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Key Mechanism

Heterogeneous firms: produce or search for a new productivity

Searchers randomly meet and copy a producing firm in the
existing productivity distribution

Selective search endogenously evolves distribution, shifting
weight to more productive

Aggregate state = productivity distribution, F;, where
min support {F;} = m;
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Intra-Period Timing

Produce z Keep z End Period z
o—— >
Produce
Begi @ d > o—»
eglin perio .
BN PEMOY Search Meet 2/ Copy 2/  End Period 2/
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Evolution of the Productivity Distribution

ft = productivity pdf, m; := minsupport {f; }

A
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Consumers

n t:O,l,...,OO
= Infinitely lived agents

= Representative consumer owns aggregate output Y;

R (il
= Utility: Y72, = 7=0

1 g Y\ ”
= Interest rate: Tir = 5( Y; )

58



Competitive Equilibrium
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Firm Problem

Measure 1, linear production, aggregate state F, idiosyncratic z

Vi(z) =

= max
{produce,adopt}

{Z + i Ve (2): iz / Ver(2)dF(2 |2 > 2)
(1)

= Solution is reservation productivity each period: m;y1
= Firms uses forecast of Z; to calculate value
= In RE equilibrium, z; = m; 4

= Discount with consumer's interest rate
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Evolution of F is a Truncation

Fiy1 is F; truncated at my1:

ft(2)

1-— Ft(mH_l) (2)

fir1(z) = fi(z) + fe(z |z > meg1) Fe(megr) =

Given an initial condition Fy, my = minsupport{Fp}, and a
sequence {m;41}:

o) = (s ©
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Firm Problem with Law of Motion

1 1 - / fo(z') /
Vt(Z) = max z+ tr Vt+1(Z), tr Vt+1(Z )7)dz

{produce,adopt} 1-— Fo(mt+1

(4)

= Optimal adoption policy is a sequence {m;};-,
= Aggregate production: Y; = [°° Lz fi(z)dz

mey
» Mass of Searchers: S, = [ fi(z)dz

mt
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Equilibrium

A competitive equilibrium is a {my, Vi("), rt},5, such that

i) given {r:}, {m:1} are the reservation productivities, with {V;(-)}
the associated value functions

ii) given {m}, {r:} are consistent with consumer IMRS
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BGP with Heterogeneous Agents

» BGP for scalars is easy. e.g. Yir1 =gYs
= BGP for the growing distribution F;(z) is more complicated

=« Scale Invariant
A set of distributions, {F;}, and scales, {m;}, are scale
invariant if

Fi(Zm;) are identical for all t > 0,Z € [1, 00)

(o]
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BGP Equilibrium

A BGP Equilibrium is a Competitive Equilibrium, with a constant
growth factor g > 1, such that

I) Yt+1 = th
i) {ft} with {m;} are scale invariant

12 /58
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Computing a BGP
Proposition
Given a Pareto initial condition and parameter restrictions (i.e.
(o3
Fz) =1~ (2)")
An equilibrium exists with the following properties

1
. . p T—1ta
i) The growth rate is: g = <d ﬁ)

ii) Minimum of Support: m; = mog*

iv o

)
)
iii) Production: Y; = —25g'~*m,
) Searchers: S;=1—g
)

The value function is piecewise-linear, with kinks at {m.,1}. That
is, Vse N

\Y

Vi(z) = £ (1 - (1—+r) ) z+ <1+r) Wgt™s, z € [mog"™, mogt™1]

13 /58
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BGP Proof Sketch - Existence by Construction

Guesses:
= Pareto(mo, o) will fulfill BGP requirements for f;

o fo(z; mo, ) = amyz=*~1 with support {fo} = [mo, )
o = fi(z)=amiz 71
= Reservation productivity: my11 = gmy

= Value of adoption grows geometrically. For some constant W':

Vi(z) = mW, for z € [m¢, gmy]

Verify and Solve:
i) Plug the Pareto guess into the indifference equation
ii) Simplify to a system of 2 equations containing g and W

iii) Solve for g and W, confirming they are not functions of t

14 /58
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Firm Problem with Guesses

o0

Vt(z) = max {Z + 1+_r Vt+1(z), ﬁa(gmt)a / Vt+1(z’)z/a1dz/}
4

me
Indifference at myy1:

Vi(gm:) =gm: + 15 Vera(gm:)

oo

:ﬁa(gmt)a/ Vt+1(Zl)Z/_a_le/

gmt

Linear value of search guess gives 2 equalities:

m:W =gm, + ﬁgmtﬂ/ (EQ1)
:ﬁa(gmt)a/ Vt+1(Zl)Zlia71dZ/ (EQ2)
8gmt

15 /58
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Solving EQ1

Equate the first of the two equalities
mW =gm; + %_i_rgmtV_V

Solving for W

&
1—g/(1+47r)

independent of t, as required.

W =

16 /58
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EQ2: Split Integral

Trick: Split the integral in EQ2 at next period’s indifference point
(g2m;) and use decision rule:

g me
gm; + 1+rgth = (gmt)a/ Vt+1(z')z'_°‘_1dz'
gmt
o0
+ 1+r (gmt)a/ Viy1(2)27271dZ
g mt

.computing the integrals separately.
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EQ2: First Integral

By the decision rule, firms search at t + 1 if z < g2m; with value
gm:W

g2m; ) _ rg®me )
/ Vir1(2)Z 7% 1dZ = gth/ Z7e7 47
g g

m¢ m¢

gm:W —a —a
==——(gm)™"(1-¢™")
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EQ2: Second Integral

By the decision rule, firms will produce at t + 1 if z > g°m;

© 0o

/ Ve ()2 7712 = / [z' + ﬁr Vt+2(z’)} 27147

g2m; g2m;

1 2 l1-a 1 = N/ —a—173_/

(g mt) + T Vt+2(Z )z dz
g2m;

a—1

...one last integral for Viyo(+)

19 /58
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EQ2: Third Integral

Trick: Using the indifference equation at t + 1, where the
reservation productivity is gZms;.

Vt+1(g2mt) :gzmt + ﬁgzmtﬂ/

:%Ha(g2mt)a / Vt+2(ZI)Z/7a71dZ/
g

th
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EQ2: Collect Integrals

Combining all of the integrals into EQ2 and simplify

- o -
(1—|—r)g°‘:—W+Eg—|—g(1+l+_rW)

. independent of t, as required.

21 /58
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Solve System for g, W

The system of equations is

5 g
1-g/(1+7)

- o -
(1+r)ga:—W+Eg+g( + 15 W)

The solution, given parameter restrictions, is

-]

22 /58
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Finally: Use Consumer's IMRS

= Given a fixed r, this is a solution for a constant g

= Given a fixed g, consumer problem gives ﬁ = Bg~"

Substitute and rearrange

1

o= ()]

23 /58
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Comparative Statics of Growth Rate

Proposition
The following properties hold for a solution to the BGP:
i) 3¢ >0and g <0
ii) g is independent of minsupport { Fo}
iii) 9 <0
e | « is T inequality in Pareto

e Interpret | o as broader opportunities in the economy
o Fatter tail generates higher growth

24 /58
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Numerical Solutions for the Dynamics

From a solution to the consumer’s search problem, {m;}:

fo(z [e%S)
lﬂ(Z):#(,)nt)andyt:f ZdFt

mi41

Y1

= g+ = - may diverge, converge, or not be defined

1 . -
1+r 6gt

= F; may converge to a “degenerate” distribution

25 /58
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Dynamic Example with Alternate Distributions

|| ---------- Bounded Pareto
11l = = = = Fréchet q
\ Pareto
1
1
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\
\
\
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bo \\
~
~
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Planner's Problem

= The planner makes the search vs. produce decision

= Describe recursively, with f(-) the state with
min support {f} = m(f)

= Chooses the growth rate g(f) > 1 such that m’ = g(f)m(f), where
m(f) = minsupport {f}

= Maximizes the consumer’s utility

(fgo:"l(f) z f(z)d2> o

U(f):r£§i< T + BU(f")
st fi(z) = — 1 12)

1 F(gm(f))

27 /58
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Planner Proof Sketch

Guesses:

= The Pareto(mo, ) will fulfill distribution requirements
s U(m)=—Am'"7, where A >0
Verify and Solve:

i) Plug in guesses:

1 +BU(gm)
g _
1= g(1—a)(1—7)
_ 11—y _ o g 11—y 11—y 1—v
Am _r;\Zai<{<a_1) 15 m BAg  "m }

ii) Get the first order condition for g. Confirm m drops out
iii) Use the first order condition and Bellman to solve for A, g

iv) Find conditions on parameters such that the objective is globally concave

28 /58
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Planner vs. Competitive Equilibrium

Comparing first-best to competitive equilibrium:

_1 1
gn=(0:21)"" 0 = (054)"

= Zfb > Bce

= Signs of g—g, g—i and g—i same as the CE

= The wedge increases with higher inequality: % <0

29 /58
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Extra Material

« Constrained planner problem

= Deriving the value function

= Normalization to stationary environment
= Unconditional draws

= Analytic results on dynamics

= Computational material for dynamics

30/58



Continuous Time
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Mechanism in Continuous Time

Model setup used by:

o Perla, Tonetti, Waugh (2014)

e Benhabib, Perla, Tonetti (2015)
Translate the discrete-time version as directly as possible
Describe as an optimal stopping problem

Describe as a free boundary problem
Some notation and parameters:

e r, discount rate

e x, search cost

o Vi() = 240

31/58
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Firm's Problem Summary

= As before, firm chooses to adopt vs. produce

i) If it produces, it earns flow value Z
ii) If it adopts, it pays xZ and draws with certainty

= Define the following to cast as an optimal stopping problem

V(Z,t): Value of production (i.e continuation)
Vs(t): Value of search (i.e. stopping) before costs
M(t): Optimal solution s.t. Z < M(t) searches
S(t): Flows of adopters at time t

= As before, adopters only meet non-adopters

£(t,Z|1Z > M(t))

32/58
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Sequential Problem

= Given a V(t) gross value of search at time t
= Choice: Define T(Z,t) as the (absolute) time to search

M(t) = max{Z|T(Z,t) =t}

T
V(t,Z) = max {/ e 0 Zdr 4 e (T [V(T) - XZ]}
>t t

= max{Lﬁ(pt)Z —xe (T=07 4 g=r(T-1) VS(T)}
T>t

Agent searches immediately at the point where T(t,Z) =t

33 /58
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Searching

= Agents will draw from the distribution of non-adopters:

f(t, 2|12 > M(t)) = =y

= Support of f(t,Z) evolves with M(t)
I|m inf support{f(t + A,-)} = M(t)
inf support{f(t,-)} = M(t), at points of continuity

= Hence, where M(t) is continuous, F(t, M(t)) =0

e Draw directly from a distribution arbitrarily close to f(t, Z)
e Only a flow of agents search at these points
e Assume M(t) is continuous Vt > 0

34 /58
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Value of Search

s Gross value is the expected continuation value of the new draw

Vi(t) = /oo V(t, 2)F(t, 2127 > M(£))dZ

Vi(t) = /oo V(t, 2)F(t, 2)dZ

35/58
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Searchers as a Flow

Searchers cross M(t) barrier in each instant

Method: “flux” or “probability current” for stochastic processes
Reference frame:

e Z doesn't change in the continuation region (i.e. dZ =0-dt)
e M(t), the absorbing barrier, moves

Change of variables to ensure Z = 0 at the barrier ¥ t

7=7—-M(t)
f(t,Z) = f(t,Z 4+ M(t)) =  F(t,0) = f(t, M(t))

Using lto’'s Lemma (no diffusion term) or direct Taylor series:

dZ = —M'(t)dt

36 /58
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Searchers

= The “probability current” at Z is:
J(t,2) = —M'(t)f(t, 2)

= The flow of searchers is the probability current at Z = 0,
where —1 is the “backwards” direction

S(t) = —1x J(¢,0)
= M'(t)f(t,0)
= | M'(t)f(t, M(t))

= See Gardiner (2009) equation 5.1.13, for more advanced cases

37/58
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Law of Motion for f(t, Z)

= Flow S(t) searchers draw in proportion to f(t,Z)
= No other changes in Z, with a “conservation” condition

8f(8téz) = S(t)f(t,Z), VZ > M(t) /_0; f(t,Z)=1,Vt

Using S(t) formula gives a “Kolmogorov Forward Equation”

of(t,Z)
ot

= f(t, M(t))M'(t)f(t, Z)|, YZ > M(t)

Solution: For any M(t) and fy(Z) initial condition

fo(Z)

" TRy

VZ > M(t)

A truncation, solution works any M(t) (i.e. off-BGP)

38 /58
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Solution Approach

i) Simplify the sequential problem to generate an ODE in V(t)
i) Use V4(t) to eliminate V/(t, Z) and get an integral equation

iii) Using the system of equations in V(t), M(t)
e Guess and verify a BGP solution
e Solve for a non-BGP with arbitrary 1Cs

39 /58
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Using the First-Order Condition

_ 1—e"(T-9 5 —r(T—t) —r(T—t)
V(t,Z)-rpg);{ ——Z — xe Z+e VS(T)}

Taking the FOC for T
0= e—r(T—1) (z +xrZ —rV(T) + Vs/(T))

Evaluate at indifference point, M(t), where T = t:

rVs(t) = (1 + xr)M(t) + VI(¢t)

Or, with an asset pricing interpretation
r(Vs(t) = xM(t)) = M(t) + V(t)

Unknowns: V(t), M(t)

40 /58
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Simplifying the Sequential Problem

= By definition, at the optimum T(t,Z) = M~1(2)
= Substitute and drop the max

V(t,Z)=

41 /58
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Simplifying the Value of Search

Substitute V(t,Z) and LOM into Vi(t)

Vi(t) = /Mo(o) V(t, 2)f(t, 2)dZ

_ /oo (12 _ 1+_rxre7r(M_1(Z)7t)Z+ oM @)= VS(M—I(Z))) ©(2) 4z

M N 1— Fo(M(t))

Unknowns: Vi(t), M(t)(and M~1(Z) indirectly)
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Summary of Equations

Given parameters x, r and initial condition: fy(+)
Va(t) = (1 4+ xr)M(t) + V.(¢)

oo . " - - fo(Z)
Vst:/ 17— Lo o= M@0 7 4 o~ M@0y (Y (7 (
(1) Mm(, : M) TR

An integral-differential system in M(t), V(t)
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Balanced Growth Path Guess

Guess and Verify:
» Fo(Z2)=1- (@)a, a Pareto distribution
= Vs(t) = Vs(0)est
= M(t) = M(0)est
o Note that M(0) is chosen as the minimum of support
« Hence M~1(2) =1 Iog( (0)>

Plug into our system of 2 equations and use undetermined
coefficients to solving for g and Vs(0),

44 /58
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BGP Solution

Proposition
Ifao>1and1/(a+1) < xr(a—1) <1 then:

1—xr(a—1)

£~ xa(a —1)

Va(0) = M(0) 57525

Substituting these into the sequential V/(t, Z),

gll+xr)z ( Z s 4
V(t,2)= 2+ 8202 (L2 e

45 /58
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Interpreting the Value Function

V(t,Z) = z +  CZVEe
~—~ —

Production Forever Option Value of Search

The option value of search:
= Increasing in time

s Decreasing in Z for a fixed t due to longer wait until search
e Asymptotically linear in Z for a fixed t

= Makes the value function convex in Z for a fixed t

46 /58
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Recursive Continuation Value

V(t,Z)=ZA+ V(t+A,2)

(1+rA)

Multiply by (1 + rA), subtract V(t,Z), and divide by A

V(t+A,Z)—V(t,Z
rV(t,Z) = Z + VAL V(t2)

Take the limit

oVv(t,Z)

V(it,Z)=Z
r (t7 ) + 6t

47 /58
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Optimal Stopping Sufficiency Conditions

V(t,Z), M(t), and Vs(t) must satisfy:

V(t,Z)=2Z+ %
V(t, M(t)) = Vs(t) — xM(t)
ov(t,M(t)) O(Vs(t) — xM(t))

0z 0z

Vi(t) = /MO;) V(t,2)f(t,Z2)dZ

of(t, Z)
ot

= f(t, M(t))M'(t)f(t, Z)

48 /58
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Normalizing to Stationary Environment: PDF

Recall Scale Invariance.
For convenience let ® be unnormalized CDF and ¢ be
unnormalized pdf

Z
M(t)’
F(z,t):=®(Z,t)
f(z,t) = M(t)p(Z,t)

zZ =

49 /58
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Normalizing to Stationary Environment

Divide everything by M(t), since M'(t)/M(t)=g.

V(Z,t)
M(t)

v(z, t) =

then

V(Z,t) = M(t)v(Z/M(t),t)
dv(z,t) d(M(t)v(Z/M(t),t))

dt dt
dv(Z,t) dv(Z/M(t),t))
az M dz

50 /58
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Normalizing Bellman: dt

dv(Z,t) d(M(t)v(Z/M(t),1t))

dt dt
~ dM(t) dv(z,t)
= v(z,t) + M(t) p”
— M(£)v(z, t) + M(t) [avézt’ 2 avézz, ) 8,32(t) a’\giﬂ
— M'(t)v(z, t) + M(2) [8v(82t, H_ avézz’ t) Mz(t) ’(t)}
1 dv(Z,t) dv(z,t) ov(z,t)
M(t) dt gz t)+ —5— 82—,
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Normalizing Bellman: Synthesis

oVv(Z,t)

V(Z,t)=2Z+ 5

Divide by M(t) and subsitute using definitions

B 1 9V(Z,t)
I’V(Z, t) =z+ WT
rv(z,t)=z+gv(z,t)+ % - gz%

ov(z,t) ov(z,t)
ot & o

(r—g)v(z,t)=z+

(o]
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Normalizing Smooth Pasting: dz

dV(Z,t) dv(Z/M(t),t))
daz M(t) dz
ov(z,t) 1
=M=~
~ M(t)0v(z,t)
T M(t) 0z
dv(Z,t) Ov(z,t)
dZ 0z

then smooth pasting is

ov(l,t)
0z

= —X

53 /58
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BGP: From PDE to ODE

On the BGP, normalized functions should not depend on time.

ov(z)
0z

(r—gv(z)=z—gz
ov(1)
0z

v(1l) = /100 v(2)f(2)dz — x

= —x
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BGP Evolution of the Productivity Distribution

BGP Productivity Density Evolution
25 T T T T

Density

05

35
Epsilon
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Mass of Searchers

Mass of searchers are those below the h(t) threshold
S(t) := F(t, h(t))
At points of continuity,

S(t) = F(t,infsupport(t,-)) =0
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Law of Motion at Discontinuities

At points of discontinuity in h(t), a mass S(t) “exit” and draw from
lima_o F(- t + A)

F(z,t+)= F(z,t) — S(t) + S(t)F(z,t+) , forz> h(t+) (5)
—— ~~ N———
Was below z  Searched  Searched and drew < z
F(z,t+) = F(z,t) = =(1 — F(z, t+))F(h(t), 1) (6)
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