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Simulation Methods for Intertemporal

Economic Modelst

by

Robert E. Hall

Two classes of problems arise in simulating intertemporal economic
models. The first is that of finding a solution to the implicit difference
equation,

(1) F( = 0 ,

X415
where F is an n-dimensional vector-valued function of the n-dimensional
vectors X4l and Xi» which represent the state of the economy in periods
t + 1 and t, respectively. This class of problems has received a great
deal of attention in the last few years because of the large amount of

interest in simulating econometric models of the whole economy; these

models can always be put in the form of equation 1 by an appropriate

t The author is grateful to Avinash Dixit for useful suggestions. This
paper is intended mainly to serve as a guide to developing a computer
program for simulating intertemporal models.



set of substitutions. The reader is referred to McGettigan [2] for a
summary and evaluation of the methods for solving this kind of problem.
In general, it is possible to solve equation 1 for xt+l given the

particular values of x_ by one or a combination of iterative methods,

t
as long as F is moderately well-behaved.

There is, however, an important class of intertemporal econamic
models which cannot be put into the form of equation 1. These models
are characterized by the property that one of the groups of participants
in the economy makes plans extending into the future beyoﬁd period t + 1.
If this is the case, the simulation problem involves two steps: The first
is to solve the prediction and planning problem of the group which makes
‘plans; this gives values for some or all of the elements of the |
vector xt+l.\The second step (which will vanish if the planning group
determines all of the variables in the economy) is to find the remaining
elements of X4 by solving an equation of the form of equation 1.
The purpose of this paper is to discuss some methods for solving the
prediction and planning problem. The mathematical discussion of the

first section is supplemented by an economic example in the second

section.

1. Simulation Methods

Prediction and planning models generally turn out to involve the

solution of two-point boundary value problems. The typical problem of

this kind can be formulated in the following way: Conditional on this
period's plan being correct, next period's plan is given by the

difference equation,



(2) x,, = Gx) .
Two additional sets of requirements complete the statement of the
characteristics of the plan. First, certain elements of the first step

in the plan are fixed by initial conditions
(3) Ax = X, .,

where Al is a matrix of m rows and n columns and il is a vector of m
elements usually stating initial economic resources. Eguation 3 expresses
m linear constraints embodying the initial conditions of the plan.

Second, there are terminal conditions at the time horizon, T:

U & T B

where AT is a matrix of n - m rows and n columns and iT is a vector of

n - m elements. Finally, the domain, P, of the function G expressing
the set of permissable values of X, is usually restricted in some vay--
for example, consumption and the carital stock must be nonnegative.

The problem, then, is to find a set of values for Xy which meet
the constr#int of equation 3, and such that T -~ 1 successive arplications
of the difference equation, 2, brings the economic plan to a point, X,

which meéts the constraint of equation ¥. We will discuss two methods

for solving this problem.1 The first is the obvious method of picking

1 gee Athans, {1], for a discussion and bibliography of methods for
solving this kind of problem in an engineering context.



an initial point, Xy from among those which meet the initial constraint
of equation 3, calculating the corresponding Xps and updating the initial

guess according to some function of the terminal error, which is defined

To begin the discussion of this method, we note that the initial con-

straint can also be written as

-

where B is a matrix of n rows and n - m columns, x is a vector of
dimension n - m, and C is a vector of dimension n. This representation
is not generally unique, but this will not introduce any difficulties.
Our problem may then be restated as one of finding a vector ; such that

the vector of terminal errors, E

> is zero. An example of a possible

~(3)

iterative method is the Newton-Raphson method, in which a value x

is updated by the iteration equation,

(5+1) (5) aE(j)l()
- ~(3+) | o3) _ (-1 L
(7 x x 0;;(37) Ep

(3)
The matrix of derivatives, aET , can be calculated by the following

(3
process. First,



_e) 3 (3)
OB Ol

Second, we can calculate the derivative of the path with respect to the
initial conditions by differentiating the difference equation governing

the plan:

o) axf_'ﬂ ac;(xf;j )) axéj)

L DI € BT ) B

This is a linear matrix difference eqguation which can be calculated without
(3)
) (3)
any difficulty to give the value of —:Try along the path x . Initial
ax 'Y t

conditions are obtained by differentiating equation 6:

8x§j)

(10) TGT = B.
]

X

This method has the property of quadratic convergence common to all
applications of Newton's method. Unfortunately, its usefulness is limited
to cases of short horizons (small values of T). The difficulty is that
for most choices of the initial vector ;, repeated applications of the
difference equation bring the economy to a point outside the permissable
region, P, at a time before T. The difference equation which characterizes
a plan is always unstable—-the planned state of the econamy at time t,

X s becomes more and more sensitive to x as t becomes larger. This
observation can be put another way by standing it on its head: Today's

~

plan, as expressed by x, becames less and less sensitive to the desired



future state of the economy, xt, as the futurity of that state increases.
The infinite future is completely irrelevant, so in the limit as t

approaches infinity, X, is infinitely sensitive to x:

00 aoc
um % = |- :
+->o0 ~ M

oxX o ®

‘The instability of the basic difference equation has several impli-

-~

cations for iterative processes for finding the initial value, x. It

~(0)

is usually almost impossible to find a value of x to start the

0)

iterative process which corresponds to a trajectory xi which is always

(0)

within the permissable set. Further, if such a value of x is found,
usually the first iteration will yield a value of x(l) whose trajectory
fajls to lie within the permissable set. Clearly any iterative process
based on ET and x must be supplemented by a method for handling initial
values whose trajectories enter the forbidden region at a time before T.
It is not easy to design methods for handling this problem which have
a reasonable prospect for speedy convergence.

A second method for solving two-point boundary value problems is
based on a somewhat more subtle approach. It has been applied with
complete success to some simple intertemporal economic models, but it

is not known whether it will work as well with more complicated models.

2
We refer to the method of quasilinearization. The basic idea of this

method is that the two-point boundary value problem can be solved directly

in systems of nonautonomous inhomogeneocus linear difference ecuations.

2 See MeGill and Kenneth [3].



This suggests the following strategy: (1) Pick an arbitrary trajectory

xéo) which meets the initial condition and the constraint x(o)

N e P, but

not the difference equation: xigz # G(xio)). (2) Use this trajectory
to calculate a nonautonomous linear approximation to the difference
equation. (3) Solve the boundary value problem in the linear system.
(4) Use the new trajectory as the basis for a new approximation and
continue the next iteration from step 2.

This method has two properties which make it particularly attractive
in applications to economic models. First, the linear approximation can
often be interpreted in market terms: In a market equilibrium, each
participant faces a linear economy which is tangent to the true curved
economy at the point of his demand. The slopes are, of course, the prices.
Second, the turnpike property common to almost all intertemporal economic.
models can be used to great advantage in choosing the initial trajectory

xio). Since the middle part of every trajectory will lie close to the

turnpike, x¥, a natural choice for xéo)

is a trajectory which goes
straight to x¥ in a few steps, stays there without moving until a few
periods before T, and then moves to a point satisfyinp the terminal
conditions in a few more steps. Using this initial trajectory makes the
number of iterations to convergence more or less independent of the
horizon, T--500-year plans can be calculated in L or 5 iterationms.

In contrast, it is possible to show that the number of iterations to
convergence for ahy method for updating the initial condition by the

terminal error becomes larger and larger without limil as T becomes

larger.



The first step in presenting the details of the methcd of
guasilinearization is to show how tc solve the twe-roint boundarwy

value problem in the approximating linear system. The linear system

) %, = o)+ -l
where
(i)
;(3) 3E£ft )
¢ 5
thJ

: T-1 T-1

N T : : ;

(12) S P L A Y J(J))(G(xiJ)) - JéJ)-x
t=1 ¢ t=1 t=t+l ©

5.7))

%)

Next we define the terminal error along a trajectory in the linear

system,

N
13)  Ey = App - Fy

our goal is to make this a vector of zeroes. We also have

n, A
(1k) X, = Bx + C ,

“\

since we want xl to meet the constraint on initial resources.



~

The value of x which solves the boundary vadlue problem in the linear

éystem is the solution to the linear system of equations,

N T-1 (4 -
(15) E, = Ay thJ Bx + C

t=1
w1 (3) (J) (J) <J>
+ Al I ( n JIMe(xY) - )
b t=1 T=t+l |
_ET = 0 .
If we let
T-—l
- ) (J)
(16) Q = .
R R
and
‘I'-l
(J)
(17) R = A c
T_t=l t
T-1
sag el x (o1 sead)) - gl ‘J’)
t=1 t=t+l
_;[T ,
then the equation is
(18) E_ = Qr+R = 0 ,

T
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or

(19) x =- QR .

The second step in each iteration in the method of quasilineari-
zation is to take as the new trajectory the solution to the aporoxi-
mating linear system corresponding to the value of x calculated from

equation 19; that is,

(20) xéj+l) - ?t -,

and

(21) x, = Bx + C .

After the first iteration, each trajectory x(j) meets both the initial

t
and terminal boundary conditions exactly. Each iteration takes the
trajectory closer and closer to the unique trajectory which meets both
conditions and is also a solution to the difference eqguation, G.
Since the method is based on the Newton-Raphson method, it converges

guadratically; in simple anplications, 5 digits of accuracy in x can be

reached in % or 5 iterations from a turnvike-type initial trajectory.

2. A Simple Example--The Ramsey HModel

Consider an economy in which consumers maximize a utility function,
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T -t
(22) U = I (L+p) 'logec
t=1

t

One of the conditions for the maximum is the difference equation,

1 + rt
(23) “t41 T T+,

where r, is the interest rate. With the usual one-sector technology,

t
we have
) = - -
(2h) Kerq f(kt) + (1 G)kt Cia1
and
2 = ! -
(25) r, (k) -6 .

The competitive equilibrium in this economy is determined by the

initial condition on total resources,

(26) k., + ¢ =k

and a terminal condition which is the consumers' budget constraint,

]
o

(27} k



In terms of the notation of the first section, this model is:

<, |
(28) xt = s
K¢
r | 7]
1+ f (kt) -8 .
l1+p t
(29) G(xt) =
) 1+ f'(kt) -6
fk,) + (1 - 8k, - ———s e ¢
t t 1+ t

(30) A = 1, 11 ,

(31) x, = k ,

(32) A, = [0,1] ,

(33) En = ko

1
(3k) B = .
_—-l
[0
(35) c =1_1,
k
L
and
(36) ;( = ¢ .
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With this way of setting up the problem, we are looking for a value of
initial consumption so that terminal capital is exactly zero.

The matrix of derivatives, Jt’ is

e -
Ti
1+ f'(kt) -8 £ (kt)
St
(37) I = l1+p l1+p
1+ f'(kt) -6 f"(kt)
- 1+ f'(kt) -6 - —c,
1+p 1+

The approximating linear system reduces after some simplification to

1+ " (k. )
" t v t v
(38) c = —c, +———¢,  (k, - k,)
t+1 14, t g, o t t t
n, 4" n,
(39) Kevp = f(kt) + (1 + rt)(kt - kt) + (1 - e;)kt - Cyp -

Thus on each iteration we are finding the competitive equilibrium in
a sufrogate economy with the following characteristics: Consumers
maximize utility (approximately) as if the rate of interest at which
they borrow or lend rises linearly with the amount they borrow. The
technology, on the other hand, is taken to be linear, with the net

marginal product of capital (rt) variable over time but independent of

o
the amount of capital, kt'
It is interesting to inguire whether it is really necessary to
. < . ™ V -
include the interest rate adjustment term 1+p Cy (k.t - kt) in the
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consumption planning equation, 38. If it were omitted, the quasi-
linearization procedure would have the following interpretation: Consumers
are presented with an’arbitrary interest rate trajectory. They make
consumption and savings plans for this interest rate: then the capital
stock is set equal to corsumers' demand for assets. This generates a new
trial interest rate by the marginal product condition., and the process

can be repeated. Unfortunately this simrlification often fails to

converge, so its use is not recommended.
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