgoal: compute sum divided by count 

Again, we have goal enablement: to achieve the subgoal of doing the 
division one must compute the sum and compute the count. I t  is 
important to separate out the types of knowledge being used. The 
knowledge about averages comes from world knowledge. and is not 
programming specific. However. to straighten out the data types of 
the average, count, and sum. programming specific knowledge plus 
world knowledge must be used. Programming knowledge suggests 
that a count of discrete items should be of type integer. World knowl- 
edge, on the other hand. suggests that dividing two numbers might 
not necessarily result in a whole number: programming knowledge 
would suggest that the result variable be of type real. The problem 
statement itself says that the numbers read in are integers. 

The next task is to retrieve from memory a programming plan that 
will achieve the subgoal of computing the sum of the numbers input. 
The activity of summing successively read inputs is one  that is used in 
many programs, so  it is not surprising that IEP has a "compiled" 
routine for carrying out such an activity. We have called this pla~i the 



running total loop plan The name we use facilitates our understand- 
ing of the plan, but the human expert probably retrieves the plan via 
key features such a s  function. stereotypicality. etc. A representation 
of the running total loop plan is given below: 

goal: achieve initialize (runningtotal: = 0) 
loop until stopping condition = true 

goal: achieve input (new value) 
goal: achieve update (running total: - running total + new 

value) 
end loop 

The plan is not specific to any programming language. Rather. a form 
of goal-language/pseudocode is used. Transforming from a lan- 
guage-independent representation into Pascal requires more than 
just a knowledge of the syntax and semantics of Pascal: we will see 
that it also requires knowledge ot the pragmatics of Pascal. 

The running total loop plan has buried in it two variable plans: a 
new value uariable plan and a running total uariable plan. The for- 
mer plan specifies a variable whose role it is to hold each successive 
input value. The  latter plan specifies a variable whose role it is to hold 
the accumulated sum. The definition of a runninu total variable en- 

d 

tails the fact that the new value is to be accumulated into it. 
Still pursuing the subgoal of computing the sum of the input. IEP 

returns to the problem specification to determine what the stopping 
condition of the loop is - reading the value 99999. This form of 
 loo^ termination is a standard one: i t  uses a sentinel value. The 
default programming knowledge about sentinel values is that they 
should not participate in the actual computation (i.e.. the sentinel 
should not be  included in the sum).  Since sentinel termination is a 
standard way to stop a loop, instead of customizing the more general 
plan, a specific sentinel controlled running total loop plan may be 
retrieved. 

The translation of this abstract plan into Pascal requires knowledge 
of the "pragmatics" of Pascal. While any of Pascal's looping con- 
structs (e.g. ,  for, repeat, and while) could be  coerced into use, knowl- 
edge of pragmatics suggests that one  construct is better suited than 
the others: while is especially suited for an  unspecified number of 
iterations, with the possibility of terminating before performing any 
iterations at all. This sort of knowledge goes beyond syntax and 
semantics in that one  needs to understand the goal behind each of 
the constructs; we have labeled this sort of knowledge as  pragmatic 
knowledge: knowledge of when to use a construct in contrast to 
knowledge of how toeuse it (Soloway, Bonar. & Ehrlich, 1983). 

The translation of the goal to get input from the user also requires 
additional programming knowledge. While the problem specification 
makes no  mention of it, a prompt is required before reading in values 
from a user in an  interactive run-time environment. The additional 
prompt goal goes beyond the goals mentioned explicitly in the prob- 



lem specification and is based on both programming and world 
knowledge. After generating subgoals, retrieving plans. and trans- 
forming abstract plans into code the following code would result for 
the sentinel controlled running total plan: 

total : = 0; 
writeln ('please input a number'); 
read(new); 
while new <> 99999 d o  

begin 
total : = total + new; 
writeln('please input a number'); 
read(new); 

end: 

Now. IEP turns to the subyoal of counting the number of numbers 
read in. The programming plan retrieved for this subgoal is the 
counter loop plan, and it is structurally very similar to the running 
total loop plan. Transforming the plan to Pascal results in the follow- 
ing code: 

count : = 0: 
writeln('please input a number'); 
read (new); 
while new < > 99999  d o  

begin 
count : = count 1 1 
writeln('p1ease input a number').  
read(new): 

end 

A major problem solving feat is about to take place. IEP realizes 
that since each plan assumes the data will be  available, the sentinel 
controlled running total loop plan cannot occur separately before the 
sentinel controlled counter loop plan. The data is coming in as  a 
stream, and thus can only be  read (accessed) once. This understand- 
ing suggests to IEP that the two looping plans need to be  combined. 
This is in effect an  optimization for the computer's benefit, since the 
more natural human procedure is to make two separate passes over 
the data. Here we see for the first time the need to integrate two 
plans. We d o  not mean "compose" two plans; rather, we see that 
two plans need to b e  woven together into one  piece of code. In order 
to weave together these two plans, we claim that IEP must "decom- 
pile" both plans and  reason causally about the elements of each 
plan. The following are examples of the type of reasoning that IEP 
needs to carry out in order to be  assured that the two plans can be 
integrated: 



IEP must realize that the goal of each loop plan is the same: 
namely, process just one  item on each iteration. 
IEP must realize that i t  is OK to put the counter update any- 
where in the loop for the following reason: the flow of data in 
the loop is such that the counter update will not interfere with 
any calculation in the loop. 

The reader may rightfully point out that if IEP is really an  expert 
then a compiled looping plan with both sum and count would al- 
ready exist. Thus, the integration scenario just described would not 
take place. However, for the following reasons we felt it to be criti- 
cally important to include, in a discussion of the knowledge used in 
programming, a description of the process of integrating two plans: 

In the initial creation of a looping plan that did combine both the 
summing and counting actions, the expert would most likely 
have had to go  through the sort of reasoning process outlined 
above. 
We felt it instructive to see how plans are integrated together. 
since most programs are not built from totally standard compo- 
nents that can simply be  composed together; some new con- 
struction must take place. 
We wanted to illustrate the legitimate use of "double duty," i.e., 
a situation in which one  piece of code is used for two purposes. 
The illegitimate use of a double duty can lead to code that is 
hard to understand (Soloway & Ehrlich, 1984). 
As we shall see  in more detail in the next section, many bugs in 
novice programs appear at just those points in the design of the 
program that requires the integration of two plans. Some bugs 
arise because the integration of plans is done  incorrectly 
(Spohrer, Soloway, & Pope, 1985), and other times because 
integration was necessary and the novices failed to d o  it (John- 
son et al., 1983).  

Another issue with respect to integrating the two loop plans con- 
cerns knowledge of programming discourse rules - rules of style. 
While on  theoretical grounds the counter update and the running 
total update could go  anywhere inside the loop, in practice they are 
grouped together. To d o  otherwise would violate a rule of program- 
ming discourse that says group code together that has a common 
role. Both the counter plan and the running total plan have subgoals 

?hat correspond to the role of updating a variable inside the loop, so  
they should be  grouped together. 

After achieving the subgoals of computing the sum and count of 
the numbers input, the subgoal of dividing the sum by the count is 
enabled. To prevent a run-time error of division by zero, program- 
ming knowledge gives rise to another implicit subgoal: guard the 
average calculation. The division and the output it enables must be 
nested inside the division by zero guard. Integrating the output plan 



with a division by zero guard plan requires that something be  printed 
out when a division by zero might occur. Thus, what appears to be a 
simple plan to output a value becomes more complicated because 
another print statement is needed in the leg of the guard plan in 
which the error might occur: 

count : = 0; 
total : = 0; 
writeln('p1ease input a number'); 
read(new); 
while new <> 99999 d o  

begin 
total : = total + new; 
count : = count + 1: 
writeln('p1ease input a number'); 
read(new); 

end; 
i f  count > O then 

begin 
average : = total/count; 
writeln('average is ', average); 

end 
else 

writeln('n0 valid inputs; no  average calculated'): 
end. 

As presented above,  the program is now complete: it will solve the 
problem i t  was intended to solve. 

Bugs Arising From GoalIPlan Merging 

The vocabulary developed in the previous section provides us with 
important tools for describing classes of novice programming bugs 
(Spohrer. Soloway, & Pope. 1985). In particular. we have found that 
a large percentage of bugs arises because students have difficulty 
coordinating and  composing plans to achieve goals (Spohrer & So-  
loway 1986a, 1986b).  Essentially, the students seem to understand 
the pieces that make up a program. e.9.. the language constructs 
themselves, but they have difficulty in putting the pieces together. 

Merging is a complex plan composition strategy. Put simply. merg- 
ing occurs when novices decide to achieve two different goals with a 
single, integrated plan. Often novices think that the merged plan will 
be shorter and more efficient than the unmerged. separate plans. 
Possibilities for merging arise when two goals share some similar 
subgoals. Unfortunately, there are often some differences as  well as 
similarities, and novices may over-look the differences. Thus. one  
type of bug that can result from merging is subgoal d r o p o u t  bugs. 



For example, consider the Tax Problem in which multiple records 
of information had to be  processed (giving rise to an  outer loop goal), 
and when each record of information was input it had to be  checked 
for errors (requiring a valid data entry goal). The outer loop goal 
would be responsible for asking the user "Do you have more tax 
data to be processed?", and the input record consisted of marital 
status and income information for an  individual. 

To see why these two goals present an  opportunity for merging we 
must examine the subgoal structure of each goal. First, consider the 
three subgoals of a sentinel controlled outer loop goal: (1) an  initial 
input of the loop control variable before the while loop, (2 )  a test of 
the loop control variable to see if i t  is the sentinel value, and ( 3 )  
inside the loop at the bottom the input must be read in again. These 
three subgoals are very similar to the three subgoals of a standard 
valid data entry goal, which ensures that input read into a program is 
valid. The three subgoals of a valid data entry goal are: (1) an  initial 
input that reads in a value, ( 2 )  a test of the value to determine if it is 
valid or invalid (usually a while-do loop). and ( 3 )  a retry input inside 
the loop in case the input value is invalid. A language independent 
representation of the plans of these two goals is shown below: 

plan for sentinel controlled outer loop goal 
goal: achieve get first value of loop control variable 
loop until value = sentinel value 

... 

goal: achieve get next value of loop control variable 
end loop 

plan for valid data entry goal 
goal: achieve get first value of input variable 
loop until value = valid value 

goal: achieve get new value of input variable 
end loop 

Note that both goals deal with similar tasks - loops - and that the 
three subgoals of each of the goals are also similar in function. 

When the two goals are achieved using separate plans, the valid 
data entry goal is achieved inside the outer loop goal. However, 
when novices merge the goals they create the buggy plan shown 
below: 



01  program Tax (input, output); 
02  var Status: char; Income, Tax; real; 
0 3  
0 4  begin 

end 

The bug in this merged plan is that the retry subgoal of the valid data 
entry goal is not achieved - the subgoal has been "dropped-out". 
In other words, instead of asking the user to retry entering valid data, 
the program will just skip the loop when an illegal value of marital 
status is entered. The novice was able to capture most, but not all, of 
the functionality of the two goals in the merged plan. 

There are many explanations for why novices make this bug when 
they merge: losing the final subgoal of valid data entry could be an  
undetected loss of information from working memory due to the 
overload imposed by merging (see Anderson & Jefferies. 1985).  
maybe the novices were aware of the bug but rationalized away the 
need for the subgoal or  changed the over-all goal since merging 
seemed more efficient and  required less code ("deplanning": Noss. 
1984), or maybe the novice thouqht the retry subgoal had been 
achieved by the "get next value" of the loop control variable sub- 
goal, since it would "get the next value if it were needed." 

Perhaps the student consciously carried out the merge on the two 
goals. When students try to produce efficient, optimized code. they 
often will consciously attempt to merge goals. However. in this in- 
stance we think it more likely that the student simply did not distin- 
guish enough subgoals - and may have been lured into this way of 
thinking just because the two goals had similar subgoals. Finally, of 
the 43 college subjects who attempted to d o  the Tax Problem. 36 
attempted to merge the main, sentinel loop, with the marital status 
process; of those 36 only 4 were able to d o  so  correctly on their first 
syntactically correct program. Thus, students have a propensity to 
attempt merging, and  moreover, they have a poor track record for 
being able to carry it out. 

We refer to the above situation a s  a bug prone pattern. That is. we 
have observed a "merge subgoals, drop out last subgoal" bug in 
other programs. In particular, whenever a program to be solved has a 
structure where subgoals of two goals are similar, there is a great risk 
that students will commit a merging bug, where the last subgoal is 



dropped off. Because opportunities for merging depend on similar 
subgoal structures and not any particular language constructs. bugs 
that result from merging are language independent. Furthermore, 
the process of merging goals is not limited to just programming. 
When one  needs groceries. one  does not make a separate trip to the 
store for each item, but instead merges each of the separate trips into 
a single integrated plan. The common subgoals of going to the store 
and returning from the store permit merging. However, i f  the store 
did not supply shopping bags to carry the grocery items all at once, 
then the merging might have led to a bug (i.e., too much to carry). 
We are in the process of looking to see i f  similar bugs arise in non- 
programming situations. 

Language-dependent conceptual bugs 

In this section, we describe two major sources of bugs, and offer 
examples for each of a number of different categories of bugs that 
have been observed. The distinction we will make - between bugs 
due  to knowledge unavailability and bugs due  to knowledge 
inaccessibility - is a common-sensical one. Sometimes students 
d o  not have knowledge they should, and the bugs we see in their 
programs derive from gaps in their understanding. On other occa- 
sions, problems with students' programs derive from knowledge 
inaccessibility bugs, where sometimes students have available 
the relevant knowledge for solving a programming problem but d o  
not access it. 

Knowledge unavailability bugs 

The varieties of knowledge unavailability are as  vast as  the varie- 
ties of knowledge, but a brief list is nonetheless helpful. Students may 
lack knowledge of the programming language syntax, such as  how to 
use primitives, how to assign and use variables (Hillel & Samurcay, 
1985; Kuspa & Sleeman, 1985) ,  and how to define and call proce- 
dures (Sleeman, Putnam, Baxter, & Kuspa, 1986). 

Students may lack knowledge of the semantics of the program- 
ming language commands. For young students of graphics program- 
ming in Logo, these difficulties can involve spatial cognition and such 
bugs as  turning from the absolute angle rather than the relative angle 
specified by the turtle's position (Carver & Klahr, in press: Fein & 
Scholnick. 1985; Gregg. 1978; Roberts, 1984).  Sometimes semantic 
errors are due  to a confusion of the technical meaning of the pro- 
gramming language command and its natural language meaning 
(e.g., S T O P  and END in Logo: Kurland & Pea, 1985. Kuspa & 
Sleeman, 1985; WHILE in Pascal: Soloway et al., 1981) .  



Students may not have available an adequate mental model of the 
information processing that transpires between the input of a pro- 
gram and its output. In all languages studied. students appear to 
construct noncanonical models of how computers interpret pro- 
grams. Kurland and Pea (1985) found that child Logo programmers 
interpreted embedded recursion as a looping construct. Bayman and 
Mayer (1983) describe bugs in novice BASIC programmers' mental 
models of flow of control and data. These included fallacious beliefs 
that " INPUTA means the letter A is input and stored in memory. 
reading of conditional GOTOs as unconditional GOTOs. confusing 
LET assignment statements with equation storage in memory. and 
confusions of "PRINT C" and "PRINT 'C' ". The assignment confu- 
sions lead some BASIC students to argue that counters (i.e.. a com- 
mon programming plan expressed as "LET C = C + 1") are 
impossible (Putnam. Sleeman. Baxter. & Kuspa. 1985)! 70 over- 
come such problems, DuBoulay. O'Shea. and Monk (1981).  Mayer 
(1984), Mioduser, Nachmias. and Chen (1985).  among others. have 
recommended explicit training with a concrete model showing the 
important computer locations (e.g. .  mcmory spaces. input stack). 
visible enactments of program statements that involve transactions of 
control and data, and student "role-playing" of command interpre- 
tation by the computer. 

Students may lack an understanding of programming discourse. 
those tacit rules that distinguish programs that (only) run from those 
run but are also well-structured so  that they communicate well to 
program readers (Joni & Soloway. in press). Students may also 110i 
know the types of recurrent plans that are embodied in programs for 
that language, such as numeric plans like the KUNNING-TOTAL 
LOOP PLAN in Pascal (Soloway & Ehrlich. 1984).  or plans in LISP 
with lists as their main data type (Soloway. 1985).  

Furthermore, students may lack the knowledge of program struc- 
ture required for using program cues to narrow their search space 
during debugging for the source of a programming bug. This contrib- 
utes to the common haphazard or linear approach to debugging 
observed by researchers and programming instructors (Carver & 
Klahr, in press; DuBoulay, 1986: Kurland et al.. in press: Sleeman ct 
al., 1986), and the "deplanning" phenomenon. whereby students 
modify their goal in preference to debugging their program (Noss. 
1984). 

Knowledge ir~accessibility bugs 

Novice programmers may often have knowledge to briny to bear 
on a programming problem but not use it. Among other reasons. this 
may be due to the storage of that knowledge in such a form that its 
applicability to the problem at hand is not obvious. For example. 
many young Logo progt-ammers will use a REPEAT coninland for 



squares (a common activity) but do not utilize it for other multisided 
figures. Perkins and Martin (1985) have called this phenomenon 
"fragile knowledge. " 

Analogical reasoning is central to good programming, since one 
often has worked on a similar problem before. and a retrieval of what 
was done in that case can significantly contribute to success with the 
current problem. One possible pedagogical strategy is to encourage 
analogical thinking in programming by example. An instructor could 
exemplify a newly-introduced command or programming plan 
across a wide range of discrepant problem contexts. thereby dimin- 
ishins the likelihood that a student will encode the command or ~ l a n  - 
as specific to one type of problem. Such undergeneralization is a 
general feature of procedural learning by novices (Langky. 1985). 
Students could also be encouraged to share programming code and 
plans, discussing in a group the broader applications of selected 
student ideas. 

Another case of knowledge inaccessibility is the well-known ten- 
dency of child Logo programmers to write s imple programs using 
Logo primitives rather than hierarchically organized superprocedures 
that call other procedures, even after examples of superprocedures 
and discussions of their merits for saving work have been offered 
(Hillel, in press; Hillel & Samurcay, 1985; Kurland, Pea, Clement. & 
Mawby, in press; Leron. 1983; Pea, 1983). The reasons for this 
preference for nonmodular. "linear programming" (Kurland. Clem- 
ent, Mawby, & Pea, in press) are not currently understood. 

Conclusions 

We have canvassed the available literature on the kinds of concep- 
tual bugs students manifest as they learn to program. Examples were 
offered of language-independent bugs arising from a "hidden mind" 
superbug that overgeneralizes the human conversational metaphor 
to programming, of "goal-plan merge" bugs, and of bugs due to 
insufficient metacognitive activity during programming. We also 
described language-dependent bugs due to either knowledge un- 
availability or lack of knowledge retrieval. Beyond pedagogical rec- 
ommendations made within these sections, what are some further 
implications of these findings for programming instruction? 

Once programming instructors realize the prevalence and syste- 
maticity of student bugs in understanding programming. the need for 
new kinds of programming instruction become apparent. We believe 
bug persistence is in part linked to the infrequency with which they 
are explicitly confronted by students and teachers. Teachers can bet- 
ter snare bugs if they adopt research methods. These include having 
students do  hand-simulation (line by line) of the predicted outputs of 
programs designed to elicit specific misunderstandings, debugging 
activities with the same aim, and think-aloud explanations of a pro- 



gram (defined to include a target programming construct) as it is 
being written by the student. Having students in a clinical interview 
situation explain what output will be  produced by relatively short (5 
to 15 line) programs is the technique used by many programming 
cognition researchers, and could also be used to advantage by pro- 
'gramming instructors - both as  a diagnostic tool for learning and as 
an expository method in teaching. 

There are additional pedagogical complexities in addressing the 
"hidden mind" superbug: The programmer does not have to specify 
every operation to be  carried out, since programming languages 
automatically carry out  many things (e.g., physical address man- 
agement; stack storage allocation). So the novice programmer has to 
learn a subtle lesson: some meanings do  not need to be explicitly 
expressed in his or  her code, while others do.  Since the boundaries 
of required explicitness vary across programming languages. the 
learner must realize the necessity of identifying in exactly what ways 
the language he  o r  she is learning "invisibly" specifies the meaning 
of code written. 

More research is needed o n  how to help students see that com- 
puters read programs through a strictly mechanistic and interpretive 
process. There is some  evidence that this goal can best be  achieved 
by providing "virtual machines," i.e., clear physical models (Du- 
Boulay. O'Shea. & Monk, 1981)  or computer simulated physical 
models (Mioduser e t  al.,  1985)  that show how the processing of 
control and data is regulated by the specific programming language 
under study. These explanations can be  supported by explicit think- 
aloud examples of how the f a d e  programmer thinks about and 
makes decisions with respect to program creation and program un- 
derstanding, similar to those that have been effective for written 
language understanding (Palincsar & Brown, 1984) .  

Finally, the programming language-independent goal-plan merg- 
ing bugs that have been identified point to the need for new kinds of 
knowledge programming instructors should explicitly aim to convey. 
Students need more help learning that goals and plans are impor- 
tant intermediates between the problem statement and the comple- 
ted program, they need to be  taught recurrently-useful plans. they 
need to learn about the pragmatic rules for programming discocrrse. 
and they need to monitor and test subgoal satisfaction when integrat- 
ing programming plans - recognizing this common situation as  a 
"bug prone pattern." By making the tacit explicit. and going beyond 
today's primary emphasis on  teaching syntax and semantics of pro- 
gramming languages to the goal-directed and planful aims of pro- 
gramming action, we can expect more effective understanding and 
practices of programming. 
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FOOTNOTES 

1. Several counterexamples are Teitelbaum's DWIM (Do What I 
Mean) systems added to the Interlisp programming environment. 
which corrects spelling errors by using syntactic context. and com- 
mercially available syntax-correcting compilers. Such painless error 
revisions are the subject of feverous debates among programmers. 
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