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The Slab Geometry Laser-Part I: Theory 
J. M. EGGLESTON, T. J. KANE, K. KUHN, J. UNTERNAHRER, 

AND R. L. BYER, MEMBER,  IEEE 

Abstract-Slab geometry  solid-state  lasersoffer significant performance 
improvements over conventional  rod  geometry lasers. We present  a  de- 
tailed  theoretical  description of the  thermal, stress, and beam  propaga- 
tion  characteristics of a slab  laser. Our  analysis  includes  consideration of 
the  effects of the zig-zag optical  path  which  eliminates  thermal  and  stress 
focusing  and  reduces  residual birefringence. 

S 
I. INTRODUCTION 

OLID-STATE lasers traditionally  are  fabricated  in  the  shape 
of a  long thin  rod. Under operating  conditions  the  therm- 

ally loaded laser host  medium  exhibits  optical  distortions which 
include  thermal focusing,  stress induced biaxial  focusing, and 
stress induced birefringence [ 11 - [4] . These thermally  induced 
effects severely degrade the  optical  quality  of  the laser beam 
and eventually  limit the laser output  power. 

The  limitations imposed  by the  rod  geometry have long  been 
recognized. As early  as 1969 Martin and  Chernoch [5] pro- 
posed using a  rectilinear slab geometry to eliminate  stress in- 
duced biaxial  focusing and birefringence. They also realized 
that a zig-zag optical  path,  confined to the slab by  total  internal 
reflection,  could be used to eliminate  thermal  and stress induced 
cylindrical  focusing. The advantages of  the slab configuration 
are the  combination  of  two ideas: the  elimination of stress  in- 
duced birefringence by  geometry  and  the  elimination  of  thermal 
and stress induced focusing by  optical  propagation along  a zig- 
zag path. 

The  proposed face pumped, zig-zag optical  path, slab laser 
was investigated in 1972 using Nd:Glass [6],  [7]  and  Nd: 
SOAP [8] as host materials. The  studies were extended in 
1975 to include  Nd: YAG [9]. These  investigations demon- 
strated  the  potential  for  improvements  in laser performance 
provided by  the slab geometry.  Although  these early  results 
were  published [ 101 , engineering difficulties  and  fabrication 
expense held  back wider use of  the slab concept. Work is con- 
tinuing  on  both Nd : Glass and Nd : YAG [ 1 1 ] , [ 121 slab laser 
systems. 

There is an increasing interest in  solid-state laser sources and 
in  the  improved  performance  offered  by  the slab geometry. We 
have  carried out extensive theoretical  and  experimental  studies 
of the slab approach using a Stanford  test-bed  Nd: Glass laser 
system.  Preliminary  results have been  published [ 131 , [ 141 
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and  the  work  has been extended  to crystalline laser media in- 
cluding Nd: YAG and  Nd: GGG [ 151 . 

Improvements  in  solid-state laser engineering [ 161 , [ 171 and 
increased optical  fabrication  capability, at lower  cost, have en- 
abled  many of the earlier  difficulties  associated with  the slab 
geometry  to be overcome.  However, to date,  the  theory  of  the 
zig-zag path slab geometry laser has  not  been  published,  thus 
preventing optimum laser design. 

This paper  presents a theoretical  study (Part I) of  the slab ge- 
ometry  solid-state laser concept.  The  theory  of  thermal stress 
analysis in  an  isotropic solid is introduced and the  thermal  and 
stress induced focusing and birefringence are discussed for  both 
the  rod  and slab geometry.  Optical  propagation  through a rod 
and slab is  analyzed  and  compared.  Experimental  results verify 
that, as expected,  the zig-zag optical  path  eliminates  first-order 
thermal  and stress induced focusing. The zig-zag optical  path 
also reduces  stress induced birefringence and  leads to high aver- 
age power laser operation  limited  only  by stress induced frac- 
ture  of  the laser medium. Scaling laws for slab geometry lasers 
are derived and discussed. 

11. THERMAL STRESS ANALYSIS 
A .  Introduction 

The  theoretical  background necessary to analyze thermal 
stress induced  optical  effects in  a laser rod  and slab are developed 
in  this  section.  The results  are  applied to rod  and slab configu- 
ration  media.  The analysis is limited to  bulk  effects  in a  semi- 
infinite slab. It  does  not  include  end  effects  which are difficult 
to determine analytically.  A  list of variables is included in 
Table  I. 

B. Heat Flow 
The  problem of heat flow in a laser medium is well understood 

and  solutions  for  the  rod  and slab geometry have been given 
previously [1]-[4].  The  equations are presented  here  for 
completeness. 

Consider the rectangular slab of  isotropic  material  shown  in 
Fig. l(a), with a thermal power  loading per unit  volume Q(x, y ,  
t). Here, Q(x, y ,  t),  (W/cm3) is assumed to be independent  of 
z. If the faces normal to  the z direction ( z  faces) are  not  cooled 
and  the  thermal  boundary  conditions  on  the x and y faces  are 
independent of z ,  the  temperature  distribution  in  the  medium 
reduces  to a two-dimensional  problem governed by  the  time 
dependent  equation 

CP . Q 
- k T = P T + -  k 

where k is the  thermal  conductivity (W . cm-’ . K-’ ), C is the 
specific heat (J . g-’ . K-’), p is the mass density (g . ~ m - ~ ) ,  
and T is the  temperature (K). For CW pumping  or  for pulsed 
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TABLE I 
LIST OF VARIABLES 

stress  optic  tensor,  tensor  components, 
and  perpendicular  and  parallel  compo- 
nents 
specific heat 
rod  diameter 
change  in  index of refraction  with  tem- 
perature 
Young’s modulus 
electric  field  components 
stored energy density,  saturation energy 
fluence 
focal  length 
unsaturated gain 
unsaturated  gain  coefficient 
total  stored  upper level  energy 
thermal  conductivity 
vacuum  wavenumber 
slab length 
gain length  in  the slab 
material  constant  defined  by (1 - u) k/& 
index of refraction  tensor,  tensor  com- 
ponent 
initial  index of refraction value 
average index of refraction 
number  of zig-zag bounces 
average thermal  power  loading 
average  laser output  power 

position  vector 
slab thickness 
temperature 
deviation  from average  slab temperature 
time derivative  of temperature 
average  value  of temperature 
vector  displacement  function 
the  ith  component  of ii 
normal  unit  vector 
volume 
slab width 
the  ith  Cartesian  coordinates 
Cartesian  coordinator 
thermal  expansion  coefficient 
index of refraction  gradient  parameter 
strain  and  components of strain 
change  in index  of  refraction 
cylindrical  coordinate 
angle with  respect to  the z axis 
extraction  efficiency 
Poisson’s ratio 
Airy stress  potential 
stress tensor  and  components 
stress  components 
stress fracture  limit 
surface stress 

thermal  loading  power  per  unit  volume 
(w/cm3) 
optical  rays 
repetition  rate 
thermal stress resistance  parameter 
radial  coordinate 

mass density 
thermal  relaxation  time 7 

h surface  heat  transfer  coefficient 
X heat  dissipated  per  stored  upper level 

energy 

pumping  with an inverse repetition  rate  that is much less than 
the  thermal  relaxation  time  constant, 

where t is the  thickness in the y direction.  Equation (1) re- 
duces  to  the  time  independent  equation 

The  thermal  boundary  conditions  at  the  surface,  denoted  by 
S, are given by 

where Tc is the  coolant  temperature and kc is the  thermal  con- 
ductivity  of  the  coolant.  In  the case of a flowing coolant  with 
a  boundary  layer,  the  thermal  boundary  condition is given by 
Newton’s law of heat  transfer 

where h is the surface heat  transfer  coefficient [I 61 (W . cm-2 . 
K-’) and U is the  outward  normal  to  the surface S. Given the 

value of Q(x,  y )  there are well known  methods of solving (3) 
and (4) for  the  temperature  distribution T(x, y )  [ 181 . 

C. Stress and Strain 
In the absence of  thermal loading, the slab is assumed to be 

stress-free and  not  constrained  by  external forces. When the 
temperature changes from  its original value the mass elements 
are displaced.  Let the vector function u(F) represent  this dis- 
placement  such  that  the mass element  at  position F is displaced 
to 7 t u(T). The strain tensor is defined as 

Hooke’s law requires that  the strain tensor  components be 
linearly related  to  the stress tensor  components  by [ 181 

where E is Young’s modulus (Pa), v is Poisson’s ratio, a: is the 
thermal  expansion  coefficient, T is the  temperature,  and 6 i i  is 
the  Kronecker delta. The  on-diagonal stress tensor  elements 
(aii) are compressive or expansive forces,  and  the off-diagonal 
elements (oii i # j )  are the shear forces  in  the  i-jplane. Assum- 
ing that  there  are  no  internal  forces,  the balancing of  forces 
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(b) 
Fig. 1. (a)  The slab geometry  system  with  a  rectangular slab  of isotropic 

material of thickness t, width w ,  and  length 1. The slab is assumed to  
be pumped  and  cooled  through  the  faces  normal  to t h e y  direction 
(the y faces). Optical  propagation is a zig-zag path  in  the z direction. 
(b)  The  rod  geometry system with  radial  distance r and angle between 
the  radial  direction  and  the x axis 8. 

requires 

i ax, 
The  free surface boundary  conditions are 

uij uj = 0 
i 

where ui is the  jth  component  of  the  outward  normal surface 
vector.  Equations (7a) and  (7b)  do  not specifiy a  unique solu- 
tion  for  the stress tensor  components uii. A unique  solution is 
specified if we also require  the existence of  the  function u(F) 
which is related  to  the ai,- through (5) and (6). This requirement 
gives rise to  the  compatibility  equations  which are  derived  be- 
low  for  the  two-dimensional case. 

An alternate way to  find  a  unique  solution  for  the uii is to 
invert (6) yielding 

V 
0.. = - 

I J  1 - v  ( E  xx + E yy -I- ~ z z )  6 ii 

Using (5) to replace eij with partial derivatives of u(F), these 
expressions can be used to eliminate the uji in (7a). The  result- 
ing equation is 

with  the  boundary  conditions 

291 

(9) 

The  solution  of (9), that  meets  the  boundary  conditions given 
by ( lo) ,  is unique  except  for  a rigid body  translation.  Equation 
(9) with  the  boundary  conditions is a very difficult  problem to 
solve even on  a large computer.  In  order to reduce  this  three- 
dimensional problem to a  two-dimensional  one,  we  introduce 
the plane  strain approximation. 

It is a  common  approximation  in  stress/strain  problems of the 
type  under  consideration to use the plane strain  approximation. 
This approximation assumes that  the  problem  is  independent 
of one dimension. Before' invoking  this approximation  a  few 
preliminary steps are  necessary. 

Consider the  solution  of (9) and (10)  for  a change  in temper- 
ature given by 

where 

T'(x, y )  dxdy = 0.  

Here, A is the cross-sectional  area and Tu is the average tem- 
perature of the slab. 

Due to  the  linearity of (9) and (10) the displacement induced 
by  the  temperature  distribution T ( x ,   y )  is the  superposition  of 
the displacement induced  by  the  uniform  temperature Tu and 
the  temperature  distribution T'(x,  y ) .  The  solution  for  the dis- 
placement  induced  by Tu is U(F) = 01 Tar, which  may be verified 
by  direct  substitution  into (9) and (10). This solution yields a 
uniform strain throughout  the slab and zero  stress [see (5) and 

The  problem is to determine  the stress and  strain  induced  by 
T'(x, y ) .  Since T'(x, y )  has  a  zero  mean  temperature,  the aver- 
age length in the z direction, as well as the volume of  the slab, 
is independent of T'(x, y) .  The principle of St.  Venant [ 191 
can be  invoked to  show that  the  displacements in the z direction 
disappear except near the z faces. Thus  in  the region that is 
one or two slab  thicknesses  away from  the z faces, the z com- 
ponent of strain is essentially zero.  The plane strain  approxi- 
mation  entails  setting E,, to  zero everywhere in  the slab. The 
plane  strain  approximation applies to  the  present  problem since 
the slab extent in the z direction is assumed to much greater 
than in t h e y  direction. 

A consequence  of this approximation is that  end  effects are 
not  included  in  this  model. 

Setting eZz to  zero  means  that  the displacement o(F) must 
be independent of z ,  that is O(F) = i7(x,y). Due to  the reflec- 
tion  symmetry  through  the xy plane,  it is evident that E ~ ,  and 
E ,  are also zero  throughout  the slab. Thus  the  equation govern- 
ing U(F) is reduced  from  three  to  two dimensions. 

Under  the plane  strain approximation, (9) and (10) do  not 

(711. 
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change form. However, all operators are two-dimensional  in- 
stead of  three-dimensional.  The  problem  of solving for  the 
stress now  has been reduced to solving for  two  coupled  func- 
tions Ux and Uy on  a  section of a plane. It should  be noted 
that,  in general, the  curl of u(x, y )  is n0.t zero  and  that  poten- 
tial functions such as those of  electrostatics  cannot be used to 
solve u(x, y ) .  In order  to use a scalar potential  function,  it is 
necessary to  formulate  the  problem in terms  of  the  two-dimen- 
sional  stress distribution. 

When E,,, ex,, and E ~ ,  are set to zero  in the expression for 
Hooke’s law, (6) or (8), the stress/strain  relationships may be 
rewritten as 

set of two  coupled  partial differential equations  for  two  func- 
tions to a single fourth-order partial differential  equation  for  a 
single function. 

The Airy stress potential @ is defined  by  its  relationship to 
the stress components 

uxz = uyz = 0 

oZz = v(u,, + oyU) - E a  T’ 
With this  definition  it is readily shown  that  the  two-dimen- 

sional  balance of forces equations  (13) are  satisfied for  any 
choice of 9. The  compatibility relationship  becomes 

with the  boundary  conditions 

Using (12a)  in  (7a) yields the plane strain balance of forces 
equations 

and 

Notice  that if @ is a  solution  of (1 9) satisfying  (20) on  the 
boundaries,  then @ + a + bx + cy is also a  solution.  Thus,  it is 
necessary to specify @ at  three  different  points  to  uniquely de- 
termine  the  solution. We are, however,  guaranteed that  a  unique 
solution does exist.  There are methods  for solving problems of 
t h s  type  [20]  and  for  our purposes it is assumed that  the Airy 
stress potential,  and  thus  the stress distribution, is known.  The 
strain  distribution  may be determined  from Hooke’s law, if 
desired. The displacement function u(x, y )  may be  calculated 
from  the  strain  distribution (see Appendix A). 

This completes  the  formulation of temperature  and stress dis- 
tributions in a solid medium. 

with  the  boundary  conditions 

C a i j u i = ~  i , j= 1 ,2 .  (14) 
i 

As noted above the existence of the  function  Drequires  a 
compatibility relationship between  strain, and therefore stress, 
components. By direct substitution  of (5) it is clear that  the 
strain  components  must satisfy the  compatibility  relations 

E. Solutions for  Rod and Slab  Geometries 
In  this  section we use the results  developed in  the previous 

section to find  the  temperature  and stress distributions for a 
uniformly  pumped  rod  and slab. The thermally  induced stress 
is compared  with  the material fracture  limit to derive an expres- 
sion for  the stress fracture  limit.  The stress and  temperature 
distributions are used  in a following  section to  determine focus- 
ing and birefringence in the  thermally stressed rod  and slab. 

1 )  Temperature and Stress Distribution in a Unifovnzly 
Pumped Rod: Due to the  symmetiy  of  the  rod  it is useful to 
calculate the  temperature and stress distribution  in a cylindrical 
coordinate system. 

a)  Temperature: The  heat flow equation, (3), in a cylindrical 
coordinate  system is 

Using (12a)-( 12c) in (16)  to eliminate the  strain  components 
yields the stress compatibility  equation 

( ~ + - ) ( u x x + u y y + ~ ) = o .  a2 EO! T’ 
ay2 ax2 

This equation, along  with (13a)  and  (13b)  and  the  boundary 
conditions (14), uniquely  determines  the stress distribution  and 
is equivalent to  the  solution specified by (9) and  (10)  for  the 
two-dimensional case. 

D. The Airy Stress Potential 
The Airy stress potential  [18] is very useful for solving two- 

dimensional stress problems. It reduces the  problem  from  a 
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with  the  boundary  conditions eter R, given by [21] 

kdr\ = h[Tc - T(d/2)]  (22)  R s  = omax Ms (29)  
ar dl2  where M ,  is the  material  parameter given by (28). If am= is 

where T,  is the  coolant  temperature  and d is the  diameter  of  known,  then R, is a stress fracture  material figure of merit. 
the  rod. If the  rod is uniformly  Pumped,  then Q is a  constant.  Unfortunately, omax is known  for  only  a  few  materials,  and  it 
The  solution  for  constant (2 is is, therefore, useful to use M, as a  material figure of  merit  for 

material  comparisions. Besides am= is not well determined 
since it depends  strongly  on  the surface quality  and  prepara- 
tion  procedures. 

T = T a t ( - $ ) [ t ( 3 " - r 2 ]  

where Note  that (27 )  shows that  on  the surface of  a rod urv = 0, and 
(23)  that (300 and uzz are equal.  The surface  stress, a,, is 

n 

b)  Stress: The Airy stress function satisfies (19)  and (20). 
However, due  to  the circular symmetry  of  the  problem, @is  a 
function  of r only  and  the stresses reduce to u,(r) and oee(r), 
where a, is the stress  along the radial  axis and 000  is the stress 
along the  aximuthal axis. The stress  along the z-axis, azz, is 
then  obtained  from (12b). 

In cylindrical coordinates,  with  no 0 dependence,  the Airy 
stress potential is the  solution of (19) written  in cylindrical 
coordinates, 

satisfying the  boundary  conditions 

The radial and  tangential stress components  from (1 8) are 
given by 

1 a4 
ow=-- r ar 

The  solution  of these equations is 

1 6M, 

uvv - - - Q [r2 - $1 
1 6M, 

where the  material  constant M, is given by 

M, = 
(1 - v)k  

a!E 
c )  Stress Fracture Limit: The mechanical properties  of  the 

laser host  material  determine  the  maximum surface  stress that 
can be tolerated  prior to fracture. If there were no  other  con- 
straints,  such as stress induced focusing and birefringence, the 
thermal loading and  thus average output  power of a  rod laser 
could be  increased until stress fracture  occurred. If we let urnax 
be the  maximum surface  stress at  which  fracture  occurs,  then 
we can  introduce  a  steady  state  thermal stress  resistance  param- 

(5, = - L! d 2 .  
32 M, 

The stress fracture limit occurs  when a, = am=, Rewriting 
Q in  terms  of  the  thermal loading  per unit  length Pa/l, where 
Pa is the  total  thermal power absorbed  by  the  rod,  the  maximum 
power  loading of a  rod  at  the stress fracture limit is given by 

-- pa - 8rR, 
1 

Note that  the  maximum  thermal loading is independent  of  the 
rod  diameter. 

2) Temperature and Stress Distribution in a  Uniformly 
Pumped Slab of Infinite  Extent: A slab of  infinite  extent is 
defined  such  that  the  width,  or  the dimension in the x direction, 
is of infinite extent.  For  homogeneous  thermal loading the  heat 
flow is only in t h e y  direction  and uyy is zero  everywhere. 

a)  Temperature: Heat  flow in an infinite slab with  constant 
heat  input  per  unit  volume Q is  a one-dimensional problem. 
The  thermal  equation  and  boundary  conditions are 

where t is the slab thickness, as shown in Fig. l(a)  and T, is the 
coolant  temperature. These equations have the  solution 

T(Y) = Tu T ' ( Y )  
where 

and 

T a = T c t @ - ( L + L ) .  2 h 6k  (33 )  

b )  Stress: By symmetry  the Airy stress function  must  be in- 
dependent of x. In  addition,  the y y  component  of stress, a,,, 
is zero everywhere. Since by symmetry E,, equals eZZ, which 
is zero,  (12b)  and  (12c) give 

where M, is the  material  constant given by  (28). 
c) Stress Fracture Limit: The stress fracture limit was defined 

above for  the  rod case. By analogy the stress fracture limit for 



294 IEEE  JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-20, NO. 3,  MARCH 1984 

a slab of  infinite  extent  occurs  when  the surface  stress os equals 
the surface fracture stress omax. 

The surface  stress for  the slab is 

Stress fracture  at  the surface  limits the  total  thermal power 
absorbed  by the slab per unit  of face area. For slabs of  finite 
width W, the power per unit  length  at  the stress fracture  limit 
is given by 

where wit is the aspect ratio  of  a  finite slab. 
It is interesting  to  compare  the surface  stress of a  rod  and slab 

at equivalent thermal loading  per unit volume. From  (30)  and 
(35) we find 

The  ratio of thermal  power  absorbed per unit  length  at  the stress 
fracture limit from  (3 1) and  (36) is given by 

Thus,  for superior  power  handling capability relative to a  rod, 
the aspect ratio of the slab must be  greater than  two. 

111. OPTICAL PROPAGATION 
A .  Introduction 

The  temperature  and stress induced  effects  on  optical  propa- 
gation are introduced in this  section.  The discussion considers 
isotropic media as a special case, but is valid also for crystalline 
media.  The  temperature  and stress distributions are assumed to 
be known  in  the region of  interest. 

If an  isotropic  material is subject to thermal stress, there is a 
direct modification  of  the  index  of  refraction due to  the  tem- 
perature change, and  a  modification due to  the stress induced 
by  the  temperature  gradient. In an  isotropic  medium  the  index 
of  refraction becomes a second rank  tensor E, whose compo- 
nents are given by 

dn0 r2; = no f - T' Bi;kl  okl (39) 
dT k l  

where dno/dT is the change in the  index  of  refraction  with  tem- 
perature,  the BijkI are the  components of the  fourth  rank stress 
optic  tensor, B ,  and the okl are  the  components of the second 
rank stress tensor. (See Appendix B.) 

In  an  isotropic  medium,  the stress optic  tensor B must be in- 
variant under  spatial  rotation and under inversion [ 2 2 ] .  This 
requirement greatly  restricts the  number  of  nonzero  indepen- 
dent stress optical coefficients. If the  reduced  notation [ 2 2 ]  

l = x x ;  2 = y y ;  3 = z z ;  4 = z y ;  5=zx; 6 = y x  

is used,  then  the  only  nonzero stress optical  coefficients are 

a) B1 = BZ2 = B33 r B , (  

Y 

' X , X '  

Y'  y ?  I 

Fig. 2. Optical  coordinate  systems  in  the slab. (a) Thex,y,z coordinate 
system is the slab  coordinate  system  shown  in Fig. 1. Optical  raysprop- 
agate  along  the z axis  which is at  an angle 0 with  respect to the  slab 
Z axis  and  in  the slab y-z plane. (b) The  polarization  eigenvectors 
u,, u- form  a  coordinate  system  at  an  angle p with  respect  to  the  op- 
tical  ray x-y coordinate  system. 

where BII and BI give the change in  the  optical  index  for stress 
applied  parallel and  perpendicular to  the  polarization axis,  re- 
spectively. Note  that BII and BI are the  only  independent stress 
optic  coefficients  in  an  isotropic  medium. 

In anisotropic media there are more  than  two  independent 
stress optic coefficients. A cubic  material,  such as YAG, has 
three  independent  coefficients.  The  equations derived in this 
section do  not  depend explicitly on  the  form of B and  thus  the 
results  can be extended  to  the crystalline  media case. 

For  the case of optical  propagation along a zig-zag optical 
path,  at  an angle 0 with respect to  the z axis and in the y-z 
plane,  it is convenient to  rotate  the  index of refraction tensor 
E into  a primed coordinate system with  the  z' axis  at an angle 
B to  the z axis as shown in Fig. 2(a). For  propagation straight 
through  a  rod  or  a slab, 0 is zero. 

The  components  of  the  index  tensor in the  primed reference 
frame, njj are given by 

or  in  matrix  form 
= R(e)  ;! R(-e )  (4 1) 

where the  rotation  matrix R ( 0 )  is given by 

1 0  0 

R ( B ) =  . o cos sin 0 
0 -sin 0 cos 0 
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The  submatrix  of A” perpendicular to  the  direction  of  optical change is given by  the overall  phase factor e ikun$’ and  the 

propagation,  denoted  by polarization  modification is  given by  the  product of the  three 
matrices, which is equivalent to a single Jones  matrix  [23]. 

(43) B. Focusing and Birefringence 

has eigenvalues given by 

The eigenvalues are real for  any choice of n i x ,  nyy, or n:y. Thus 
the eigenvectors correspond to real directions  which are  labeled 
as the û + axis and  the 6- axis. The  indexes of refraction for  plane 
waves linearly  polarized along the u^+ and 2- axis  are n, and n-, 
respectively. 

Let p be the angle between  the x’ axis and  the ii, axis as shown 
in Fig. 2(b), then 

The  equation governing optical  propagation  for a  plane wave 
propagating  in the z’ direction is given by 

Equations  and  approximations developed in  the previous sec- 
tion can be used to determine  the focusing and birefringence 
in a rod  and slab. We limit  the discussion to isotropic  media. 

1 )  Rod: Consider  first the  thermal  and stress induced  focus- 
ing and birefringence  in  a  rod of  diameter d.  Due  to  the  rod 
symmetry  it is useful to  work  in a  cylindrical coordinate sys- 
tem. In this  coordinate  system  the  nonzero  components of 
the  index  of  refraction  submatrix  perpendicular  to  the z axis 
are 

where n is the  unperturbed  index  of  refraction. Since the  only 
nonzero  elements are the diagonal elements,  they are also the 
eigenvalues of the  matrix.  The eigenvectors  are thus along the 
radial  axis and  the  azimuthal axis. 

Using the  temperature  distribution given by (23)  and  the stress 
distributions given by (27),  the  indexes of refraction  may be 
written as 

l a  -- (46) n, =no  
ik, az’ 

= no (1 - t r2) 
where k, is 277 times the inverse vacuum  wavelength. 

The solution is where 

[@]= e ik,nuz’ [ ikv: ] (47) 
no =n+--  f-)’ - e [3BI f BII]  

dT 8k 2 1 6Ms (52) 
e - i k , A ~ , ~ ‘  

and 

where na = (n ,  t n-)/2  and An, = (n ,  - n-)/2. Since we con- 

to  rotate  this result into  the x’-y’ frame. Since 
sider waves polarized  along the y’ and x’ =x axis,  it is useful CY, E (53a) 

2 dn Q 
“ = no [ dT 4k 16Ms 
-_  _ _ _ _ _ _  ( ~ B L  3Bll)). (53b) 

(48) The  index  of  refraction  distribution  for  the radial and azi- 
muthal  polarizations is approximately  that  of a lens-like medium 
with  index  of  refraction  gradient  parameters CY, and are. Ray 
matrices  for lens-like  media  are  well known 1241, [25].  If 
a,12 << 1 and ae12 << 1, where 1 is the  length of the  rod,  the 
ray matrix  for  propagation  through  the  rod is equivalent to  the 
ray matrix  for a  biaxial thin  lens  combined  with a propagation 
distance 1. The focal lengths  of  the biaxial thin  lens are 

the  solution  transforms  to 

1 
fr== (54a) 

(49) 1 
f e  =x (54b) 

During propagation  the  optical wave or ray  suffers  a  phase 
change and a polarization  modification.  The average phase for radially and  azimuthally polarized light, respectively. 
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Within a laser resonator  the  strong biaxial  lens element de- 
grades the  optical  quality  of  the  fundamental  mode  and  induces 
additional cavity loss 111 - [4] . Since a biaxial  lens does  not have 
a  unique image plane,  radiation  which passes through  an aper- 
ture  on  one pass cannot be  reimaged through  the  aperture  on 
the  next pass, thus  inducing loss in the cavity. Beyond  a  certain 
thermal loading level, the  induced loss increases  faster than  the 
round  trip gain and laser oscillation  can  be extinguished  by  the 
thermally  induced biaxial lens. 

The biaxial focal power can be expressed  as the  difference be- 
tween  the radial and  tangential focal  powers. This focal power 
represents  the  uncorrectable focusing of the  rod.  The biaxial 
focal power is defined  by 

If a ray,  initially  polarized  in the x direction,  propagates  through 
the  rod,  its  intensity  after passing through  an analyzer oriented 
to transmit  the x polarization is  given by 

(R,(1)I2 = [1 - sin2(28)  sin2 y(r)] IR,(0)12. (60) 
For large Q, such  that  y(d/2) 2 7r/2, the  rod  distorts  the  inten- 
sity  pattern  of polarized optical beams as well as causes biaxial 
focusing. Note  that  the  magnitude  of  the  effect  depends  upon 
the  product of the  power  density  and  the  length.  Thus, increas- 
ing the overall length while proportionally decreasing the  power 
density  does  not improve the  performance.  In  rod  geometry 
lasers, stress induced birefringence restricts  the average power 
output  from  a polarized laser oscillator to  a level well below 
the average power  set by biaxial focusing and stress fracture. 

2) Slab of  Injinite  Extent: In the Cartesian coordinate sys- 
tem  appropriate  for  the slab symmetry,  the  nonzero  compo- 
nents of the  index  of  refraction  tensor are 

1 1 1  - 

f b  f0 f, ’ 
Substituting  (53) and (54)  into (55) yields 

1 

where Bl - Bl, is recognized as the stress optic coefficient AB. 
Rewriting Q in  terms  of  the  absorbed  thermal power P, = Q . 

V, where Vis  the volume of the  rod, gives 

1 - pu 
f b  xd2Ms 

[Bl- Bill. (57) For  a  beam propagating  straight through  the slab parallel to 
the z axis, the  submatrix  perpendicular  to  the axis of  propa- 
gation is already diagonal. The  indexes  of  refraction are given 
by  (61)  with  temperature  and stress distribution  from (33) and 
(34). Thus 

Note  that  the biaxial  focusing is  independent  of  the  length  of 
the  rod  at  constant  input power. 

Not  only  do  the  optical beams suffer biaxial  focusing, they 
also suffer  position  dependent  depolarization. This  depolariza- 
tion is most easily analyzed  by  considering  rays  propagating 
through  the  rod  and ignoring diffraction effects. A ray, R ,  tra- 
veling through  the  rod parallel to  the z axis at  position ( r )  and 
propagating  according to (46) suffers a phase  delay between  the 
entrance plane (z = 0) and  exit plane (z = I )  that  depends  on  the 
position and polarization  of  the  ray. In the (r)  coordinate sys- 
tem  the  solution  to  (46) is 

n, = n: (I - 
ny = n; (I - .EL 2 Y2) 

where 

e ik,An,l 0 
= e ik,n,l 

0 e-ik,An,l 

dn  Qt2 
dT 24k 12Ms 

= y1+ _ _ _ _  - Qt2 Bl 

with with 

and 

r2 
An,(r) = no(a0 - a,) - = - Qr2 [Bl - BII  ] . 

4 16M, The  index  of  refraction  distribution  for  the x or y polariza- 
tions is approximately  that  of  a cylindrical lens-like medium. In  the x-y coordinate  system,  the  solution  transforms to 

where the  propagation  constant y is defined  by If a,12 << 1  and a,,lz << 1. where 1 is the  length of the slab, - .” 
y f k, An,l. (59) then  the ray matrix  for  propagation  through  the slab is equiva- 
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lent to  the ray matrix  for a  birefringent  cylindrical lens  com- 
bined with a propagation distance 1. The  focal  lengths  of  the 
birefringent  lenses  are 

1 
fy == 

Y 
t 

for x and y polarized  light,  respectively.  The thermal  and stress 
induced focusing for  propagation straight through  the slab is 
correctable  and is linear  in the  input power. 

the focal lengths  of a  slab,  shows that  when  thermal focusing 
is greater  than stress induced focusing,  which is the case for 
glasses with  nonzero dn/dT, then  the slab has twice the  focal 

Comparing (54) for  the  focal  length  of a rod  with  (65)  for \ 

the zig-zag path eliminates  focusing  in the slab. 
The rectilinear infinite slab, by  the  symmetry  arguments given 

above, has stress tensor  components  that satisfy the  equality 
a,, = a,, in addition  to ayy = 0. Thus  for  incident  radiation 
polarized  along either  the x or y direction  the stress induced 
depolarization is zero. 

C. The Zig-Zag Optical Path 
1)  Introduction: In the previous section we considered propa- 

gation  straight  through  an  infinite slab.  This  choice of laser me- 
dium  symmetry  eliminated stress induced biaxial  focusing and 
depolarization. However, the focusing  along one axis of  the 
slab was increased by  about a factor  of  two relative to  that  of 
a rod.  The focusing  in the slab can  be eliminated  by choosing 
to  propagate along  a zig-zag optical  path.  In  the zig-zag geom- 
etry,  the  optical beam does  not travel  parallel to  the z axis, as 
was the case for  the  straight-through  optical  path.  Instead  the 
beam  traverses the slab at  an angle with respect to  the X-z 
plane using total  internal  reflection  from  the slab y faces.  This 
geometry is shown  in Fig. 3. The zig-zag optical beam path can 
be achieved by  refraction  from  the  input window of the  slab, 
as shown in Fig. 3(a), or  by  orienting  the slab at  an angle with 
respect to  the  direction  of  the  incoming beam as shown in Fig. 
3(b). It should be noted  that  the zig-zag path can also be 
achieved through  external reflecting  surfaces as is done  in ac- 
tive mirror amplifier designs. 
2) Depolarization: Since the zig-zag optical beam path is no 

longer  parallel to  the slab z axis, the  question arises as to whether 
the  Jones  matrix  for  propagation  through  the slab is still diag- 
onal in the  optical  beam x-y frame.  The  matrix  for  transmit- 
tance  through  the slab’s input  window is diagonal in  the x-y 
frame because the x axis is parallel to  the  input plane. The ma- 
trix  for  total  internal  reflection  from  the side surfaces is also 
diagonal in  the x-y frame because the x axis is parallel to  the 
plane of  the side surfaces.  Since the refractive index  tensor  in 
an  infinite slab is diagonal  in the slab x-y-z frame, a rotation 
about  the x axis  yields  a new tensor whose submatrix, perpen- 
dicular to   the new z axis, is also diagonal  in the new x-y frame. 
Thus, all of  the  component  parts of the  Jones  matrix  for  propa- 

gation  through  the slab are  diagonal  in the zig-zag optical  beam 
x-y frame.  Therefore,  we  conclude  that  the  Jones  matrix  for 
propagation  through  the slab must also be diagonal in  the zig- 
zag optical beam x-y frame  and  thus  properly polarized beams 
suffer no  depolarization. 

In practice, slab configured laser media  only  approximate  the 
ideal infinite slab thus far assumed. In slab media of finite ex- 
tent oyv is not  zero everywhere and numerical calculations  must 
be performed to determine oyy and  the resulting  stress induced 
depolarization.  The discussion of  such a numerical analysis and 
results are  presented in Part I1 of  this  paper. However, we an- 
ticipate  the  results  by  noting  that in  a 3:  1  aspect ratio glass 
slab, thermally  loaded to  the stress fracture  limit,  the  peak de- 
polarization calculated using our  model is 30 percent  near  the 
uncooled edge while the average depolarization over the  entire 
area of  the slab is less than 3 percent.  Thus,  the slab configura- 
tion shows  significantly reduced  depolarization  compared to a 
thermally  loaded  rod  geometry media. 

3) Focusing: In the zig-zag optical  path all undeflected  rays 
suffer the same average phase retardation  due  to  thermal effects. 
Thus  the zig-zag optical  path  eliminates  first-order focusing 
effects. 

A more  detailed ray  tracing  analysis has  been  performed 
[ 131 and  confirms  this  argument. A result of  the ray  tracing 
analysis shows  that  the  optical phase distortion  induced  by  the 
slab is proportional  to 13a;/N2 where N is the  number  of 
bounces in the slab and ay is given by  (64b).  For reasonable 
slab geometries, the  second-order focusing effects  are  not sig- 
nificant  until  the  input power exceeds  the stress fracture limit 
by  more  than  one  order  of  magnitude. 

Focusing effects linear in  the  pump  power in zig-zag optical 
path slab geometry lasers  can arise from  three  different  effects. 
Under thermal  loading  the  induced stress  leads to surface bulge. 
Since the  optical  path includes  reflections from  two  of these 
surfaces this bulge causes focusing effects.  Furthermore,  the 
bulging of  the  entrance  and  exit faces and  index  gradients  in 
these regions  cause  beam  focusing.  Direct  flashlamp pumping 
of  the  entrance  and  exit faces is not  recommended as this causes 
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a significant  focusing effect. These effects  are  present  in  rod 
laser  systems, but are  usually  insignificant compared to  the 
bulk focusing. 

These  surface bulge and  end  effects are  measurable  in slab 
laser systems  due  to  the absence of  the bulk  focusing effects. 
Both  effects are correctable in the  central region of  the slab. 
Focusing may also arise from  nonuniform  pumping  or cooling 
of the slab. Care must be taken  to ensure that  the  reflector 
structure  uniformly illuminates the slab and  that  the cooling 
geometry  maintains  a nearly constant surface temperature on 
the slab. The  arguments  presented  here  apply  to  an  infinite slab 
and  thus, neglect boundary  effects. Focusing due  to surface 
curvature  induced  by stress is also neglected.  These effects are 
not easily treated  analytically  but can be calculated by  the  nu- 
merical methods  that are  described  in Part I1  of this  paper. 

The zig-zag path  eliminates  first-order  thermal  and stress in- 
duced focusing in  the  thermally  loaded  infinite slab. The elimi- 
nation  of  both birefringence  and  focusing by use of  the zig-zag 
slab geometry  permits  the design of high-power  solid-state lasers 
that are performance  limited  by stress fracture  of  the  medium. 

IV. SLAB LASER SCALING LAWS 
A.  Introduction 

It is very  useful in  a laser design process to  have scaling laws 
for  parameters  that  affect  the laser performance. In this  section 
scaling laws for slab geometry lasers are considered. 

B. Temperature and Stress 
The  temperature  profde  in  the  central region of  the slab is 

assumed to be equivalent to  that of the  infinite slab temperature 
distribution given by 

T(x ,  y )  = f$ [i - (2y/t)i] + T,. 

Here T(x ,  y )  is the  temperature  distribution  in  the slab, T, is the 
average temperature  of  the  slab, k is the  thermal  conductivity, 
and t is the slab thickness. If the  end faces are not  perfectly in- 
sulated,  the  temperature  distribution deviates from  the  infinite 
slab model near the  end faces. This deviation decreases expo- 
nentially with distance from  the side face with  a  characteristic 
length  of half the slab thickness. 

The stress on  the reflecting  surface of  the slab can also be de- 
termined  from  the  infinite slab model.  The surface  stress us is 
given by 

where the  material  parameter M, is defined  by (28). 
The  surface stress  can  be  expressed  in terms  of  a  temperature 

difference AT between  the  center  of  the slab ( y  = 0) and  the y 
face ( y  = t / 2 )  using (66) in (67)  by 

2 k  
U, = - - AT. 

3 Ms 
Thus,  the surface  stress depends  on  the  temperature difference 

and is independent  of  the average temperature  of  the slab T,. In 
operation,  the surface  stress us must be maintained  at  a safe 
level below the  fracture stress omax to prevent  fracture of the 
slab. 

C. Gain, Repetition  Rate, and  Average Power 

The gain in the slab is determined  by  the  stored  upper level 
energy density, E,. The  heat  generated  in  the slab arises from 
quantum inefficiencies and  the  quantum  defect  in converting 
pump  photons  into  excited  state  population.  The  stored  upper 
state energy density per  flashlamp pulse can be related to Q by 

Q=E,RX (69) 

where R is the  repetition  rate  and x is the  ratio  of  the energy 
dissipated as heat to  the energy stored  in  the  upper level of the 
laser medium,  For  typical  Nd: Glass and  Nd: YAG flashlamp 
pumped lasers x lies between 1 and 2 and  depends  on flashlamp 
current  density,  spectral filtering, and pulse length. 

The unsaturated single-pass gain is given by 

where Esat is the  saturation  fluence, lp  is the  path  length of the 
beam through  the gain medium,  and go is the  unsaturated gain 
coefficient. 

Assuming operation  at  one  half  the stress fracture  limit,  the 
repetition  rate is given by 

where (70) has been used  along with  (67a  and  67b). The total 
optical energy stored  in  the slab per flashlamp  pulse, J = E,, V ,  
is 

J = Eat In ( G o )  7. lwt 

LP 

The average power extracted  from  a slab laser at  the  extraction 
efficiency vex is given by 

(73) 

where R,  is the  material figure of merit given in (29). Thus,  the 
average output  power  of  a stress fracture  limited slab laser scales 
as the  product of slab length times width  and inversely with slab 
thickness.  This  can be compared  with  a  rod laser which scales 
linearly with length. The slab offers  a  potential average power 
improvement  directly  proportional to  the aspect ratio wit. 

V. CONCLUSION 
In  this paper we have presented an analysis of  thermal  and 

stress induced  effects  on  optical  propagation  through  a  rod,  slab, 
and zig-zag optical  path slab medium.  The analysis was limited 
to  the case of  an  infinite  rod  and slab. The  finite slab case, 
which  requires numerical methods of analysis, will be treated 
in  Part I1 of  this paper. 

The  rod  geometry laser average output  power is limited  in  turn 
by  thermal  and stress induced birefringence, biaxial focusing, 
and  ultimately  by  thermal  induced stress fracture. In practice, 
except  for special athermal glasses, laser operation is severely 
hindered  by  thermal focusing well before  the stress fracture 
limit is reached.  Athermal glass still exhibits biaxial  stress fo- 
cusing. If polarized laser output is required  for Q-switched 
operation  or  for  efficient conversion via nonlinear  interactions, 
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thermal  induced birefringence sets  an even lower average power 
limit for  rod  geometry lasers. 

In the slab geometry laser, symmetry  eliminates stress induced 
depolarization  and  the zig-zag optical  path cancels first-order 
focusing. Thus,  the zig-zag optical  path slab laser can  be  de- 
signed to  operate  at  an average power level limited  only by 
the stress fracture  of  the laser medium. 

Stress calculations show that  the  thermally  induced stress is 
proportional to the  temperature difference between  the  center 
of  the slab and  the  cooled faces. The  temperature difference in 
turn scales with  the  input  heat energy  per unit volume and  the 
slab thickness  squared.  Thus long thin slabs offer high average 
power output  without  thermal  and stress induced focusing or 
depolarization.  Experimental studies, which have confirmed 
the  expected slab geometry advantages, will be presented  in 
Part I11 of  this paper. 

The slab geometry  offers  the  important advantage of laser 
media selection based on laser parameters  of  interest  without 
the  concern  for  thermal or stress induced focusing. Thus laser 
media  can  be  selected with good thermal/mechanical  properties 
without regard to dnldT. This opens  the possibility of reconsid- 
ering a number  of  potential laser glass and crystalline hosts  that 
had been  rejected  earlier as unsuitable  for  rod  geometry lasers 
because of large thermal focusing  effects. 

APPENDIX A 
THE DISPLACEMENT FUNCTION U(x, y )  

Since the  left-hand side is independent of x ,  the  right-hand side 
must also be independent of x ,  and  may  therefore be  evaluated 
at x = xo.  This  new  expression is integrated  with respect to y 
to yield 

This expression,  when  combined  with (A.2a),  yields an  expres- 
sion for Ux(x, y).  

Using the x-y symmetry  of  the basic equation,  it is clear 
that 

In this appendix  the  problem of determining  the displacement  This expression,  when  combined  with (A.2b),  yields an  expres- 

In  two dimensions, the  equations relating strain  and displace-  Noting that (A.3c) is valid at  the  point x. , y o ,  it is Seen that 
function 0 from  the  strain  tensor P is considered. sion  for Uy(x, y).  

ment are there are three  independent  constants  of  integration: 

(A. 1 a) 1) Uy(xo, yo)-corresponding to a rigid body  translation 
in t h e y  direction. 

2) Ux(xo, yo)-corresponding to a rigid body  translation 
(A. 1 b) in  the x direction, 

Noting that  the  equation  set is invariant under  the exchange a 
of x and y ,  Ux(x, y )  may be found  and  symmetry used to solve 
for U,(x, y ) .  Equations (A. 1 a) and (A. 1 b) may be integrated 

x=xo -corresponding to a rigid body 
Y‘YO rotation  about  the z axis. 

to yieid Choice of  these  constants,  and  the use of  (A.lc)  and (A.2a), 
(A.2b), (A.4), and  (AS), yield unique values for UX(x,y) and 

Ux(x, Y )  = I’ Exx(Xf,  Y>  dx’ -t U X ( X 0 ,  Y )  (A.2a) 

Uy(X,  v> = f .,,(X> Y’> dY’ -t U y G ,  Yo).  (A.2b) INDEX OF REFRACTION  TENSORS 

aY j-1 + E X X ( X 1 >  u)  dx’ available directly. These other  tensors are the  piezo-optic  ten- 

U y k  Y ) .  

X0 APPENDIX B 
Y RELATIONSHIP  BETWEEN THE STRESS OPTIC AND 

YO This paper uses the stress optic  tensor 2 to calculate the 
Using these  equations, (A. 1 c) may be used to yield  change in  the  index of refraction resulting from a mecha_nical 

stress, according to (39).  The  coefficients  of  the  tensor can 
auX be  calculated from  other  tabulated  tensors  when  they are not 

~ G o ,  v) = 2Exy(X ,  Y> - 

a. Data  for  many crystals can be found  in  Landolt  and Bornstein 
sor G, the  elasto-optic E,  and  the elastic compliance  tensor s. 

~ y y ( X ~  Y’> dY’ - uy(X,Yo). [26]. 
The  piezo-optic  tensor 4 gives the change in  the  optical  in- 

(A.3) dicatrix, b, due to stress. In  the  coordinate  system  that diag- 
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onalizes the  index  of  refraction  tensor,  the  indicatrix will be 
diagonal as well, and is given by 

For  a general coordinate  system  the  relation is 

The  perturbed  indicatrix is written in terms of the stress 6, 
the  unperturbed  indicatrix 6, and  the  piezo-optic  tensor  accord- 
ing to 

b.. = bg. + 4 . .  0 
17 11 q k l  kl. (B.3) 

k l  

It can be shown  that  the stress optic  tensor B can  be written 
in terms  of 4= using the  equation 

B.. Z - 1  n .  
2 zm mnnnpqpjk l .  

mnp 

For an isotropic  material  this simplifies to 

BII = - n 3  411 

1- 2 1. B - - L n 3 q  

For  many crystals, the  elasto-optic  tensor 5 is tabulated. It 
is used to express  changes  in the  indicatrix  proportional  to  the 
strain in the  crystal, E. The  expression for  the  perturbed  in- 
dicatrix in terms of strain is 

The  tensor 4 can be written  in  terms  of a and  the elastic 
compliance  tensor 3 according to 

The values of  the various tensors are tabulated in the  reduced 
matrix  form,  introduced in Section 111. This form allows for 
simple two  index  tabulation of the  four  index  tensor  and allows 
the relationships between  tensors  to be replaced by  matrix mul- 
tiplication. Certain factors  of  two are  needed  in the  transfer 
from  four  indexes to two.  For  the  compliance  tensor 9, 

s.. = s  mn m and n both are 1,  2, 3 

2Sijkr = S,, either m or n are 4, 5, 6 ;  not  both 

4 S i j k i =  S,, both m and n are 4, 5, 6. iB.8) 

For  the  piezo-optic  tensor 4 

For  the  elasto-optic  tensor E 
P k j k l  = Prnn all m, i-2. (B.lO) 

For  an  isotropic  material,  the values of Bli = B11 and B l =  
B12 can  be written  in  terms of p l l  and p l z ,  if Poisson’s ratio 

v and  the  modulus  of elasticity E are known.  The  relations are 

1 
Bl =E [P12 - 4Pll  +P12)1. (B.11) 
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Velocity-Matching  Techniques for Integrated  Optic 
Traveling  Wave  Switch/Modulators 

ROD C. ALFERNESS, STEVEN K. KOROTKY, AND ENRIQUE A. J. MARCATILI, FELLOW, IEEE 

Abstract-We propose  and  analyze  a  new  technique  for achieving 
velocity  match  between  the  traveling  wave  electrical  drive  and guided 
optical signal for  modulators  in  substrates  for  which  there is an inherent 
mismatch.  The traveling  wave electrodes  are  laterally  shifted  periodically 
to reverse the  direction  of  the  applied  electric field within  the  optical 
waveguide which  exactly  compensates  for  the  polarity reversal caused 
by  the  microwave-optical  walkoff.  Consequently,  the  electrooptically 
induced  phase  shifts of each  section  add in phase  and several sections 
can  be used to reduce  the  required  drive voltage at  the design frequency. 
This  artificial  velocity-matching  technique  moves  the  mismatch-limited 
bandwidth to an  arbitrarily high  design frequency. In addition,  we  ex- 
tend  the  new  concept of phase reversal and  the previously  suggested 
technique  of  intermittent  interaction  by  proposing  electrode  structures 
with large inactive to active  aspect  ratios.  This  generalizatiofi provides 
increased  flexibility  for  manipulating  the  total available bandwidth  to, 
for  example, allow efficient  modulation  by  a  train of arbitrarily  short 
electrical pulses. These  techniques  are  ideally  suited for several proposed 
integrated  optic devices, including  picosecond  samplers  and  gates,  which 
require  strong  overmodulation at  a single  high frequency. 

T 
I. INTRODUCTION 

RAVELING wave integrated  optic  modulators  fabricated 
in  substrate materials for  which  the  optical  and  micro- 

wave velocities are equal  offer  the  potential  of very broad 
modulation  bandwidth [ 1 ] . However, for  important materials 
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such as lithium  niobate  there is an  inherent  mismatch  between 
the  optical  and microwave velocities.  As a  result,  the  maximum 
achievable drive frequency decreases as the  modulator  length 
is increased.  Conversely, to  lower  the drive voltage and  power, 
a long device length is required.  Thus,  a  tradeoff  must be 
made  between  maximum drive frequency and required drive 
power. 

To overcome this  material  limitation,  the  concept  of effective 
velocity matching based on device structure  or  geometry  has 
been proposed  for bulk optical  modulators.  Such velocity- 
matching schemes are of two types. In the  first,  which we refer 
to as real velocity matching,  the speeds of the colinear prop- 
agating RF and optical signals are made equal.  This is gen- 
erally  accomplished by using a  two  dielectric  structure  with 
a significant part  of  the microwave  energy  propagating  in a 
material of lower  microwave index  than  the  electrooptic  sub- 
strate [2].  Except,  for microwave dispersion,  the velocity 
match is broad-band  and  thus well suited  for  modulators. 
However, this  technique is generally  inefficient  because the 
microwave  energy that  propagates  in  the  lower  index  material 
does  not  contribute  to  optical  modulation. 

The second approach,  which is the  subject of this  paper, we 
refer to as artificial  velocity matching.  Although several arti- 
ficial velocity-matching techniques were proposed  for bulk 
modulators, few successful experimental results have been re- 
ported [3]. With the  flexibility in design and  fabrication of 
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