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Key Mechanism

■ Heterogeneous firms: produce or search for a new productivity

■ Searchers randomly meet and copy a producing firm in the
existing productivity distribution

■ Selective search endogenously evolves distribution, shifting
weight to more productive

■ Aggregate state = productivity distribution, Ft , where
min support {Ft} = mt
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Intra-Period Timing

Begin period
z

Produce

Produce z Keep z

Search Copy z ′

End Period z

End Period z ′Meet z ′
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Evolution of the Productivity Distribution
ft = productivity pdf, mt := min support {ft}

ft(z)

zmt mt+1

ft+1(z)

mt+1 mt+2 z

Searchers in period t

Searchers in period t + 1
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Consumers

■ t = 0, 1, . . . ,∞

■ Infinitely lived agents

■ Representative consumer owns aggregate output Yt

■ Utility:
∑∞

t=0 β
t Y

1−γ

t

1−γ , γ ≥ 0

■ Interest rate: 1
1+rt

:= β
(
Yt+1

Yt

)−γ
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Firm Problem

Measure 1, linear production, aggregate state F , idiosyncratic z

Vt(z) = max
{produce,adopt}

{

z + 1
1+rt

Vt+1(z),
1

1+rt

∫

Vt+1(z
′)dFt(z

′|z ′ ≥ ẑt)

}

(1)

■ Solution is reservation productivity each period: mt+1

■ Firms uses forecast of ẑt to calculate value

■ In RE equilibrium, ẑt = mt+1

■ Discount with consumer’s interest rate
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Evolution of F is a Truncation

Ft+1 is Ft truncated at mt+1:

ft+1(z) = ft(z) + ft(z | z ≥ mt+1)Ft(mt+1) =
ft(z)

1− Ft(mt+1)
(2)

Given an initial condition F0, m0 ≡ min support {F0}, and a
sequence {mt+1}:

ft(z) =
f0(z)

1− F0(mt)
(3)
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Firm Problem with Law of Motion

Vt(z) = max
{produce,adopt}

{

z + 1
1+rt

Vt+1(z),
1

1+rt

∫ ∞

mt+1

Vt+1(z
′)

f0(z
′)

1− F0(mt+1)
dz ′

}

(4)

■ Optimal adoption policy is a sequence {mt}
∞
t=1

■ Aggregate production: Yt =
∫∞
mt+1

z ft(z)dz

■ Mass of Searchers: St =
∫ mt+1

mt
ft(z)dz
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Equilibrium

A competitive equilibrium is a {mt ,Vt(·), rt}t≥0, such that

i) given {rt}, {mt+1} are the reservation productivities, with {Vt(·)}
the associated value functions

ii) given {mt}, {rt} are consistent with consumer IMRS
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BGP with Heterogeneous Agents

■ BGP for scalars is easy. e.g. Yt+1 = gYt

■ BGP for the growing distribution Ft(z) is more complicated

■ Scale Invariant

A set of distributions, {Ft}, and scales, {mt}, are scale
invariant if

Ft(z̃mt) are identical for all t ≥ 0, z̃ ∈ [1,∞)
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BGP Equilibrium

A BGP Equilibrium is a Competitive Equilibrium, with a constant
growth factor g > 1, such that

i) Yt+1 = gYt

ii) {ft} with {mt} are scale invariant
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Computing a BGP
Proposition
Given a Pareto initial condition and parameter restrictions (i.e.
F0(z) = 1−

(
m0

z

)α
)

An equilibrium exists with the following properties

i) The growth rate is: g =
(

β α

α−1

) 1
γ−1+α

ii) Minimum of Support: mt = m0g
t

iii) Production: Yt =
α

α−1g
1−αmt

iv) Searchers: St = 1− g−α

v) The value function is piecewise-linear, with kinks at {mt+1}. That
is, ∀ s ∈ N

Vt(z) =
1+r
r

(

1−
(

1
1+r

)s)

z +
(

1
1+r

)s

W̄ g t+s , z ∈ [m0g
t+s ,m0g

t+s+1]
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BGP Proof Sketch - Existence by Construction

Guesses:

■ Pareto(m0, α) will fulfill BGP requirements for f0
• f0(z ;m0, α) = αmα

0 z
−α−1 with support {f0} = [m0,∞)

• =⇒ ft(z) = αmα

t z
−α−1

■ Reservation productivity: mt+1 = gmt

■ Value of adoption grows geometrically. For some constant W̄ :

Vt(z) = mtW̄ , for z ∈ [mt , gmt ]

Verify and Solve:

i) Plug the Pareto guess into the indifference equation

ii) Simplify to a system of 2 equations containing g and W̄

iii) Solve for g and W̄ , confirming they are not functions of t
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Firm Problem with Guesses

Vt(z) = max

{

z + 1
1+r

Vt+1(z),
1

1+r
α(gmt)

α

∫ ∞

gmt

Vt+1(z
′)z ′−α−1dz ′

}

Indifference at mt+1:

Vt(gmt) =gmt +
1

1+r
Vt+1(gmt)

= 1
1+r

α(gmt)
α

∫ ∞

gmt

Vt+1(z
′)z ′−α−1dz ′

Linear value of search guess gives 2 equalities:

mtW̄ =gmt +
1

1+r
gmtW̄ (EQ1)

= 1
1+r

α(gmt)
α

∫ ∞

gmt

Vt+1(z
′)z ′−α−1dz ′ (EQ2)
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Solving EQ1

Equate the first of the two equalities

mtW̄ =gmt +
1

1+r
gmtW̄

Solving for W

W̄ =
g

1− g/(1 + r)

... independent of t, as required.
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EQ2: Split Integral

Trick : Split the integral in EQ2 at next period’s indifference point
(g2mt) and use decision rule:

gmt +
1

1+r
gmtW̄ = 1

1+r
α(gmt)

α

∫ g2mt

gmt

Vt+1(z
′)z ′−α−1dz ′

+ 1
1+r

α(gmt)
α

∫ ∞

g2mt

Vt+1(z
′)z ′−α−1dz ′

. . . computing the integrals separately.
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EQ2: First Integral

By the decision rule, firms search at t + 1 if z ≤ g2mt with value
gmtW̄

∫ g2mt

gmt

Vt+1(z
′)z ′−α−1dz ′ = gmtW̄

∫ g2mt

gmt

z ′−α−1dz ′

=
gmtW̄

α
(gmt)

−α(1− g−α)
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EQ2: Second Integral

By the decision rule, firms will produce at t + 1 if z > g2mt

∫ ∞

g2mt

Vt+1(z
′)z ′−α−1dz ′ =

∫ ∞

g2mt

[

z ′ + 1
1+r

Vt+2(z
′)
]

z ′−α−1dz ′

=
1

α− 1
(g 2mt)

1−α + 1
1+r

∫ ∞

g2mt

Vt+2(z
′)z ′−α−1dz ′

. . . one last integral for Vt+2(·)
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EQ2: Third Integral

Trick : Using the indifference equation at t + 1, where the
reservation productivity is g2mt .

Vt+1(g
2mt) =g 2mt +

1
1+r

g 2mtW̄

= 1
1+r

α(g 2mt)
α

∫ ∞

g2mt

Vt+2(z
′)z ′−α−1dz ′
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EQ2: Collect Integrals

Combining all of the integrals into EQ2 and simplify

(1 + r)gα = −W̄ +
α

α− 1
g + g(1 + 1

1+r
W̄ )

... independent of t, as required.
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Solve System for g , W

The system of equations is

W̄ =
g

1− g/(1 + r)

(1 + r)gα = −W̄ +
α

α− 1
g + g(1 + 1

1+r
W̄ )

The solution, given parameter restrictions, is

g =

[

1
1+r

(
α

α− 1

)] 1
α−1
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Finally: Use Consumer’s IMRS

■ Given a fixed r , this is a solution for a constant g

■ Given a fixed g , consumer problem gives 1
1+r

= βg−γ

Substitute and rearrange

g =

[

β

(
α

α− 1

)] 1
γ−1+α
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Comparative Statics of Growth Rate

Proposition

The following properties hold for a solution to the BGP:

i) ∂g
∂β > 0 and ∂g

∂γ < 0

ii) g is independent of min support {F0}

iii) ∂g
∂α < 0

• ↓ α is ↑ inequality in Pareto
• Interpret ↓ α as broader opportunities in the economy
• Fatter tail generates higher growth
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Numerical Solutions for the Dynamics

From a solution to the consumer’s search problem, {mt}:

■ ft(z) =
f0(z)

1−F0(mt)
and Yt =

∫∞
mt+1

z dFt

■ gt ≡
Yt+1

Yt
may diverge, converge, or not be defined

■
1

1+rt
:= βg−γ

t

■ Ft may converge to a“degenerate” distribution
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Dynamic Example with Alternate Distributions

0 10 20 30 40 50 60 70
1

1.02

1.04

1.06

1.08

1.1

 

 

Years

g
t

Bounded Pareto
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Planner’s Problem

■ The planner makes the search vs. produce decision

■ Describe recursively, with f (·) the state with
min support {f } = m(f )

■ Chooses the growth rate g(f ) ≥ 1 such that m′ = g(f )m(f ), where
m(f ) ≡ min support {f }

■ Maximizes the consumer’s utility

U(f ) =max
g≥1







(∫∞
gm(f ) z f (z)dz

)1−γ

1− γ
+ βU(f ′)







s.t. f ′(z) =
f (z)

1− F (g m(f ))
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Planner Proof Sketch

Guesses:

■ The Pareto(m0, α) will fulfill distribution requirements

■ U(m) = −Am1−γ , where A > 0

Verify and Solve:

i) Plug in guesses:

U(m) =max
g≥1











(

α

α−1
g1−αm

)1−γ

1− γ
+ βU(gm)











−Am
1−γ = max

g≥1

{

(

α

α− 1

)1−γ
g (1−α)(1−γ)

1− γ
m

1−γ
− βAg

1−γ
m

1−γ

}

ii) Get the first order condition for g . Confirm m drops out

iii) Use the first order condition and Bellman to solve for A, g

iv) Find conditions on parameters such that the objective is globally concave
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Planner vs. Competitive Equilibrium

Comparing first-best to competitive equilibrium:

gfb =
(

β α
α−1

) 1
γ−1

, gce =
(

β α
α−1

) 1
γ−1+α

■ gfb > gce

■ Signs of ∂g
∂β ,

∂g
∂γ and ∂g

∂α same as the CE

■ The wedge increases with higher inequality: d(gfb/gce)
dα < 0
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Extra Material

■ Constrained planner problem

■ Deriving the value function

■ Normalization to stationary environment

■ Unconditional draws

■ Analytic results on dynamics

■ Computational material for dynamics
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Mechanism in Continuous Time

■ Model setup used by:
• Perla, Tonetti, Waugh (2014)
• Benhabib, Perla, Tonetti (2015)

■ Translate the discrete-time version as directly as possible

■ Describe as an optimal stopping problem

■ Describe as a free boundary problem
■ Some notation and parameters:

• r , discount rate
• x , search cost
• V ′(t) = dV (t)

dt
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Firm’s Problem Summary

■ As before, firm chooses to adopt vs. produce

i) If it produces, it earns flow value Z
ii) If it adopts, it pays xZ and draws with certainty

■ Define the following to cast as an optimal stopping problem

V (Z , t): Value of production (i.e continuation)
Vs(t): Value of search (i.e. stopping) before costs
M(t): Optimal solution s.t. Z ≤ M(t) searches
S(t): Flows of adopters at time t

■ As before, adopters only meet non-adopters

f (t,Z |Z > M(t))
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Sequential Problem

■ Given a Vs(t) gross value of search at time t

■ Choice: Define T (Z , t) as the (absolute) time to search

M(t) ≡ max {Z |T (Z , t) = t}

V (t,Z ) = max
T≥t

{∫ T

t

e−r(τ−t)Zdτ + e−r(T−t) [Vs(T )− xZ ]

}

= max
T≥t

{
1−e−r(T−t)

r
Z − xe−r(T−t)Z + e−r(T−t)Vs(T )

}

Agent searches immediately at the point where T (t,Z ) = t
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Searching

■ Agents will draw from the distribution of non-adopters:

f (t,Z |Z > M(t)) = f (t,Z)
1−F (t,M(t))

■ Support of f (t,Z ) evolves with M(t)

lim
∆→0

inf support{f (t +∆, ·)} = M(t)

inf support{f (t, ·)} = M(t), at points of continuity

■ Hence, where M(t) is continuous, F (t,M(t)) = 0
• Draw directly from a distribution arbitrarily close to f (t,Z )
• Only a flow of agents search at these points
• Assume M(t) is continuous ∀t > 0
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Value of Search

■ Gross value is the expected continuation value of the new draw

Vs(t) =

∫ ∞

M(t)
V (t, Z̃)f (t, Z̃ |Z̃ > M(t))dZ̃

At points of continuity of M(t),

Vs(t) =

∫ ∞

M(t)
V (t, Z̃)f (t, Z̃)dZ̃
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Searchers as a Flow

■ Searchers cross M(t) barrier in each instant

■ Method: “flux”or “probability current” for stochastic processes

■ Reference frame:
• Z doesn’t change in the continuation region (i.e. dZ = 0 · dt)
• M(t), the absorbing barrier, moves

■ Change of variables to ensure Z̃ = 0 at the barrier ∀ t

Z̃ ≡ Z −M(t)

f̃ (t, Z̃) = f (t, Z̃ +M(t)) =⇒ f̃ (t, 0) = f (t,M(t))

Using Ito’s Lemma (no diffusion term) or direct Taylor series:

dZ̃ = −M ′(t)dt
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Searchers

■ The“probability current”at Z̃ is:

J(t, Z̃ ) = −M ′(t)f̃ (t, Z̃)

■ The flow of searchers is the probability current at Z̃ = 0,
where −1 is the“backwards”direction

S(t) = −1× J(t, 0)

= M ′(t)f̃ (t, 0)

= M ′(t)f (t,M(t))

■ See Gardiner (2009) equation 5.1.13, for more advanced cases
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Law of Motion for f (t,Z )

■ Flow S(t) searchers draw in proportion to f (t,Z )

■ No other changes in Z , with a“conservation”condition

∂f (t,Z )

∂t
= S(t)f (t,Z ), ∀Z > M(t)

∫ ∞

−∞
f (t,Z ) = 1, ∀t

Using S(t) formula gives a“Kolmogorov Forward Equation”

∂f (t,Z )

∂t
= f (t,M(t))M ′(t)f (t,Z ) , ∀Z > M(t)

Solution: For any M(t) and f0(Z ) initial condition

f (t,Z ) =
f0(Z )

1− F0(M(t))
, ∀Z > M(t)

A truncation, solution works any M(t) (i.e. off-BGP)
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Solution Approach

i) Simplify the sequential problem to generate an ODE in Vs(t)

ii) Use Vs(t) to eliminate V (t,Z ) and get an integral equation

iii) Using the system of equations in Vs(t), M(t)
• Guess and verify a BGP solution
• Solve for a non-BGP with arbitrary ICs
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Using the First-Order Condition

V (t,Z ) = max
T≥t

{
1−e−r(T−t)

r
Z − xe−r(T−t)Z + e−r(T−t)Vs(T )

}

Taking the FOC for T

0 = e−r(T−t)
(
Z + xrZ − rVs(T ) + V ′

s (T )
)

Evaluate at indifference point, M(t), where T = t:

rVs(t) = (1 + xr)M(t) + V ′
s (t)

Or, with an asset pricing interpretation

r (Vs(t)− xM(t)) = M(t) + V ′
s(t)

Unknowns: Vs(t),M(t)
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Simplifying the Sequential Problem

■ By definition, at the optimum T (t,Z ) = M−1(Z )

■ Substitute and drop the max

V (t,Z ) =

1−e−r(M−1(Z)−t)

r
Z − xe−r(M−1(Z)−t)Z + e−r(M−1(Z)−t)Vs(M

−1(Z ))

41 / 58



Overview Competitive Equilibrium BGP Planner Extras Continuous Time BGP Free Boundary Appendix

Simplifying the Value of Search

Substitute V (t,Z ) and LOM into Vs(t)

Vs(t) =

∫ ∞

M(t)

V (t, Z̃)f (t, Z̃ )dZ̃

=

∫ ∞

M(t)

(

1
r
Z −

1+xr
r

e
−r(M−1(Z)−t)

Z + e
−r(M−1(Z)−t)

Vs(M
−1(Z ))

) f0(Z )

1− F0(M(t))
dZ

Unknowns: Vs(t),M(t)(and M−1(Z ) indirectly)
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Summary of Equations

Given parameters x , r and initial condition: f0(·)

rVs(t) = (1 + xr)M(t) + V
′
s (t)

Vs(t) =

∫ ∞

M(t)

(

1
r
Z −

1+xr
r

e
−r(M−1(Z)−t)

Z + e
−r(M−1(Z)−t)

Vs(M
−1(Z ))

)

f0(Z )

1− F0(M(t))
d

An integral-differential system in M(t),Vs(t)
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Balanced Growth Path Guess

Guess and Verify:

■ F0(Z ) = 1−
(
M(0)
Z

)α
, a Pareto distribution

■ VS(t) = VS(0)e
gt

■ M(t) = M(0)egt

• Note that M(0) is chosen as the minimum of support

■ Hence M−1(Z ) = 1
g
log

(
Z

M(0)

)

Plug into our system of 2 equations and use undetermined
coefficients to solving for g and VS(0),
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BGP Solution

Proposition

If α > 1 and 1/(α + 1) < xr(α− 1) < 1 then:

g =
1− xr(α− 1)

xα(α − 1)

Vs(0) = M(0)xα(α−1)(1+xr)
xr(α2−1)−1

Substituting these into the sequential V (t,Z ),

V (t,Z ) = Z
r
+ g(1+xr)

r−g
Z
r

(
Z

M(0)

)−r/g
ert
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Interpreting the Value Function

V (t,Z ) = Z
r

︸︷︷︸

Production Forever

+ CZ 1−r/gert
︸ ︷︷ ︸

Option Value of Search

The option value of search:

■ Increasing in time

■ Decreasing in Z for a fixed t due to longer wait until search
• Asymptotically linear in Z for a fixed t

■ Makes the value function convex in Z for a fixed t
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Recursive Continuation Value

V (t,Z ) = Z∆+
1

(1 + r∆)
V (t +∆,Z )

Multiply by (1 + r∆), subtract V(t,Z), and divide by ∆

rV (t,Z ) = Z + V (t+∆,Z)−V (t,Z)
∆

Take the limit

rV (t,Z ) = Z +
∂V (t,Z )

∂t
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Optimal Stopping Sufficiency Conditions

V (t,Z ), M(t), and Vs(t) must satisfy:

rV (t,Z ) = Z +
∂V (t,Z )

∂t
V (t,M(t)) = Vs(t)− xM(t)

∂V (t,M(t))

∂Z
=

∂(Vs(t)− xM(t))

∂Z
= −x

Vs(t) =

∫ ∞

M(t)
V (t, Z̃)f (t, Z̃)dZ̃

∂f (t,Z )

∂t
= f (t,M(t))M ′(t)f (t,Z )
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Normalizing to Stationary Environment: PDF

Recall Scale Invariance.
For convenience let Φ be unnormalized CDF and φ be
unnormalized pdf

z :=
Z

M(t)
,

F (z , t) := Φ(Z , t)

f (z , t) = M(t)φ(Z , t)

49 / 58



Overview Competitive Equilibrium BGP Planner Extras Continuous Time BGP Free Boundary Appendix

Normalizing to Stationary Environment

Divide everything by M(t), since M’(t)/M(t)=g.

v(z , t) :=
V (Z , t)

M(t)
,

then

V (Z , t) = M(t)v(Z/M(t), t)

dV (Z , t)

dt
=

d(M(t)v(Z/M(t), t))

dt
dV (Z , t)

dZ
= M(t)

dv(Z/M(t), t))

dz
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Normalizing Bellman: dt

dV (Z , t)

dt
=

d(M(t)v(Z/M(t), t))

dt

=
dM(t)

dt
v(z , t) +M(t)

dv(z , t)

dt

= M ′(t)v(z , t) +M(t)

[
∂v(z , t)

∂t
+

∂v(z , t)

∂z

∂z

∂M(t)

∂M(t)

∂t

]

= M ′(t)v(z , t) +M(t)

[
∂v(z , t)

∂t
−

∂v(z , t)

∂z

z

M(t)
M ′(t)

]

1

M(t)

dV (Z , t)

dt
= gv(z , t) +

∂v(z , t)

∂t
− gz

∂v(z , t)

∂z
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Normalizing Bellman: Synthesis

rV (Z , t) = Z +
∂V (Z , t)

∂t

Divide by M(t) and subsitute using definitions

rv(z , t) = z +
1

M(t)

∂V (Z , t)

∂t

rv(z , t) = z + gv(z , t) +
dv(z , t)

dt
− gz

∂v(z , t)

∂z

(r − g)v(z , t) = z +
∂v(z , t)

∂t
− gz

∂v(z , t)

∂z
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Normalizing Smooth Pasting: dz

dV (Z , t)

dZ
= M(t)

dv(Z/M(t), t))

dZ

= M(t)
∂v(z , t)

∂z

1

M(t)

=
M(t)

M(t)

∂v(z , t)

∂z

dV (Z , t)

dZ
=

∂v(z , t)

∂z

then smooth pasting is

∂v(1, t)

∂z
= −x
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BGP: From PDE to ODE

On the BGP, normalized functions should not depend on time.

(r − g)v(z) = z − gz
∂v(z)

∂z
∂v(1)

∂z
= −x

v(1) =

∫ ∞

1
v(z̃)f (z̃)dz̃ − x
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Appendix
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BGP Evolution of the Productivity Distribution
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Mass of Searchers

Mass of searchers are those below the h(t) threshold

S(t) := F (t, h(t))

At points of continuity,

S(t) = F (t, inf support(t, ·)) = 0
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Law of Motion at Discontinuities

At points of discontinuity in h(t), a mass S(t)“exit”and draw from
lim∆→0 F (·, t +∆)

F (z , t+) = F (z , t)
︸ ︷︷ ︸

Was below z

− S(t)
︸︷︷︸

Searched

+ S(t)F (z , t+)
︸ ︷︷ ︸

Searched and drew ≤ z

, for z ≥ h(t+) (5)

F (z , t+)− F (z , t) = −(1 − F (z , t+))F (h(t), t) (6)
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