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Econometric models encounter difficulties in handling more than a single
kind of output. The absence of data on the flows of intermediate goods
makes it impossible to estimate separate production functions for more
than one product. Within the unifying framework of the modern theory
of cost functions, this paper considers two alternative specifications that
can accommodate disaggregation on the output side without requiring
data on intermediate goods. The economic implications of these
specifications are discussed, and a general specification is proposed in
which it is possible to test the two specifications.

The theory of production functions suggests a straightforward way to
specify the technology of an economy that produces more than one
product. This specification has separate production functions for each
product, taking as arguments the inputs of primary factors and of other
products serving as intermediate goods. For the economies of the United
States and most other countries, however, data are available only for the
gross output of each product (including the amount used as inputs for
other products), net output (deliveries to final demand), and direct inputs
of primary factors. Except in scattered years, the data on the interindustry
flows of goods necessary to estimate full production functions for each
kind of output are unavailable. The absence of time series for the inter-
industry flows of goods has forced the proprietors of almost all complete
econometric models of the U.S. economy to adopt the most aggregative
specification possible, that of a single sector of production. The purpose
of this paper is to discuss specifications of multisectoral technologies which
can be estimated using the limited data available. These specifications are
suitable for inclusion in a complete econometric model.
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Among well-known econometric models, only the Brookings Model
confronts the problem of disaggregation directly and uses a truly multi-
sectoral specification of the production (Fisher, Klein, and Shinkai
1965; Kresge 1969). We begin here with a brief discussion of the short-
comings of the Brookings scheme. In that scheme, the measure of the out-
put of each product is the value added in the industry producing the
product. The model incorporates a function relating the value added of
an industry to its direct inputs of primary factors. This specification is at
best a rough approximation, since only under very restrictive conditions
does an exact functional relationship of this kind exist. Further, value
added is not itself a useful measure of the output of a product. The demand
functions in the Brookings Model, as in any econometric model, refer to
deliveries to final demand, that is, to various categories of consumption
and investment. In the Brookings Model, a fixed (or, recently, time-
varying) fraction of each component of demand is allocated to each
industry, and the value added in an industry is taken as the sum of all
components allocated in this way. Although this is a purely mechanical
expedient, it is probably about the best that can be done to unite the
components of demand with a conventional industry classification of
value added. No theoretically satisfactory solution is possible in the
framework of the Brookings Model.

In this paper we return to the measure of output suggested by the theory
of production, deliveries of goods to final demand. Since the data necessary
to carry out direct estimation of separate production functions are in-
variably lacking, it is necessary to find a specification that relates output
to observable measures of primary inputs. Although data on direct
primary inputs are available for a quite highly disaggregated industry
classification, this disaggregation is not useful because data on indirect
primary inputs are not available. Recent progress has been achieved
through the development of specifications based on measurements of
total primary factor inputs to the whole economy. This paper presents a
unified theoretical treatment of two approaches to the specification of
multisectoral technologies based on the principle of relating disaggregated
measures of the different kinds of output to aggregate quantities of
primary factors. The first approach deals with the production possibility
frontier under certain restrictive assumptions. The second deals with the
set of demand functions for primary factors associated with the technology
when factor markets are competitive.

The first approach was originally proposed by Mundlak (1963). He
suggested estimation of the production possibility frontier giving an
implicit relation between a vector of outputs, say y, and a vector of total
inputs, say x. In general, a production possibility frontier can be defined
in terms of a transformation function: t(y, x) = 0. In the absence of further
restrictions, this formulation of technology permits arbitrary kinds of
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interaction between total factor intensities and the trade-ofl between
the various types of output. Mundlak proposed a substantive restriction
on the form of the transformation function; he assumed that it can be
written in the following way: ¢(y,x) = —g(») + f(x) = 0. This
restriction, known as separability, has a number of important implications
whose study is one of the main purposes of the present paper. Two
conclusions should be noted. First, separability almost always means that
outputs are produced jointly. The only case in which the underlying
production structure of the economy can be portrayed by separate pro-
duction functions for each kind of output is the case where all the
production functions are identical. Second, separability implies that
output price ratios or marginal rates of transformation are independent
of factor intensities or factor prices. This rather undesirable property
makes it apparent that a specification of joint production with separability
is no more general, in at least this crucial respect, than the one-sector
specification.

A second contribution to the specification of production of several
kinds of output is that of Diewert (1971). He observes that, if production
functions and factor markets are competitive, then the amount of each
factor employed by each industry can be written as a function of the
output of that industry and the prices of all factors. With constant returns
to scale, this amounts to saying that each output-factor ratio in each
industry is determined solely by factor prices. The set of these functions for
a given factor can be added across all industries to get a set of equations
expressed entirely in observable variables:

Xy = O 1Dy e s Vs Wey e v vy Wy)

Xy = On(D1s ey Vs Wiy e ooy WY)-
Here w, ..., wy are the prices of the N factors xy, ..., xy. If the factor
demand functions ¢, ..., ¢y are derived from individual production

functions, as they are in Diewert’s work, then this system of equations
embodies the substantive restriction, relative to the general transformation
function, that production is nonjoint. A technology expressed by a trans-
formation function is said to be joint if there is no way to portray it in
terms of separate production functions, and nonjoint if it can be so
portrayed.

The present paper investigates the implications of the restrictions of
separability and nonjointness. Both are characterized in terms of the
properties of the joint cost function. The method of analysis is based on
principles of duality discovered by Shephard (1953), Uzawa (1964),
and McFadden (1973). The paper goes on to propose a functional form
for the joint cost function and related joint factor demands in which the
two restrictions can be imposed parametrically. This function, the
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generalized linear—generalized Leontief or hybrid Diewert joint cost

function, makes it possible to carry out formal statistical tests of the two
> p y

restrictions.

1. Approaches to the Specification of Joint Technologies

A well-behaved technology can be described equally well in terms of
relations between quantities or relations between prices, as long as
markets are competitive and profits are maximized. The basic relation
among quantities for our purposes is the transformation function,
t(», x) = 01ify can be produced with x. We assume that ¢(y, x) is defined
and continuous for all nonnegative y and x and that it is decreasing in y
and increasing in x. We define the joint cost function as the function giving
the minimum cost at which outputs y,, ...,y can be produced when
factor prices are wy, ..., wy. Since it serves as the basis of all of our
results, we provide here an explicit statement of the duality between the
joint cost function and its underlying technology:

Shephard-Uzawa-McFadden Duality Theorem for Joint Cost Functions

Suppose the transformation function ¢(y, x) has a strictly convex input
structure; that is, the input requirement set V(y) = {x[¢(», x) > 0}
is closed and strictly convex.! Then there is a unique joint cost function
C(y, w), differentiable in w, defined by

C(y, w) = min w-x.
xeV(y)
Further, C(y, w) is positive linear homogeneous, nondecreasing, and
concave? in the factor prices, w. Finally, it obeys Shephard’s lemma,

A
t<% aC (y, w)> o,
cw

that is, the vector of cost-minimizing factor inputs is equal to the vector
of derivatives of the cost function with respect to the factor prices.

The proof of this theorem is given by McFadden (1973). We note
without proof that when the transformation function ¢(y, x) is dif-
ferentiable in outputs, y, the following condition also holds:

oC(y, w)ldyi _ 0, ) [y

oC (3, w)|dy; A, X[y,

! This rules out the case of factors that are perfect substitutes or perfect complements.
All of our results are valid for the latter case, however.

2 Since there is occasional confusion on the subject, it is worth noting that the concavity
of the cost function does not follow from the convexity of the technology. All cost functions
are concave, irrespective of the characteristics of the underlying technology.
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that is, the ratio of the marginal costs of two goods is equal to the marginal
rate of transformation between them. Thus the production possibility
frontier is tangent to the isocost surface at the point where production
takes place.

The transformation function describes the technology uniquely, but
more than one transformation function can describe the same technology.
For this reason, Shephard, and subsequently McFadden, have found it
convenient to deal with a normalized form of the transformation function
known as the distance function. It is related to the transformation function
by the following identity in x and y:

1
,——x) =0.
t<y D(y, x) x)

That is, the distance, D( », x), is the amount by which an arbitrary vector
of inputs, x, must be scaled down so that it will exactly produce a vector
of outputs, .3

2. Characterization of the Joint Cost Function When the
Technology Is Separable or Nonjoint and Has Constant
Returns to Scale

In this section we show that straightforward criteria exist for determining
whether the technology underlying a joint cost function is separable
or nonjoint. Throughout, we assume that the transformation function is
differentiable in outputs, y; this rules out perfect complementarity of
outputs. We do not require differentiability of ¢(y, x) in x; the differenti-
ability of C'(», w) in w depends, rather, on the strict convexity of the input
requirement set.* We also assume that the technology has constant
returns to scale: ¢(», x) = O implies ¢(dy, Ax) = 0, all 2 > 0. More
general results, and proofs of several results used here are presented in the
Appendix.
We begin with a

Theorem on Separability

A necessary and sufficient condition for separability (¢(y, x) = —g(») +
S (x)) is that the joint cost function be multiplicatively separable:

C(y,w) = HO)Y(w).

3 McFadden uses the term ‘“‘transformation function” for what we call the distance
function. Our departure from his terminology is necessary in order to discuss separability
of our ¢(y, x).

4 A slightly weaker assumption that would extend all of the following results to the
technology with fixed input coefficients is that C(y, w) is differential for strictly positive
factor prices only.
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Proof:

i) Necessity.—We show first that f (x) is homothetic; that is, there exists
a strictly increasing positive function A(-) such that A[ f (x)] is linearly
homogeneous. Consider any x), x(2) on the same isoquant: f (x(1)) =
F (D). Then f(Ax'D) = f(Ax?) for any A > 0, since both equal
g(Ay) by constant returns to scale. Then by the lemma of the Appendix,
f (x) is homothetic.

Next we examine the distance function D(y, x), defined by

1
f(DUJ)O-—ﬂﬁ
1
h (f(D(y, > )) — hg(r)).

By the homogeneity of A[ f ()],

or

1
h(f(x)) = h ,
55 U ) = HeL)
and
D(y,x) = h(f () ; (gl(y)),

which we observe is multiplicatively separable. Finally, by McFadden’s
lemma 10 (1973, p. 73 in the manuscript), C(y, w) is also multiplicatively
separable: C(y, w) = H(y)y(w), where H(y) = h(g(»)).

1) Sufficiency.—Separability of the joint cost function implies separability
of the distance function: D(y, x) = DM () D (x). Now ¢(y, x) = 0 if
and only if D(y, x) = 1, so t(y, x) = DV(y) — 1/D®(x) is one trans-
formation function representing the technology of D™ () D (x); it is
separable, as required.

Corollary

If the technology is separable, the ratios of any two marginal costs are
independent of factor prices.

In competitive equilibrium, prices equal marginal costs, so under
separability, output price ratios are independent of factor prices or factor
intensities. We see, therefore, that separability represents a generalization
of the one-sector technology, in that output price ratios can vary as the
output mix varies. However, the interesting and possible important
feature of two-sector and more elaborate technologies—dependence of
output price ratios on factor prices—is entirely absent. This suggests that
separability may not be a suitable specification for a complete econometric
model.
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We turn now to the study of nonjointness as a restriction on the general
joint cost function. We begin with the

Definition of a Nonjoint Technology

A technology with transformation function ¢(y, x) is nonjoint if there
exist functions f M (x), ..., f™(x) (interpreted as individual pro-
duction functions) with the properties: (i) There are no economies of
jointness: if x can produce y(¢(yp, x) > 0), there is a factor allocation

AU 4 ) = & such that fOD) >y, i=1,..., M. (i)
There are no diseconomies of jointness: if y;, = f®(xD), all 7, then
x =& 4 - 4 2™ can produce y.

To show that a technology is nonjoint, we must exhibit the individual
functions £, ..., f™) and show that they meet both of these require-
ments. Note that nonjointness requires only that the £ (? exist as functions;
there i1s no requirement that there be physically separate processes
producing the various outputs, y;. Thus the observation that more than
one output is produced in the same plant is not sufficient to rule out non-
jointness.

Although we have given the natural definition of nonjointness, it
does not turn out to be a useful characterization of it. There is no obvious
way to translate this definition into an econometric restriction that can be
imposed on a more general specification of the technology. The problem
of providing an alternative characterization has been studied previously
by Samuelson (1966), who states his results in terms of the derivatives
of the transformation function. His results do not seem to lead to any
econometrically useful restrictions, but the following alternative charac-
terization of nonjointness in terms of the joint cost function does seem
to be useful:

Theorem on Nonjointness

A necessary and sufficient condition for nonjointness is that the total cost
of producing all outputs be the sum of the costs of producing each
separately:

Clyw) =2, ) + - + yu¢™(w),

where ¢?(w) is the cost of producing a unit of output 7.

Proof:

The more general theorem on nonjointness in the Appendix shows that
the technology is nonjoint if C (y, w) = CP(p,, w) + -+ - + CM(y,,, w).
It remains to show that if the whole technology has constant returns to
scale, then the individual cost function for a typical output, say the first,
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has the form of constant returns to scale: C™V(y,, w) = ¢V (w). Now
C(y,w) is linearly homogeneous: C(Ay,w) = AC(y, w). If y, =0,
i=2,..., M, and C(y, w) has the additive form of nonjointness, then

COyps ) + CDO,w) + - + C(0, w)
= J[CY(yy, w) + CO0,w) + -+ + C™(0, w)].

By taking 4 = 0, we see that CH0,w) = 0,7 =1,..., M, since each
is nonnegative. Finally, by taking 2 = 1/y;, we have

CO(yp, w) = 3,601, w) = 3, (w).

Corollary

If the technology is nonjoint, the marginal cost of each output is in-
dependent of the level of any output.

Now in the case of separability of technology, the ratios of the marginal
costs depend only on the output mix, while with nonjointness, marginal
costs are independent of the output mix. This suggests that the overlap
between the two restrictions is very small. We now give the

Impossibility Theorem for Separable Nonjoint Technologies

No multiple-output technology with constant returns to scale can be
both separable and nonjoint. That is, the individual production functions
in such a technology are identical except for a scalar multiple, implying
that there is effectively only a single kind of output.

Proof:

The general theorem on separable nonjoint technologies in the Appendix
establishes that the joint cost function has the form

Cr,w) = [gP0) + + gMOm)d(w).

On the other hand, the theorem on nonjointness under constant returns
implies that C(y, w) can be written as the sum of separate costs:

C(y,w) =319 V(W) + - + ™ ().
By setting all but the ith element of y equal to zero, we have
@ (1 1 ; :
P - a0 + 00| =
p(w) i i
a constant independent of w and y. Thus C(y, w) = (o3, + - +
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dy )@ (w). The individual production functions of the separable non-
joint technology are

SOEO) = 2 pra),
&;

where f *(-) is the production function whose unit cost function is ¢(w).

Nontrivial separable technologies are inherently joint, and their use
in empirical work forecloses investigation of the hypothesis of nonjoint-
ness. Since there are few strong reasons a priori to believe in jointness
at the level of aggregation of complete econometric models, this is a
second serious drawback of separable specifications of technology.

3. A Functional Form for Joint Cost Functions That Contains
Separability and Nonjointness as Parametric Restrictions

The family of functional forms introduced by Diewert (1971) is a logical
source for a convenient specification for joint cost functions.® Diewert
has proposed the generalized Leontief cost function for a single output:

N N

Clw) =y 2 2 ey wa,

i=1 j=1

and has shown that the technology underlying this cost function can
approximate, locally, the curvature or substitution properties of almost
any technology. He has also proposed a generalized linear production
function,

y:

N N
i=1

Z a,-,-\/;,-;c;,

j=1

and again has shown that it can approximate almost any technology.
Since the joint cost function is a hybrid dual concept, it is natural to use a
hybrid Diewert function as a specification. Our choice is the

Generalized Linear—Generalized Leontief (Hybrid Diewert) Joint Cost Function

N N M M

C(y, w) = Z Z aijkl\/.JTk—.;l \/wiwj

i=1j=1k=11=1

This function has a generalized linear relation among outputs and a
generalized Leontief relation among inputs. It has a rather large number
of parameters, but this is made necessary by the ambitious requirement

5 Other families of joint cost functions would probably serve equally well and give very
similar empirical results. The quadratic log function of Christensen, Jorgenson, and Lau
(1971; in press) would be a sensible alternative, for example.



SPECIFICATION OF TECHNOLOGY 887

that both separability and nonjointness be obtainable by parametric
restrictions.

For separability, the coefficients must obey the following restriction:
a1 = Pijoy,; this makes the joint cost function separable as follows:

) = (35 32 o) (35 35 b )

i=1 j=1

In terms of the separable transformation function ¢(y, x) = —g(y) +
f (x), the function g(») is the generalized linear function appearing in the
joint cost function, and f (x) is the production function corresponding
to the generalized Leontief cost function appearing there. The form of
S (x) is rather complicated and cannot be given in a closed expression:
the reader is referred to Diewert (1971) for a discussion on this point.

For nonjointness, all of the coefficients in the joint cost function
corresponding to interaction among the »’s must vanish: a;;,, = 0 unless
k = [. Then the coefficients a,, are the coefficients of a separate general-
ized Leontief cost function for industry £. Under this restriction, each
industry still has an arbitrary production function.

Estimation of the hybrid Diewert joint cost function in any of its three
forms is conveniently based on the multivariate system obtained by
setting each observed factor input equal to the factor demand derived

from the cost function, and each price equal to the marginal cost derived
from the cost function:

9C(y, w)

X, =
1
ow,

_ 9C(y, w)

Jwy
Gy, w)

by = ,

3C(, w)

by = D

With two factors and two outputs, the cost function is
C(y1s 22 Wy, Wy) = ayy4191Wy + Q113229504

T 3211 01W2 + 433220503

+ 2a1211y1\/w1w2 + 2“1222)’2\/””1“’2

+ 2a“12w1\/y1y2 + 2‘12212“’2\/)’1)’2
+ 4“1212\/)’1)’2 \/w1w2-
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The corresponding estimating equations are

Xy = @110 + 2“1112\/J’1J’2 + a112292

+ \/wz/w1 (a121101 + 2“1212\/y1)’2 + @12229,)3

Il

X2 \/wl/wz (@121101 + 2“1212\/)’1)’2 + a12227)

+ @311 + 2‘12212\/)’1)’2 + 3322725

b1 = Q111 Wy t+ Ay,

+ 2‘11211\/“’1“’2

+ a1112w1\/]2/)’1 + a2212w2\/_y2/.y1
+ 2“1212\/3’2./)’1 \/w1w25

P2 = Q112201 T+ 3335

+ 2“1222V/w1w2

+ dnlzwl\/ﬁﬁ/)’z + azz1zwz\/)’1/}’2
+ 2“1212\/%/)”2 \/wle'

This system has nine parameters after taking account of three restrictions
between the equations.
The null hypothesis of separability is:

111192222 = @2211%11225
112292222 = @3212%11225
121192222 = @1222%2115

121282222 = @1222%2212-

In practice, this is tested by estimating the separable specification,

Xy = 0y t 20‘12\/)’1J’2 + %3203
+ \/wz/w1 (Biaoty1 oy + 2/3129‘12\/]1)’2 + Bi12%222);

Xy = \/wl/wz (Bi22y1 01 + 2[;120‘12\/)’1)'2 + B12%229,)
+ B0y + Qﬁzzau\/)’lyz + 22022025
Py = a;w; + 2O‘uﬁu\/wﬂ’”z + ay1B22w;

+ V/)’z/yl (0w + 20‘12[312\/101“’2 + o12B5,w5)
P, = \/J’l/yz (a0 + 20‘12/312\/wlw2 + o ,f5,w))
+ ayw; + 20‘22/312\/“’11”2 + 23,5505

Here we have used the normalization 8, = 1, leaving five parameters.
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The sum of squared residuals from this mildly nonlinear regression can

be compared to the sum of squares from the unrestricted linear regression,

and the null hypothesis tested with an approximate F-test. ‘
The null hypothesis of nonjointness has the simple linear form:

ajg1, = 0;
a1, = 03
431, = 0.

The test is simply a test of the joint significance of the output interaction

terms \/)'1))2, \/wz/wl \/ylyz, and \/wl/w2 \/ylyz in the regression.

4. Conclusion

We have studied two alternative families of specifications that relate the
vector of outputs produced by a technology to the vector of primary
inputs employed in production. The first exhibits mathematical sep-
arability of the transformation function describing the technology. This
family has two undesirable properties: it requires that the technology be
joint, so that it requires that the cost of producing one kind of output
depend on the amount of other kinds of output produced, and it requires
that the ratios between output prices be independent of factor prices.
The second family exhibits additive separability of the cost function of
the technology. It requires that the technology be nonjoint, so it rules
out interaction among the productive processes except through the
primary factors. We have shown that these two families of restrictions are
mutually exclusive—a technology cannot have a separable transformation
function and be nonjoint. Finally, we have proposed a function form
suitable for econometric investigation of technologies with more than
one kind of output. In it, separability of the transformation function
and nonjointness of the technology are available as parametric restriction
and thus may be tested with the usual methods of statistical inference.

Appendix

Results for Technologies That Do Not Have Constant
Returns to Scale

We begin by stating a well-known property of homothetic functions:

Lemma:

A function f (x) is homothetic if f(x) = f (') implies f(ix) = f(ix’) for all
A = 0 and all vectors x and x” in the domain of f.

Proof:

A function f (x) is homothetic if there is a function £ such that A( f (x)) is linearly
homogeneous. A function with this property is obtained as follows: Let ¥ be an
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arbitrary point in the domain of f. Then define i(q) as follows: 4(g) = z such
that f(z%) = ¢q. Now A[f (Ax)] = z such that f(z%¥) = f (Ax). By hypothesis
S(z/A)x] = f(x), or A[f ()] = z/A. Thus A[f (Ax)] = AR[f (x)], and A[f(2)]
is linearly homogeneous.

Next we give the

General Theorem on Separability

Suppose that a technology is separable: t(y, x) = —g(») + f (x). Then the joint
cost function has the form C(y, w) = C*(g(y), w).
Proof:

Consider two vectors of outputs y and y’ such that g(») = g()’). We seek to show
that C(y, w) = C(¥’, w). The input requirement set for y is

V() = x|f(x) 2 g} = &|f(x) =g0)} = V1),
and

C(y,w) = min w-x = min w-x = C(y, w),
xeV(») xeV(y')
as required.
Next we give a characterization of nonjoint technologies in terms of the input
requirement sets:

General Theorem 1 on Nonjointness

A technology is nonjoint if and only if there exist separate input requirement sets
VO (p), ..., V™M(y,) such that V(p) = VID(y,) + -« + VOD(y, ),

Proof:
i) Suppose the technology is nonjoint. Let ¥¥(y;) be the input requirement set of
¥ = fP(xD). Now suppose there is a y and an x such that x € V() but there is
no allocation x™) + ... + x™) = x such that xV e V¥ (y,). This contradicts
part (7) of the definition of nonjointness. Suppose, on the other hand, that there
is a y and an allocation x1), ..., x™) such that x e V@W(y,) but x + ... +
*™) is not in V(). This contradicts part (ii) of the definition. We conclude that
V(p) = V) + o+ V().

it) Suppose V(y) = VO(y,) + -+« + VM (y,). Let fD(x®) be the produc-
tion function corresponding to the input requirement set V(). Then parts (i)
and (i) of the definition are easily seen to hold.

This restatement of the definition of nonjointness enables us to draw on a result
of McFadden to give a useful (and obvious) characterization of nonjoint tech-
nologies in terms of the joint cost function:

General Theorem 2 on Nonjointness

A technology is nonjoint if and only if the joint cost function can be written as the
sum of independent cost functions for each kind of output: C(y, w) =
C(l)(yla w) +oeet C(M)(yM’ w)

Proof:
The proof follows directly from repeated application of McFadden’s composition
rule 5, “Summation of Input Requirement Sets” (1973, table 2).

Finally we give the
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General Theorem on Separable Nonjoint Technologies

A technology is both separable and nonjoint if and only if its joint cost function
has the form C(y, w) = [gP(y,) + -+ + g ()] d(w), that is, the separate
production functions are identical except for pure scale effects.

Proof:

The technology is separable, so ¢(y, x) = —g(») + f(x). We show first that
f (%) is homothetic. Let I; be the ith column of the M x M identity matrix.
Consider a vector of inputs, x, and define y; and y, by g(I; »;) = g(l3,) = f (x).
We seek to show thatg(I; »; + I,9,) = f(2x). By nonjointness, g(I; y; + I, »,) <
f(2x). Suppose g(I;3; + I,9,) < f(2x). Then there is a factor allocation
¥ 4 #2 = 2x such that f(*V) > g(I,»,) and f (x?) > g(I,,), and thus
Fx) < f(xD) and f(x) < f(x®@). By the convexity of the input requirement
set,

SBED + )] = 4 (D) + £ (2] > S () + S (%)]

or f(x) > f(x), a contradiction. We conclude that g(I; y; + I,3,) = f(2x).

Now suppose we have inputs x and % such that f (x) = f(%). By the previous
result we have f (2x) = f(2%). Next we show that f (4x) = f (3X). Suppose, on
the contrary, that f(4x) > f(3%). Consider y, and y, such that g(I;y,) =
g(I,3,) = f(3x). Then g(I; 9, + I,3,) = f(x). On the other hand, g(I,y,)
f (%) and g(I,y,) > f(3%). Consider an allocation of factors, ¥ x x(2) = %,
By convexity, f (4%) = f[3(x? + )] > [ f(xD) + f(x?)], so it is not
possible that f (x() > f(4%) and f (x?) > f(3%). We conclude that y; and
», cannot be produced with %, and that g(I; y; + I,,) > f(%). But this con-
tradicts g(I,y; + L,y,) = f(x) = f(X), so we must have f(3x) < f(3X).
Equality is established by reversing x and % in the argument. By repetition of this
and the previous result, we have f(2"x) = f(2"%), —o0 < n < . Next we
observe that if f(x()) = f (%), —0 < ¢ < 00, then

(59)(£)

i=— o i=— o

\

provided the sums exist, by the continuity of f. Now consider the binary rep-
resentation of an arbitrary positive number, 4:

A= > 82, & =0orl

Let ¥ = §,2ix and %P = §,;2'%. By our earlier results, if f(x) = f(%),
F(xD) = £(%D). Thus

0
f( > 5i2ix) =f(§: 5,252),
1= =00

or f(Ax) = f(AX) for any 4 = 0. By the lemma, this establishes that f is homo-
thetic. Without loss of generality we may assume that it is linearly homogeneous,
that is, that the one-sector technology ¢ = f (x) has constant returns to scale.
Let ¢(w) be the unit cost function of f (x). Then the individual cost function for
output ¢ is C¥(y,, w) = g(I;3;) p(w), and the joint cost function is C(y, w) =
gP(y)) = -+ = g™ (yp) d(w) as asserted, where gV (y;) = g(I; ).
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