The Rational Consumer: Theory and Evidence

Robert E. Hall

The MIT Press
Cambridge, Massachusetts
London, England



1 The Allocation of Wealth among the Generations of a Family
That Lasts Forever: A Theory of Inheritance

Recent models of economic growth have been based on a variety of assump-
tions about consumption behavior. First, a large literature has grown out
of the assumption that consumers make decisions by arbitrary rules, par-
ticularly the rule of consuming a fixed fraction of total income or that of
consuming all wages and saving all profits. Second, in the past 2 or 3 years
there has been a resurgence of interest in models of optimal accumulation
in which consumption behavior is regulated by an authority that can see
far beyond the lifetime of any individual and that maximizes a social welfare
function defined over the consumption of present and future generations.
Finally, an important series of papers by Samuelson (1958), Diamond
(1965), and Cass and Yaari (1965) have investigated competitive models in
which individuals determine their consumption for two or more periods by
maximizing a utility function subject to a wealth constraint. The results of
these investigations are somewhat disturbing—in particular, the competi-
tive equilibrium interest rate may be permanently less than the rate of
growth because of oversaving. This implies that the equilibrium is in-
efficient by a well-known theorem of Phelps and Koopmans (1965). Fur-
ther, as Diamond has shown, some seemingly neutral fiscal activities of the
government may have an important effect on the equilibrium—there may
indeed be a “burden” of the public debt.

These models neglect an important aspect of the intertemporal decisions
of the consumer—namely, that a person usually cares not only about his
own consumption but also about the well-being of his children. A father
has a considerable amount of control over his sons’ wealth because he can
vary the size of the bequest that he makes to them. In this essay I derive
some of the implications of hypothesis about the way in which a family
makes decisions about inheritance. The hypothesis is that a father and his
sons decide jointly how to allocate their wealth between the father’s and
the sons’ consumption by maximizing a utility function in which each one’s
consumption appears as an argument. Interestingly, while the spirit of this
" hypothesis is similar to that of the competitive utility maximizing models
of Samuelson-Diamond-Cass-Yaari, the properties of the resulting model
are very much like those of the centrally directed social-welfare-maximizing
models of optimal growth. In fact, I will demonstrate that this competitive
model has the catenary turnpike property common to almost all models
of optimal growth.

This essay treats a highly stylized economy in which there is one kind of
output, which may be either consumed or used as capital in production.
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Each person lives two periods but consumes and earns wages only in the
second period. At the beginning of the second period each person marries
and has 1 + nsons and 1 + n daughters. A family consists of husband and
wife, their children, and all their future descendents. There is a perfect
market for loans between any two periods. Production is carried out by
profit-maximizing entrepreneurs who borrow from the public to finance all
their investments. Production is assumed to take place with constant
returns to scale, and output is sold in a competitive market, so entrepre-
neurs earn no profit. Finally, all families are assumed to be identical.

1.1 Family Demand Functions with a Finite Horizon

The assumptions of this essay about the family allocation process can be
stated in two main hypotheses. First, we have the following.

HYPOTHESIS ON THE ALLOCATION OF WEALTH BETWEEN FATHER AND SON:
However much wealth a father and his sons devote to their consumption,
they divide it among themselves so as to maximize a joint utility function,

U(cf’ cs)’

where c; is the father’s (and mother’s) consumption and c; is the consump-
tion of each of their sons and daughters. We further assume that U is
quasi-concave.

Then, as a consequence of this maximization process, for any given
amount of wealth that they spend in total, there is a unique demand
function giving the parents’ share, where the parents are now identified as
generation t:

¢ = d(x,,1); 1)

x, is the present value of the consumption of parents and offspring, and r,
is the interest rate on loans between period ¢ and period ¢ + 1.

It is sensible to assume that the parent’s consumption is not an inferior
good:
od
+—=0. 2
ox, @
Now if each pair of generations makes its decisions by this process and if
the decisions are consistent in that each son’s planned consumption is the
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same as his actual consumption as a father, then the consumption of all
future generations can be predicted exactly, given today’s parents’ con-
sumption. This follows by induction after establishing the uniqueness of
the sons’ consumption given the parents’ consumption, since each son
subsequently becomes a father. For this purpose, consider the following
diagram:

d(Xt)
45°
d(x ry)
CuX
- G B L c,—» tt
1+ t+1
- X ——

Figure 1.1

To determine the c,,, corresponding to a particular c,, draw a vertical line
up from ¢, to the 45° line and extend it horizontally to its intersection with
the d(x,,r,) curve (the intersection is unique by the assumption that the
curve does not turn down). The horizontal distance at the intersection is
the total expenditure x, corresponding to c,; the consumption per son is
given by

147
Cit1 = m(x: — ). 3

Thus the parents can predict the consumption of every generation corre-
sponding to a particular value of their own consumption. Analytically, this
can be seen by substituting
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14+n

1+, Coet @

X, =C+

in equation 1 to get an implicit difference equation,

1+n
¢ = d<c, + 1—-+—r'c,+1,r,>, (5)

which can always be stated explicitly in the form

Cv1 =gl ). 6)

Today’s parents can use this relation to predict the consumption of all
future generations.

It remains to introduce an additional hypothesis to specify in what way
today’s parents and offspring care about future generations of the family
or, in other words, how they choose the part of the total family wealth
that they will appropriate for themselves, x,. This leads to the following
hypotheses.

HYPOTHESIS OF FUTURE GENERATIONS:  Today’s parents and offspring spend
the largest amount of wealth, x,, that is consistent with the long-run family
budget constraint that terminal wealth not be negative.

Then the decision-making process of the family may be visualized in the
following way: today’s parents and offspring examine the various family
consumption trajectories that correspond to alternative values of x, and
pick the value of x, whose consumption trajectory will exhaust family
wealth at time T. The easiest way to state the exhaustion of wealth is in
terms of family assets (nonhuman wealth); if A, denotes family assets per
person measured at the beginning of period ¢, then

1+
Apyy = mAt +W—cC, 4
where w, is noninterest income (wages) per person in period t. Then the
budget constraint is

Ars =0. @®

Because of the continuity of the functions involved, there is always a value
of the parents’ consumption ¢, corresponding to a trajectory that exactly
meets this budget constraint.
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The discussion so far has considered only the behavior and motivation
of one pair of generations of a family and has carefully avoided the notion
that any individual made plans that are binding on future generations. It
is interesting at this point to investigate the consequences of this kind of
behavior for the family as a whole. In particular, we inquire whether or not
this behavior is reasonable in the sense that it resembles the behavior that
might be prescribed if the family in fact had a planner.

The discussion will draw upon the results of Hall (1967), which proposes
a hypothesis that is equivalent to the present one in the special case where
the intergenerational utility function has the special additive form

U(C,,CH,I) = u(ct) +(1+ n)U(CtH)- 9

This form is assumed in the following discussion.

The first important property of family consumption under the inheri-
tance hypothesis is efficiency. A consumption trajectory is efficient if there
is no generation whose consumption could be increased without violating
the family budget constraint. Clearly with a finite horizon any trajectory
that meets the budget constraint exactly is efficient; the real significance of
this property is apparent only when the family is assumed to last forever.
However, family consumption behavior based on arbitrary rules (such as
a constant savings ratio) may fail to meet even this simple criterion.

The second important property is what Samuelson (1950) calls revers-
ibility: for any consumption trajectory there is a total family wealth and an
interest rate trajectory that yields the consumption trajectory as the family
demand. In other words, there are no parts of the consumption space that
are permanently in the dark in the sense that they would never be the
demand of a family in a competitive economy. If a surrogate family utility
function exists, this property is equivalent to quasi-concavity of the func-
tion. In the present model this property always holds if the horizon is finite.
The conditions for family equilibrium are

U'(Ces1) _ l+r

ey e) = 5 = 1 (10)
t
and
T t—1 1 +n
W= ,
Ll <1 ¥ r,> ‘ (11)
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Thus the reversibility conditions are satisfied with
nL= 1+ n)s(c,,c,+1) -1 (12)

and the value of W given in equation 11.

A third property, equivalent to the second if a surrogate family utility
function exists, is diminishing marginal rate of substitution. This is important
because it indicates a tendency for the family consumption plan to involve
approximately equal consumption for all generations rather than con-
centrating on only a few generations. Hall (1967) showed that diminishing
marginal rate of substitution will hold in this model if the rate of change
of the rate of impatience with respect to the consumption level is small in
absolute value. The rate of impatience, p(c), is defined by

plc) = (1 + ms(c, c); , (13)

it is the interest rate at which the level of consumption ¢ will remain
constant. Diminishing marginal rate of substitution is guaranteed over any
horizon T if

XGPS 4
T+p(c) 7

for a positive constant ¢, independent of T.

A fourth property of possible interest is the existence of a surrogate family
utility function U*(cy, ..., cy) with the property that all family consumption
decisions could be portrayed as if they were made by maximizing this
function subject to the family budget constraint. We find from Hall (1967)
that in general there is no such surrogate family utility, and hence no
meaning can be given to the notion of family preferences among alternative
consumption trajectories. This is neither destructive nor, in retrospect, a
surprising conclusion. After all, the only connection that today’s gen-
erations have with the future in this model is a concern for the financial
integrity of the family; it would be surprising indeed if this were equivalent
to having preferences between any pair of consumption trajectories even
when the only difference between the trajectories was in the consumption
of a generation far in the future.

There is one significant expectation to this conclusion. If the rate of
impatience is constant over all consumption levels, then there is, in fact, a
surrogate utility with the familiar form
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T t
Uterser) = 3, C I Z) ul(c,). (15)
Then the process of allocating wealth between succeeding generations is
exactly the same as would be implied by the Euler equation for maximizing
(15); the budget constraint is exactly the transversality condition for this
maximization. In this case the inheritance hypothesis amounts to assuming
that the family has adopted as its behavioral rule, not the notion of
maximizing a utility function, but an operationally identical rule that turns
out to be the Euler equation and its transversality condition. This, I think,
makes the notion of a family utility function of the special form (15) more
acceptable to those who reject the ideal of a family consciously maximizing
a utility function on the grounds that there is no central authority within
a family who makes and enforces consumption plans.

1.2 Consumption Demand for a Family That Lasts Forever

Economic intuition suggests that the behavior of a family that expects to
last a thousand years should be only infinitesimally different from one that
expects to last forever. The hypotheses on family behavior proposed in this
section are not sufficiently strong to guarantee this irrelevance of the distant
future, nor, in fact, are they strong enough to ensure that the criteria of
reasonable family demand behavior are met when the family lasts forever.
Paradoxically, demand functions that are efficient and reversible for any
horizon T, no matter how far distant, may be inefficient or irreversible when
the horizon is infinitely distant. Not surprisingly, this is closely related to
the problem of impatience. A similar paradox has been observed in models
of optimal economic growth (for example, Samuelson 1967), where it has
been resolved by showing that impatience is a logical necessity if a true
utility function is to exist (Diamond 1965). Thus we may immediately
conclude that the inheritance hypothesis implies a surrogate family utility
function if and only if p(c) > n and p’(c) = 0 for all c.

The difficulty with respect to the properties of efficiency and reversibility
is the following: If there is a ¢ such that p(c) < n, then either

1. If reversibility holds, the consumption trajectory ¢, =c forall tis in-
efficient, because the implied interest rate is less than the rate of growth,
and a debt incurred by any generation vanishes in the limit,! or
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2. Reversibility fails. This will happen if p’(c) < 0; see section 1.3 in this
regard.

Thus the inheritance hypothesis must be strengthened in the following way:

HYPOTHESIS ON IMPATIENCE:  Either both efficiency and reversibility hold
for the consumption demand of a family that lasts forever, or (equivalently)
the family is always impatient: p(c) > n. Efficiency is the more important
of the first two properties, since it alone implies that the competitive
equilibrium involves an interest rate whose limit is at least as large as the
rate of growth.

Now we are prepared to discuss the full family wealth allocation problem
over infinite time. Stated formally, the problem is to find a first generation
consumption c, so that for given initial family assets 4, lim,, 4, >0,
where future consumption and assets are predicted by the pair of difference
equations

C1 = g(c,, rt) (16)
14
At+1 = rr:A' + W, — G (17)

As several authors have remarked, this problem may not have a sensible
solution. For example, if

1+

Tn 19
n

g(c,, rl) =

(this comes from a log-linear intergenerational utility), if 7, has the constant
value 7 > n, and if w, = 0 for all ¢, future consumption is

1+ FY? 19)
“= (1 + n> ér-
Family assets at time ¢ are k

1+7\!
At = <m) (Al - tCl). (20)
For any positive ¢y, lim,, 4, = —co. The fact that some interest-rate

trajectories make it impossible for the family to allocate its wealth in a
reasonable fashion should not cause us to reject this model of family
behavior. Rather, it shows how the inheritance hypothesis restricts the form
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of the competitive equilibrium. For example, if families have a fixed rate of
impatience, the competitive equilibrium capital stock will approach a
steady state over time such that the net marginal product of capital will

exactly equal the rate of impatience. This is discussed at greater length in
section 1.3.

1.3 General Equilibrium in the Inheritance Model

Suppose that a neoclassical technology prevails, in which output per per-
son, y, is given by a smooth convex function of capital per person:

y =f(k). @1

Capital deteriorates geometrically at a rate 8, so investment for replacement
is 0k, and investment to maintain the capital-labor ratio is nk. Thus net
investment per person is

Ak, = f(k,) — ¢;y; — (6 + mk,, or (22)
keey=(0—06—nk, + f(k) — ¢4y (23)
The interest rate is equal to the net marginal product of capital:

r,=f'tk,) — 6. (24)

Consumption behavior is given by
Crr = g(C,s 1) (25)

Finally, we have the fundamental budget constraint A;,, = k; = 0. The
analysis of this system will be carried out in terms of consumption and the
interest rate, although it could also be done in terms of any of several pairs
of variables.

The (r, c) phase plane can be divided into two areas according to whether

-risincreasing or decreasing. The interest rate is unchanged from one period

to the next only if k is unchanged, or
fk)y=(© + nk + c. (26)

In order to characterize this line in terms of r, we differentiate with respect
tor:

dk dk d
ST =0+n+ d I Q7

dar|ar=o0
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n
Figure 1.2
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Now since r = f'(k) ~ 6, (dk/dr) = 1/f"(k), and

de| _f(=3—n
drlg=0 f'0)
(28)
r—n
S (k)

Thus the line slopes upward if r < n, reaches its maximum at r = n (the
golden rule), and declines if r > n; above the line capital is decreasing and
r is increasing; the opposite occurs below the line (see figure 1.2):

A similar division of the phase plane is possible for the consumption
equation: consumption is increasing whenever r > p(c) and is decreasing
whenever r < p(c). Thus the phase diagram has the shown in figure 1.3

Since the absolute value of p’(c) is restricted to small values, it is reason-
able to assume that the two stationary loci meet at a unique stationary
point (r*, c*). If so, p(c) cuts Ar = 0 from below, the stationary point is a
saddle point, and from the catenary properties of a saddle point, the
following result is established.

COMPETITIVE TURNPIKE THEOREM. As the end of the world becomes more
distant (as the horizon T becomes large), the competitive equilibrium interest
rate—consumption trajectory spends almost all of this time arbitrarily close
to the point (r*, c*), where the rate of time preference is equal to the stationary
interest rate.

Figure 1.4 illustrates trajectories for various T7s, starting with the same
initial capital stock. Plotted against time, these have the appearance shown
in figure 1.5. The case of an economy that lasts forever is a simple extension
of the previous case. The only infinitely long (r, c) trajectories are those
running along the top of the saddle, as seen in figure 1.6. From any initial
capital stock, the economy eventually approaches indefinitely close to the
steady-state point (r*,c*).

It remains to show that these trajectories are truly competitive equilibria.
That is, we must show that given the interest rate and wage trajectories
derived from the phase-plane analysis, family demand would in fact be the
consumption trajectory shown. Since these trajectories satisfy the difference
equation (25), the conditions on the marginal rate of substitution between
consecutive generations are clearly met. Futhermore, if the horizon is finite,
terminal family assets are zero, and no generation can increase its consump-



14

w N

Figure 1.4

N2

Time

Figure 1.5

Chapter 1

A Theory of Inheritance 15

/2 (e)

Figure 1.6

tion without decreasing the consumption of another generation. Thus the
budget constraint is also met; we conclude that this trajectory is in fact the
unique family demand. On the supply side, the assumption that the produc-
tion function is convex guarantees that the supply of consumption goods
is uniquely this trajectory.

With an infinite horizon, the limiting value of family assets is not zero,
as it would be if the family could exhaust its wealth, but rather is the
value of the steady-state capital stock k*. However, if all debts must
eventually be paid back (that is; if the present value of one unit of income,
nt—; [(1 + n)/(1 + r.)], goes to zero in the limit), no generation can increase
its consumption by even the smallest amount without causing eventual
family bankruptcy. Thus, even though family assets eventualiy always have
a large positive value close to k*, the budget constraint is met, and the
trajectory is the true family demand. The requirement that debts must be
paid back is crucial. For example, if there is a surrogate family utility
function with zero rate of impatience, the present value function does not
go to zero and there can be no competitive equilibrium. Given the interest-
rate trajectory from the phase-plane analysis, the family will not choose the
consumption trajectory shown there, but rather will choose one with higher
consumption for one or more generations and for which the limiting value
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of family assets is not k* but zero. This is one of a variety of difficulties that
arise in an economy in which the interest rate goes to n sufficiently quickly
for the present value function not to have limit zero. Most of the hard
problems of optimal growth theory are related to this problem; similarly,
the interesting aspects of the study of the efficiency of an economy that lasts
forever arise only in this case.

One property of the family’s allocation problem deserves further atten-
tion,; it is stated in the following theorem.

THEOREM ON THE IRRELEVANCE OF THE DISTANT FUTURE.  Along competitive
equilibrium interest rate and wage trajectories the consumption of the present
generation of a family becomes increasingly insensitive to their desired level
of assets for generations t, as t increases, provided p(c) > n. Their sensitivity
decreases with increasing impatience and increases with an increasing rate
of change of impatience with respect to consumption.

Proof. The sensitivity of the present generation to future asset levels is
measured as the reciprocal of the derivative of A, with respect to c¢,. The
system of difference equations governing the allocation of family wealth is

Ct1 = g(ct’rt)

(29)
1+
At+l= 1 + n’At + Wt hand Ct'
Differentiating with respect to c,, we get
de,yq  0g(c,m) de,
= uad 30
de, oc, dc, (30)
dAisy = L+rdd,  dc, (1)

de;, 1+4nde, dc,’

with initial conditions dc,/dc, = 1 and dA,/dc, = 0. Now the function
g(c,, 1) is defined implicitly by

V'(Cieq) - 147

W) 14+n (32)

8O

0"(Ce1) 09 V'(Cpar)u"(c)
wic) de, W)

(33)
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or.
% _ ey on) a4
de,  v"(c4)u'(c,)
Now ¢, approaches the limit ¢*, and from Hall (1967),

v"(c*)  u"(c*)

(c*)=[1 M| - — . 35
p (c ) [ + (C )] [v/(c*) u/(c*) ( )
Thus if p’(c*) < 0, there is a T such that ¢t > T implies
u'(e) v"(css)
wie) ')

(36)
dg
—> 1
de, >

Similarly, if p’(c*) > 0, eventually dg/dc, < 1.

In the asset equation, eventually (1 + r,)/(1 + n) > 1, since r, approaches
the limit p(c*), which is greater than n. Because of its simple recursive form,
the properties of the system (30) and (31) may be seen by inspection. Since
0g/0c, is always positive and (1 + r,)/(1 + n) is eventually strictly greater
than one, dA,/dc, becomes indefinitely negative with increasing t. If
p’(c*) < 0, the contribution of the term —dc,/dc, also becomes indefinitely
large, whereas in the opposite case, its contribution is eventually zero. But
in either case, dc,/dA, has the limiting value zero, and the theorem is
established.

The property stated in this theorem is also observed in all optimal growth
problems with catenary motions; it is sometimes referred to as instability,
but this is extremely misleading, since its behavioral implication is one of
stability, not instability.

The assumption that the family faces interest-rate and wage trajectories
that will turn out to be the equilibrium trajectories is crucial in this theorem.
Along other trajectories, there may be a solution to the allocation problem.
This will almost always be true if p’(c) < 0, since any stationary point of
equations (29) is an unstable node, with roots

_1+r

A
" 1+n
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both of which exceed 1. Usually no trajectory can reach such a stationary
point of an asymptotically autonomous system. Along an equilibrium
trajectory, however, the interest rate changes over time exactly fast enough
to allow the (4,, c,) trajectory to reach the unstable node. This means that
a tdtonnement procedure would probably not be able to find the equi-
librium, since it would require families to solve the allocation problem with
interest rate trajectories that are not equilibria. In fact, computational
experiments have indicated that the family must take account of the effect
of its allocation of wealth (and the identical allocation of all other families)
on the interest rate in order to obtain a tdtonnement procedure that is likely
to work. It is possible to show that there is an interest-rate adjustment of
a simple form that can be applied by each family and that guarantees
convergence to the competitive equilibrium—this adjustment converts the
family’s allocation problem into one with strictly catenary properties.

1.4 Some Implications of the Inheritance Hypothesis

The most important difference between this and other models of competi-
tive equilibrium with individually directed saving is that each person is
required to see some distance into the future because he is sensitive to future
economic developments. This has a number of important implications.
First, since the family has a rate of preference for the parents’ consumption
at least equal to the rate of growth, the possibility of an inefficient competi-
tive equilibrium is ruled out.

Second, in this model the equilibrium is independent of the size of the
government’s debt, so there is no burden of the debt. In Diamond’s model,
the equilibrium is sensitive to the size of the debt because the market
capitalizes all the interest payments that a bond yields, but the individual
takes account of only the tax payments to finance the interest that are levied
during his lifetime. This asymmetric effect makes him spend more and save
less, driving up the interest rate. Under the inheritance hypothesis there is
no asymmetry because the individual does not distinguish between his own
wealth and the wealth of the future generations of his family. The equi-
librium is independent of any transfer of wealth between generations and
in particular is independent of the transfer implied by taxing and paying
interest.

Third, this model resolves a perplexing question about the competitive
equilibrium price for an asset that cannot be produced, such as land.
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Nothing in the equilibrium condition for the market for such an asset
prevents an upward speculative movement in its price that lasts forever.
That is, if p, is the equilibrium price for the asset, then

Pt So I;]o (T+r) (37)

is also an equilibrium price, where s, is any positive constant. Under. any
hypothesis, however, no price that goes to infinity is a general equilibrium
price, because families would then have infinite wealth in the limit, allowing
additional consumption for at least one generation. In this way, speculative
booms in nonreproducible assets can be ruled out.

Notes

1. The effect on the limit of family assets per person of one additional unit of consumption
by generation ¢ is

. (l + p(c))"‘
lim =
T 1+n
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