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Transform Methods for the Study of

Distributed Lags

by

Robert E. Hall

Transform methods for studying time~invariant dynamic systems
have proven to be so useful for both theoretical and empirical work
in other sciences that it is somewhat surprising that econometricians
have made relatively little use of these methods. The association
of transform methods with spectral analysis, which has yet to achieve
any marked success in econometrics, may account for part of this
unpopularity. The purpose of this paper is to present a general
approach to the analysis of distributed lags, based on the use of
Fourier transform methods. We hope to show that this approach gives
the econometrician certain advantages in specifying and estimating

distributed lag relationships.



Our emphasis is on the problem of obtaining the most precise estimates
possible of the lag structure in the standard econometric distributed lag
model. The plan of the paper is the following: In the first section, we
present the basic Fourier transform method which we will use throughout
the paper, in both continuous and discrete time. We state and prove the
well~known convolution theorem, which shows that a distributed lag model
has a much simpler structure in the frequency domain than in the time
domain. We discuss the relation between the continuous-time formulation
of a distributed lag model, which is convenient for some analytical purposes,
and the discrete~time formulation, which is essential for practical empirical
work., The two formulations are shown to be equivalent if the model in
continuous time meets certain requirements of smoothness.

In the second section we turn to the problem of the specification of
distributed lag functions. Some advantages of the Fourier transform approach
in unifying the analytical and cqmputational treatment of distributed lags
are mentioned. A new lag specification, and some more flexible versions
of old specifications, are discussed in terms of their Fourier transforms.
There is no closed-form expression for these lag functions in discrete time,
but they represent an interpolation of straightforward lag functions in
continuous time.

The third section is devoted to the derivation of best estimators in
the frequency domain for the case of a very simple stochastic specification.
The problem of estimating nonlinear parameters is also touched upon.

The section concludes with a discussion of certain derived estimates

and their sampling properties.



In the fourth section we investigate the consequence of a more
general stochastic specification. We call attention‘to some results
on the efficiency of ordinary least squares when applied in the presence
of autocorrelation; frequency domain methods are particularly convenient
for studying this problem. Finally, we consider estimation methods which
are more efficient than ordinary least squares. Our conclusion is
skeptical of the value of elaborate methods of spectral analysis in
estimating distributed lags. We finish with a proposal for a rather simple
estimator which should provide quite efficient estimates of lag
functions in the presence of disturbance processes of the kind usually

found in econometrics.



1. Discrete and continuous time series

For reasons which should become clear in the course of this paper,
we have chosen to write the basic distributed lag model in terms of
variables which are measured continuously over time:

T
(L) y(£) = J B(t)x(t - 1) dt .

o
Here x(t) is the independent variable, B(t) is the distributed lag
function, and y(t) is the dependent variable. We assume that we

<

observe x(t) and y(t) over a period of observation O = t T.
Furthermore, (here we depart from econometric convention) we assume
that x(t) and hence y(t) are periodic functions of time, with period T,
so that x(t) = x(t = T) = x(t - 2T).... This assumption permits us

to dispense with complicated corrections for end effects while
retaining an exact theory. In empirical work it is justified if

x(0) is close to x(T) and if B(t) is close to zero for all values

of greater than a small fraction of T. Both of these conditions

are likely to be met in ordinary econometric work.

Next we define the Fourier transforms of these functions:




T -iw,t
(1.2) X(wj) = fe Jx()dt ;
o
T -iw.t
(1.3) Bw,) = f e g dr
3 o
: T -iw.t
(1.4) Yw,) = S e I y(t) dt
3 o
i = =—2~Il =—£I—[ ——izn
for frequencies W, 0, Wy =T Wy T ceeo wj =T
- - 2 e The Fourier transform provides a useful

w .,
—J T 4
alternative view of the function; its original form can be recovered from

the Fourier transform by applying the inverse Fourier transform. For

example, x(t) is given by

1 iw,t
(1.5) x(t) = = Ze 3 X(,)
T ._ J
J——m
The usefulness of the Fourier transform in the study of distri-
buted lags is shown in the

Convolution Theorem

T
If y(t) = J R(t)x(t - 1) dt ,
o
then

(1.6) V(mj) = B(wj) X(wj) for all j.



The proof is very simple. ! First,

iw, (t-1)

(1.7) B(T)x(t - 1) = y e J 8(1) X(wj) .

Next we integrate both sides over 1 to get y(t):

T
(1.8) y(t) = J B(D)x(t - 1)
o
oo iw,t T -iw.,T

=i:l' L oe dX(,) fe 13 8(t)dr
j:—oo J o

_1 oo eyt

=3 jiume X(wj) B(wj) .

Thus y(t) is seen to be equal to the inverse Fourier transform
of X(wj)B(wj), so its Fourier transform must be exactly X(®j)3(wj),
as asserted.
The next step in our approach is to reconcile the continuous
view of time just presented to the empirical constraint that x(t)
and y(t) are observed only at discrete intervals of time. For simplicity
we will assume that x(t) and y(t) are sampled once per unit of time.
We let X = x(t) and Ve T y(t) for t =1, 2, 3, ..., T; from this
point on we will assume that T is an odd integer. Our basic
question is: Under what conditions is there a distributed lag model

in discrete time,

IThis proof is borrowed from Parzen [13], who discusses some of the
ideas of this section from a rather different point of view.



(1.9) y. = I Bx

which is operationally equivalent to our original continuous-time

model expressed in equation 1.1? In general, it is clear that such

a discrete representation will not exist, since it fails to take account
of the behavior of x(t) between the observed points, X, . The requirement
that the set of points X, give a complete picture of x(t) is essentially
a requirement that x(t) move smoothly and predictably as a function of
time. One interpretation of smoothness which is particularly convenient
for our present purpose is the assumption that x(t) be representable

as the superposition of T harmonics:

1 N iwjt -
(1.10) x(t) = = L e X(w,) ,
T ._ J
j=-N
T -1 . . . . .
where N = 5 . It is easily verified that if x(t) has this property,

its Fourier transform is

<

fl

(1.11) X(w,) f((wj>, 1] N

= 0 otherwise.

Time series whose Fourier transforms vanish above a certain frequency

are said to be bandlimited at that frequency. Our assumption, then,



is that x(t) is bandlimited at the frequency Il radians per unit of
time.! We note as an immediate consequence of the convolution theorem
that y(t) is bandlimited at the same frequency as x(t).

Next we define the discrete Fourier transform of the sequence xt:

T -iw, t
(1.12) Rw) = 1 e 3 « 3]
J t=1

An immediate question is: What is the relation between the discrete
Fourier transform of xt and the Fourier transform, X(w,), of x(t)?

h|

Ry substituting the inverse transform expression for X, in equation 1.12,

we get
T -iw,t o iw, t
(1.13) Xw) = v e 3 -115 5 e K X(w,)
J t=1 k=ew
o T i(w ~w,))t
= -% I X(w) I e k3 .
k=~ t=1
Now
T i(wk—w,)
(1.14) I e = T if we w, = 2 n, where n is some integer
t=1 J
= 0 for all otlker k,j.
Thus

1one possible justification for this assumption is that if higher frequencies
of an economic time series contaired further information, data would be
gathered more frequently. Thus national income is reported quarterly and
stock prices are reported hourly.



-2}

(1.15) k(wj) = ¥ X(w

+ 20In)
n.—.—oo j

or the discrete transform is the sum of the values of the continuous
transform at all frequencies which are indistinguishable if sampling
is done only once per unit of time. The discrete transform of the
sampled values does not give any useful information about X(wj) in

the general case. But under our special assumption that x(t) is band-
limited at the sampling frequency, all of the terms in the summation

in equation 1.15 vanish except the term for n = 0, so we have

(1.16) ’)‘Z(wj) = Xy for |4 SN .
It is the fact that these two transforms are identical that establishes
the crucial link between the underlying theoretical view of distributed
lags, expressed in continuous time, and empirical work, which is
necessarily carried out with discrete data.

Having derived the relation between the Fourier transforms of x(t)
and x,, we turn now to the relation between x(t) and X, themselves.

t

Under the bandlimiting assumption, x(t) is given by

iw,t
e J X(wj) .

i~ =

(1.17)  x(t) = %

j=-N

’\1
For X(mj) we may substitute X(wj) as given in equation 1.12:
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1 N in,t T -iw,0
(1.18)  x(t) = 3 I e e Jx
j=-N =1
1 T N iw, (t-9)
= T z Xq LI e
6=1 j=-N
Now
N  diw,(t-6)
(1.19) T e 3 =3 cos [w,(t - 8)]
j=-N j=-N J
= T ift= 6
= 0 if t is an integer different from 6.

By defining the interpolation function, s(u), as

1 N
(1.20) s(u) = = I cos w.,u
T .
J =_N

we obtain the sampling theorem,

(1.21) x(t) =
8

N~

s(t - 9)x
1 6
That is, the original function x(t) can be reconstructed from a sample
of T points by applying the weights given by the interpolation function.

Except in the case of an integer value of t, all of the sample points
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enter the expression for any single point of x(t).

The sampling theorem enables us to give a direct answer to the
basic question raised earlier as to whether there is an operationally
equivalent distributed lag model of the form

L

1.9 y, =

t

T
T t-1
T

1
Ex .
0

We start from the basic model,

T
(1.1) y(t) = J (1) x(t - 1) dt
)

and substitute the expression for x(t - 1) from the sampling

theorem to get

T T
(1.22) V. = y(t) [ B(1t) & s(t -1 - e)x6 dt
o o=1
T T
= X xe S B(t)s(t - 1 -06) dt .
6=1 o

Since we are restricting our attention to integer values of t, we can

substitute u = t - 6 to get

t-1 T
(1.23) y = z X¢oy S B(1)s(u - 1) drt
t [o]
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Now both X, and s(u) are periodic functions with period T, so we may
add a multiple of T to u without affecting the value of Yoo If we add
T to u for all values of u which are negative in equation 1.23 and change

the order of summation, we get

T-~1 T
(1.24) Y, = b) Xy S B(t)s(u - 1) dT .
u=0 o
Letting
" T
(1.25) Bu = [ B(1)s(u - 1) dt
0

we have the equivalent discrete form,

T-1 "
(1.26) Ve = I B x

u=0 u t-u
The answer to our basic question, then, is in the affirmative--there is
a discrete model which is exactly equivalent to our original continuous
model.

We recall that the convolution theorem establishes that

(1.6) V(wj) = B(wj) X(wj)
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It is possible to show that the convolution theorem also holds for
discrete Fourier transforms; this establishes a similar result

for the discrete model:

v v

4"
(1.27) V(wj) = B(wj) X(wj) .

Y N\
But since X(w,) = X(w,) and Y(w,) = Y(w,) for all |j] = N, and
J J ] J "
equation 1.27 is assumed to hold identically for all X(wj), we have

\

<
(1.28) B(wj) = B(wj) , [3] = N .

v
Thus BT is given by the inverse discrete Fourier transform of B(wj):

iw

LT
(1.29) e I B(wj) .

we
1}
=l
i~ =2

j=-N

This is an alternative formula for ET; it is clearly preferable for
computational purposes since it replaces an integral wiﬁh a finite
summation. In addition, equation 1.29 shows that ET is a smoothed
version of B(t) obtained by dropping off the higher frequencies in
the infinite sum of harmonics which describes B(1). As we shall show
in the next section, this formula gives a very natural answer to some
questions of smoothing and interpolation which arise in the specifi-

cation of distributed lags.
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2. The specification of distributed lags

The recent proliferation of distributed lag specifications ‘(a
partiél bibliography appears in [8]) has made it clear that a unified
treatment of altérnative specifications would have many analytical
and computational advantages. Analytically, it would make it
unnecessary to derive new formulas for deducing lag coefficients from
estimated coefficients or new formulas for sampling properties, mean
lags, and the like; that is, it would provide a general solution
to the unscrambling problem. Computationally, it would make it
unnecessary to develop a new computer program for each new lag
specification.

The Fourier transform approach appears to provide both of these
advantages, and several others as well. In particular, it offers a
solution to the problem of interpolating between the integer values
of certain parameters of discrete lag distributions. The simplest
of such problems arises in the rectangular lag distribution,.defined

as
(2.1) B = a for 0=t =p -1

0 otherwise.

1
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Here the parameter, p, gives the number of periods covered by the
distribution; it is restricted to integer values. Since oxdinary
estimation methods require that a parameter for estimation be able
to take on any real value, it is conventional to assume a value for
p rather than to estimate it.

If our underlying view of the lag mechanism is formulated in
terms of continuous time, however, there is a natural solution to
the problem of defining a real-valued parameter which is in some
sense equivalent to p. In continuous time, the rectangular distri-
bution is

<

(2.2) B(1) = a if 0= ¢S o,

=0 otherwise.

The parameter which is equivalent to p is labeled a, to indicate

that it is to be estimated along with o The Fourier transform

1’
of this distribution is
a, -iij
(2.3) B(w,) = [ e o, dr
] o 1
-iw, o
1 ~-e i2
= al )
iw
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y
The equivalent discrete lag distribution, Br’ represents one solution
to the interpolation problem. In terms of Fourier transforms, the

rectangular distributed lag model is:

(2.4) ‘ V(wj) =0

For particular values of ay and a, we could calculate the corresponding
LY
discrete lag function, BT, by applying the inverse discrete Fourier

transform,
N
(2.5) B = 3 I e 5 Mey

The felation between B(T) and BT is shown in Figure 1 for a
representati&e case.

The ability to estimate parameters which represent distances
along the lag axis suggests a lag distribution specification of

considerable flexibility. This is the step function,

< <
(2.6) B(t) = @y for 0 =1 = o,
<
= a3 for o, < T = a4
= q for a < T = o



o

.

v
JONE
7 ..
*
S
n
B(T),BT
92 T »
.
> 2
Figure 1.

(R

rectangular distributed lag function.

1

.

Continuous and discrete representations of the
Parameter values are

T =41, ap = .200, and oy = 5.0 in the upper plot and T
o, = .182 and ay = 5.5 in the lower plot.

17
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The Fourier transform of the step function distributed lag is

az —iij QM -iij
(2.7) B(wj) = ulf e dt + ... + Oy e dt
o Uy_n
-iw,a

I j 2
= I [ ml + (a3 al) e + ...

J

-iw,a
31°M-2
+ oy g " o%3)

Two advantages of this specification relative to existing
specifications should be mentioned. First, the total length of the
distribution, Oy is a parameter which can be estimated along with the
parameters governing the height of the lag distribution at each
point. Second, the parameters giving the locations of the steps in

the lag function, o,, « csey O , can lie anywhere in the interval
& 2 M-2 Y

4°
from 0 to Oy This enables the step function specification to coun-—

centrate its flexibility in the region where the underlying empirical
lag function requires it. By contrast, the well-known Almon specifi-
cation [1], which might be used for the same kind of problem as this

specification, has a fixed length and equal distribution of its

flexibility along the lag axis.
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All of the commonly-used distributed lag function specifications
have counterparts in the present framework. The counterpart of the

Koyck or geometric lag is exponential in form:

—0,T
(2.8) B(1) = o,e ;
its Fourier transform is

%1
(2.9) B(wj) = 32—_{_-1“—3" .

Similarly, the counterpart of the rational distributed lag has a
Fourier transform which is a generalization of formula 2.9:
!

(2.10) Bw,) = ;
J (o, + iwj)...(a + iwj)

M

its special case, the Pascal distributed lag, has the following

Fourier transform:

(2.11) B(wj) =
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The Almon or polynomial lag function,

_ 2 M~2
(2.12) B(t) = ay + a,t + gt + ... + Oy 1%
for O = T = Oy
= 0 otherwise,

has a Fourier transform which can be expressed conveniently in the

following way. Let

0LM XT
(2.13) y(x) = dr
o
A
X
Then
aM -iw.,T o -iw,T
(2.14) B(w,) = o,/ e 3 dt+oa, [1e 3 dt
3 1 2
0 o
o -iw.T
+a, fM Tze J dr + ..
o
o iw, T
M M-2 3
+ V] i T dt

= ulw (—iwj) + azw'(—iwj) + a3¢"(-iwj) + ...

+ a lw(M-Z)

v (-1w,)
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In most distributed lag studies the choice among alternative
lag specifications is purely empirical. One of the advantages of
the Fourier transform approach to distributed lag analysis is that
the estimating equation,

(2.15) V(wj) = B(wj) X(w,) + U(wj)

3
has exactly the same form for all specifications. The alternatives

can be compared to each other under precisely similar conditions,

and with the same computer program. Furthermore, the estimating
equation is of a form which is particularly convenient for nonlinear
estimation--only X(wj) enters the formula for V(wj), while in the
time-domain distributed lag model, not only X, but also X 1> X _o» oe-
enter the formula for Yeo It is impossible to set up a general
procedure for estimating distributed lags in the time domain, but

quite simple in the frequency domain.
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3. Stochastic specification and estimation

The natural stochastic specification for our model expressed

in discrete time is

3
A
A

(3.1) y. = 5§ 8x  +u 1

where the usual hypotheses about the disturbances are assumed to
hold: V(u) = UZI, u being the vector of values of u, . If we take

the discrete Fourier transform of both sides of equation 3.1, we get

A

(3.2) V@) = Blu) X(w) + Uy l3]

Suppose, for the time being, that the systematic part of the right

hand side of equation 3.2 can be written as

M

(3.3) Blag) X(up) = E oy 2, (up)

that is, the distributed lag specification underlying B(mj) has

M parameters, o ey Oy each of which enters linearly. For example,

l’
in the case of the Almon lag with fixed length,
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w(k_l)

(3.4) Zk(wj) = (-%wj) X(w,)

]
Then if we let Y denote the vector of length T of values of V(wj),
a denote the vector of length M of values of oy s Z denote the

T by M matrix of values of Zk(w ), and U denote the vector of length

k|

T of values of U(w,), our model is

3

(3.5) Yy = Za+ U .
All of these variables except a have, in general, complex values.
To derive the minimum variance linear unbiased estimate of o,

we first premultiply both sides by the matrix, F_l, of the discrete

inverse Fourier transform, to get
(3.6) Fly = Flia+ 4

The matrix F ' is given by

. , .
1m_N lw-N+l le
e e eee 1 ... e
21w_N 21w-N+l Lle
e 1 e
-1 1
(3.7) F = T
le_N le_N+l leN
e e ..o 1 ... e
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Under our stochastic specification, the MVLU estimator is
(3-8) o = wEHFgeEhFly

It is easy to verify that Z'(F_l)'F—l = %-Z* where Z* indicates the
transpose of the complex conjugate of the matrix Z. Thus the estimator

can be written more conveniently as

A

(3.9) o = (@Dl .

If B(wj) is rnot linear in all of its parameters, the estimation
problem is rather more complicated. One approach is to calculate
least squares estimates with the aid of a nonlinear minimization
algorithm, although relatively little can be said about the statistical
properties of these estimates. A very simple algorithm for this
purpose is provided by Gauss' method. For a vector of estimates

(k)

o at the k'th iteration, we calculate a new set of estimates from

the iteration equation,

&(k+l)

(3.10) (Z2%2) " F 7%

where Z is the matrix of derivatives of B(wj) X(wj) with respect to

a(k); its j'th row is given by
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aB(w,)

= 3
(3.11) Z(wj) X(wj) e s

and W is the vector VY adjusted for the implicit linéar approximation:

(3.12) W) = V() - Bl )X(w,) + Z(wj)&(k)

(k)

with B(wj) evaluated at the parameter values o Note that if the model
is linear in o, the two adjustment terms cancel, and Gauss' method reduces
to ordinary least squares.

We conclude this section with a brief discussion of the unscrambling
problem in distributed lag estimation. Our goal is to obtain general
formulas for the estimates of the distributed lag funétion, ér’ the variance-
~ covariance matrix of these estimates, an estimate of the sum of the lag
coefficients and its vériance, and an estimate of the mean lag.

Since the inverse Fourier trénsform is linear, the best estimates of

the lag coefficients can be calculated from a best estimate, BQuj), of the

Fourier transform:
(3.13) B = F

in this formula, F"l is the matrix of the inverse transform and B is the

vector of values of B(wj). If B(wj) has M parameters, Gys eors Oy and
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the variance-covariance matrix of the vector of estimates of these, a,

A

is denoted V(a), then an approximate variance-covariance matrix of 8 is

given by
(3.14) v = LB @ ¢ty
oa 20,

This formula is exact if the parameters enter linearly.
An estimate of the sum of the lag coefficients is provided by the

Fourier transform evaluated at frequency zero:

é(O) H

w“n >
I

(3.15)

an estimate of its variance is given by

3BO) 1y ye@a) ( 28O .

oo Ba

(3.16) V(Es) = (

To get a convenient form for the estimate of the mean lag, we make the

following observation:
(3.17) B'(0) = -i £ e 3 18 .

Thus an estimate of the mean lag is given by
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T=-1 .
% TBT ~
(3.18) wo= =0 . B
S B(0)

~

The approximation to the variance of py based on differentiation of this
formula has proven to be too unreliable for general use.

Specification of the Fourier transform B(wj) lies at the heart of the
proposed approach to distributed lag estimation and interpretation.
Significantly, for every well-~known lag specification, B(wj) can be
written in a simple expression involving only elementary arithmetic
operators and functions. This in turn implies that a computer program
endowed with the ability to handle simple functions analytically could
estimate and unscramble almost any distributed lag function. The lag
specification would be presented to the computer in a simple algebraic
statement of its Fourier transform. Since a number of econometric computer
systems currently in operation have the capability for analytical operations
upon functions, including the most important operation, analytical differ-
entiation, this is an entirely realistic‘proposal. In fact, it is the

potential computational flexibility which provides the main justification

for the use of transform methods in distributed lag work.
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4. More general stochastic specifications and the consequences of errors

in the stochastic gspecification

Experience indicates that the simple stochastic hypothesis discussed
in the previous section is not, in fact, a sufficiently general view of the
disturbance process in distributed lag models. Intertemporal dependence
seems to characterize the disturbances in almost all time series models.
For this reason, we find it necessary to adopt a somewhat more general view
of the disturbance process. By analogy with our assumption about the
systematic part of the distributed lag model, we will assume that a time-

invariant process generates the disturbances:
4.1 Uw,) = D(w,) V(w,
(4.1) (J) (3)(3)’

where V(wj) is the Fourier transform of a vector of disturbances, v, which
meets the Gauss-Markoff hypothesesl: E(v) = 0 and E(vv') = I (the variance
parameter, 02, can be absorbed into D). We note at this point that the

equivalent statement of these hypotheses in terms of the Fourier transform

is the following: E(V) = 0 and E(VV*) = I, where V is the vector of values

A

] N.

of U(wj) for -N
The best-known stochastic specification of this type is the first-

order autocorrelation model,

lHere we are implicitly assuming that the disturbance is periodic with
period T. Once again, this assumption is made to achieve exact results
at a small cost in realism.
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(4.2) U, = oeu g + v .

By taking Fourier transforms of both sides, we get

-iw
(4.3) Uw,) = pe 3 UGw,) + V()
or
4.4) Uw,) = L YW .
3 1w, j
1 - pe J

Thus for the first-order autocorrelation model,

(4.5) D(wj) - —1

=1iw,

1 - pe J

Under our general stochastic specification, the complete distributed

lag model is

4.6 Y(w,) = Bw,) X(w,) + D(w,) V(w,)

(4-6) (uy) 3 Xy i 3

Writing the model in this form suggests that the problems of specifying
and estimating the distributed lag function B(wj) and the disturbance lag
function D(wj) are symmetric and entirely comparable. Further examination

shows, however, that this is not the case. For the moment, suppose that
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D(wj) were known. Then we could divide both sides of equation 4.6 by U(wj)

to get a model which satisfies the Gauss-Markoff hypotheses:

Viw,) X(w,)
(4.7) — = Bw,) —L + V(w.)
D(wj) J D(wj) J

But there is arother transformation which also yields a model satisfying

these hypotheses. To show this we first define the real-valued function,
4.8 S(w,) = 0%(w,)D(w,)
(4.8) (J) (J)(J

Then we divide each side of the equation of the distributed lag model

by the square root of this function to get

Y(w,) Xw,)  D(w,)
(4.9) —Jd = B.) 4 L v(w,)
/S (wj) VA (u)j) a (wj ) J

A typical element of the variance-covariance matrix of the transformed

disturbance is

Nw.) 9*’(wk) P(w, )D*(wk)
(4.10) E | — V(w,) —= Uk ) = —J————E[V(w.)V*(wk)]
Ay AW /5w )5 Cuy) .
= 0 if § #k
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as required. That is, knowledge of the real-valued function S(mj) is

just as good, from the point of view of efficient estimation, as knowledge of
the complex—-valued function D(wj). The function S(wj) is the spectrum of the
disturbances, u- We have demonstrated the following important proposition:
In a model with a stationary (time-invariant) disturbance process, the
minimum variance linear unbiased estimates of the distributed lag

parameters (assuming they enter linearly) are given by weighted least squares

in the frequency domain; the weights are the inverses of the spectrum of the
disturbances. In other words, by taking a Fourier transform, the problem of
intertemporal dependence of the disturbances can be reduced to the problem
of heteroscedasticy.1

We will be able to offer a fairly complete discussion of the problem
of efficient estimation in the one-parameter linear model,

(4.11) V(wj) = al(w,) + D(wj) U(wj) .

3

The rectangular distributed lag function with fixed length, p, provides an
example of this case; o then gives the height of the lag function and Z(wj) is

given by

-iw.p
= l1l-e -
(4.12) Z(wj) = iwj X(wj) .

IThis property of stationary disturbances was pointed out by Grenander [5]

many years ago. Hannan [10] seems to have been the first to propose estimation
methods taking advantage of it. The weighted least squares interpretation and
an alternative estimation method were offered by Duncan and Jones [2].

v
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Investigation of the extent to which the results for the one-parameter
case can be generalized to several parameters is a topic for further
research.

Now the ordinary least squares (OLS) estimator of a is

N
T I*(w,) Y(w,)
~ _ i=—N J J
(4.13) s T . 3
T I*x(w,) Z(w,)
j=—N 3 3
its variance is
N
by Z*¥(w,) Z2(w,)S(w.
(4.14) V(o ) j=-N vy HeySy)
. o =
OLS "N 2
z Z2*%(w,) L(w,)
=N j i

-

On the other hand, the efficiently weighted least squares (EWLS) estimator

is
? Z*(Qig V(wj)
X j=-N S(wj)
(4.15) “ewLs = TN ZF e (o)
b . =
j:—-N S (wj )

and its variance is
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" - 1
N Z*(wj) Z(wj)

(4.16) V(

j=-N S(w,
J ( J)

The emphasis of our discussion will be on the problem of obtaining
efficient estimates of a, but it should be mentioned that the problem
of estimating D(wj) for its own sake is important in, for example, short-run
prediction.
Qur first question is: How serious an error do we commit by using
the OLS estimator instead of the EWLS estimator?' For this purpose we

define the efficiency function,

N 72
~ T I (w,) Z(w,)
V(a ) bl h| j
(4.17) $(2,8) = ——iWLST | 0 .
V(o.. ) N Z%(w.) Z(w,) 1| N
OLS b J J by S(w,) Z*(w,) Z(w.)
j=-N S (wy) j=-N J J

As a first step in answering our question, we state a theorem which provides

a lower bound on the efficiency of ordinary least squares:

Theorem: For a given spectrum, S(w,),

J
4
(4.18) ®(Z,8) 3
max min
2+ S . + S
min max

where S is the largest value of S(w,) and S_,
max i min

is the smallest value of S(wj).

IThis question was first investigated by Grenander [6]. Our discussion par-
allels Malinvaud ([12], pp. 437-439) in some respects. We also use a result
of Watson [15] and Hannan [11] to provide a lower bound on the efficiency of OLS.
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The proof is presented in Hannan ([11], p. 111].1 We note from that proof that

the lower bound is attained in the "worst case,"

(4.19) Z(wj) = 1 if wj =w .. or
w, = w .
3 min
= 0 otherwise,
where S(w ) = S and S(w , ) =S ., . In the typical case, the disturbance
max max min min

has its highest power at zero frequency and least power at the highest fre-

R A
quency, SO ® = 0 and Wi = I T

. Then in the time domain, a

worst~case right-hand variable is

T~-1

(4.20) Z = 1 4+ cos(H t)

We will also be interested in evaluating the efficiency of OLS for a more
typical case. The efficiency can be seen to depend only on the spectrum
Z*(wj) Z(wj) of the right-hand variable and on the spectrum of the
disturbances. A great many economic time series have roughly the same
spectrum, as C. W. J. Granger's very careful investigation has shown. The
"typical spectral shape" found by Granger is shown in Figure 2; it can be

represented mathematically as

(4.21) Z%(y.) Z(w,)
3 3 1 - 28§ cos wj + 8

}Hannan indicates that the same bound is approximately correct in the case
of several right-hand variables.
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Spectrum of a typical economic variable, with autocorrelation
§ equal to O0.7.
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From formula 4.5 we can see that this is the same as the spectrum of a
first-order autoregressive process with autocorrelation 6. The tendency

of the right-hand variable in a distributed lag regression to have roughly
this shape is particularly strong since the variable Z(wj) is derived from the

transform of a time series, X(wj) by multiplying by a function which

-iw,p

. . , ; ., 1 -e .
attenuates higher frequencies. This function is g in the case
J

of the rectangular distributed lag. For this reason, we will be particularly
concerned with the efficiency of ordinary least squares when the right-hand
variable has this spectral shape with parameter § close to omne.

The lower bound and some typical values for the efficiency of ordinary
least squares when applied in the presence of positive first-order autocorre-
lation are presented in Table 1. The lower bound is calculated by substituting

the minimum and maximum values of the spectrum,

(4.22) Uk )U) = Sw) = . )
J J J 1 - 2p cos wj + p
. . : T-1
into formula 4.18; the minimum occurs at the highest frequency, wy = I :
1
(4.23) S_, = -
min 1 - 2p cos T = I+ p2

T

and the maximum occurs at frequency zero:

(4.24) S . = ———
min 1- 2 + p2

1 - p)?
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Table 1

Efficiency of ordinary least squares for various values

of the autocorrelation of the disturbances (p) and of the right-
hand variable (8). The top line gives the lower bound for the
efficiency over all possible spectra for the right-hand variable.
The number of observations, T, is taken to be 75, but the results
are not at all sensitive to its value.

Lower bound 1 .698 .361 .116 .011
§ =0 1 .835 .600 .342 .105
§ = .5 1 .851 .600 .311 .079
§ = .8 1 .914 714 .389 .083
§ = .9 1 .951 | .813 .503 .104 ,
§ = .95 1 .974 .894 .649 .149
§ = .99 1 .998 .991 .956 .625
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The results shown in Table 1 suggest that the practical importance of
autocorrelation in distributed lag models has been somewhat exaggerated.

In the leading case, p = .5 and § = .95, the potential gain in efficiency
from an autoregressive transformation of the variables (that is, weighted
least squares in the frequency domain) is about 10%. 1In actual empirical
work, even this small gain is unattainable, since the parameter p is unknown
and must be estimated from a first stage regression.

The following explanation for this observation may be offered: The substan-
tial potential gain in efficiency from an autoregressive transformation, as
measured by the lower bound, is achieved by giving large weights to higher
frequencies and small weights to lower frequencies. But if the right-hand
variable has significant power only at low frequencies, as is almost inevitably
the case in distributed lag estimation, then the weights applied to
high frequencies are essentially irrelevant. The advantage of weighted
least squares can be obtained only with a right-hand variable with power at
both high and low frequencies.!

This observation may explain the puzzling finding of several authors?
that in the application of a two-stage method for correcting for
autocorrelation (such as Durbin's method, [3]), the results from the second
stage, after an autoregressive transformation, are almost identical to the
ones from the first stage.

This conclusion has a limited application. Table 1 also shows that if

the right-hand variable does have significant power at high frequencies

IThis point has been made by Grenander [6] for the case of polynomial or
trigonometric right-hand variables.

2Including the present author, in [7].
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(for example, if it looks like white noise, with § = 0), then the gain in
efficiency from weighted least squares may be substantial. Fortunately,

the spectrum, Z*(wj) Z(wj) can be calculated in advance, to find to what
extent the investigator need be concerned about the stochastic specification.
Perhaps it should be mentioned that it is precisely in cases where 2, has
power at high frequencies and the stochastic specification is important

that it is realistic to expect to estimate the fine details of the lag
structure, since these are essentially high-frequency attributes. If the
right-hand variable has the typical spectral shape, only the broad outline of
the lag function can be discerned.

With this warning, we turn to a second important question about the
stochastic specification: What is the potential loss in estimation efficiency
in using a weighted least squares estimator derived from a crude approximation
to the true stochastic specification instead of the efficiently weighted
estimator? This question gains relevance in view of the proposals of
Phillips [l4] and others to estimates relatively complicated disturbance
processes in econometric time series models. If in fact a crude approximation
does almost as well, the effort devoted to estimating a complicated disturbance
process may be wasted insofar as it is directed toward the goal of increasing
the efficiency of the coefficient estimates. Our method in investigating this
question will be to calculate the efficiency of arbitrarily weighted least
squares (AWLS) relative to the EWLS estimator for the true disturbance process.

For an arbitrary set of weights, w(w4), the AWLS estimator is

pe |
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N
7%
) ] jE_N (wj) V(wj) W(wj)
(4.25) GuLs - RN
Z* z
ji_N (wj) (wj) W(wj)
Its variance is
N 2
*
A ‘jE—N z (wj) Z(wj) S(wj)[w(wj)]
(4.26) V(aAWLS) = .
I I¢w,) Z(w.) W(w,)| 2
=N j 3 3

The efficiency of the AWLS estimator is

N 2
r Ix(w,) Z(w,) Ww,)
|3=-N N 3 3

(4.27) o =

N Z*(w,) Z(w,) | N 2'
5 i i L Z%(w,) 2(w,) S(w,)[W(w,)]
4=-N S(wj) i J h| 3 3

-

Once again, a lower bound on the efficiency of the estimator can be

obtained; it is

4
(4.28) o 2 — — ,
[ S .
g 4 _Bax . min
S . B
min max
where ggax = méx S(wj) W(wj) and Smin = m%n S(wj) w(wj).

J J
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This follows from the substitution

(4.29) T(wj) = Z(wj) /W(wj)
and
(4.30) E(wj) = S(wj) W(wj)

and the direct application of the earlier theorem to this transformed model,
The example which we will consider is a step function approximation to the

first-order autoregressive disturbance process. The step function has two

steps, and is equal to the reciprocal of the value of the spectrum of the auto-

regressive disturbance at the midpoint of each step. The first step covers

the lower>quarter of the frequencies and the second step covers the remaining

upper three quarters:

I
|—a
|
N

©
0
e}
»
|
+
O
-
1
=
A
ENE

(4.31) W(wj)

n
[ el
]
[
©
0
o
/2]
+
©
-

INE]

(=
NA

Values of the efficiency of this two-step weighted least squares estimator
are given in Table 2. The improvement over the ordinary least squares
estimator is quite dramatic, especially in the case of moderately severe

autocorrelation of the disturbances. When p is 0.7, the new estimator



Table 2

Efficiency of the two~step weighted least squares estimator.

Lower bound| 1 .824 .593 .369 .007
§ =0 1 .952 .897 ' .852 .809
§ = 0.5 1 .955 .881 .804 .629
§ =0.8 1 .976 .914 .796 452
§ = 0.9 1 .987 .944 .812 .327
§ = 0.95f 1 .993 .968 .853 .288
§ =0.99; 1 .999 .997 .980 .663
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is always at least 79% efficient (if the right~hand variable has a spectrum
of the autocorrelation shape), whereas the efficiency of ordinary least
squares can drop to 31%. The efficiency of the new estimator is low for
the most serious case of autocorrelation, p = 0.9, but econometric models
with this much autocorrelation rarely deserve serious consideration.

This example suggests that effort devoted to careful calculation
of weights for least squares estimation of distributed lag models
would be misplaced. The two-step approximation to the disturbance spectrum
will usually give estimates which are almost indistinguishable from the
efficient estimates, not only in the case of autocorrelation, but for any
spectrum which declines (or rises) smoothly from low to high frequencies.
This includes, for example, the second-order autoregressive process and
some moving average processes. The approximation would perform very poorly
if the disturbance spectrum had a very low value for a group of intermediate
frequencies at which the right-hand variables had significant power. Then
the efficient estimates would be dominated by these observations, and would
have a correspondingly low variance, whereas the two-step approximation
would be unable to approximate the true weights, and would have a much larger
variance. But this does not appear to be a likely occurence in distributed
lag analysis.

In practical econometric work, of course, the disturbance spectrum is not
known in advance, and the only estimator among those just discussed which can
actually be used is the ordinary least squares estimator. Many two-stage
estimation methods have been proposed for tsking advantage of the increased

efficiency which it is thought can be obtained by using weighted least squares
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in the frequency domain or an equivalent transformation in the time domain.!
The first stage in most of these methods involves the application of
ordinary least squares to the original model, and the subsequent estimation
of the disturbance spectrum (often in the form of estimating the auto-
correlation coefficient) from the residuals of this regression. In the
second stage, weighted least squares estimates are obtained, using as weights
the reciprocals of the estimated points of the spectrum. It is well known that
if the first stage gives a consistent estimate of the spectrum, the estimates
of the regression coefficients from the second stage are asymptotically
efficient [see Malinvaud ([12], p. 440)].

One interpretation we might offer of our observation that a crude
approximation to the spectrum provides weights that are almost as good as the
true weights is that two-stage estimation methods which involve the
estimation of the fine details of the spectrum in the first stage are not
likely to be significantly more efficient than a method in which a very rough
estimate of the spectrum is made in the first stage. Omne such method is
suggested by the two-step approximation to the spectrum mentioned above.

The first stage in this method to the calculation of separate estimates for
low frequencies and for high frequencies; in the simple case of one linear

coefficient, these are:

= %
<
et

(4.32) a, =

N

=%
~N
=

l1see Malinvaud ([12], chapter 13) for a review of time domain methods for
handling autocorrelation in econometric models. Hannan {10] and [9] and

Duncan and Jones [2] have developed more general non-parametric frequency
domain methods.
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and

(4.33) a, =

In these formulas, Z, and Vl are the vectors of observations on the variables

1
for the 26 + 1 lower frequencies and 22 and V2 are the corresponding vectors
for the T - 26 - 1 higher frequencies. As in the previous case, we might
take 0 = N/4.

Estimates of the two steps in the spectrum are provided by the estimates

of the residual variances in these two regressions:

R § o _ -
(4.34) S, = T Z aly)*(Z alV)
and

- X 7 - - o
(4.35) 32 i ra— Z azy)*(Z aZV) .

We note that these estimates are unbiased if the spectrum does, ir fact,
have two steps.

Then the second stage estimate of o is

* *®
¥y ¥y
+
“ Sl 52
(4.36) o = — . .
nn 5
S S
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The efficiency of this estimator is unlikely to be much less than that of
the more complicated alternatives in the literature, and may easily exceed
the efficiency of some. One incidental advantage of this method is that

if the disturbances are normally distributed, the statistic Sl/S2 has the
F-distribution with 20 and T - 26 - 2 degrees of freedom, on the null hypo-
thesis of equal values of the disturbance spectrum, or no autocorrelation.
Thus it provides an alternative to the Durbin-Watson statistic in testing
tor departures from the simple stochastic hypothesis of intertemporal
independence. In contrast to the Durbin-Watson statistic, its sampling
distribution is known exactly. We should note, however, that just as in
the case of the Durbin-Watson test, failure to reject the null hypothesis
of intertemporal independence does not imply that there is no dependence or
that there is no gain in efficiency from applying the second stage of the

estimator.
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