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Polynomial Distributed lags

In general, a distributed lag model can be written
p-1

(1) Yy = ':Eo BeXy_t ;
Yy and x, are time series and BT are the coefficients of the lag function. Often
the number of periods, p, covered by the lag function is so large that the indiv-
idual coefficients ﬁT cannot beestimated with sufficient accuracy. In this case
we usually seek to estimate the coefficients subject to some restrictive hypothesis
& priori. The best-known hypothesis is that of Koyck and meny others, requiring

that BT have the special form

(2) B = ;V

A great deal of effort has been devoted to the econometric aspects of estimating
Koyck distributed lags, without achieving any general agreement about how to
estimate them. The purpose of this paper is to describe an alternative lag specific-
ation which is both more flexible and easier to estimate. Credit for the discovery
and introduction of this method goes to Shirley Almon (1); this paper merely
restates her method (with some modifications due to Charles Bischoff (2)) in a

somewhat simpler form, and goes on to describe the computer implementation of the

method,



.The basic hypothesis of the method is that the lag distribution Br is a
smooth function of the lag T . Our interpretation of the notion of smoothness is
that the function can be approximated closely by & polynomial of fairly low order;

that is, we suppose that

(3) B = ‘al+cx2-r -0(131'2+‘,,, +CZN1N"1 ,
where N is usually less than 6. Polynomial approximations of this kind have a long
history in humerical analysis, but the methods of polynomial interpolation developed
in connection with them do not appear, in retrospect, to have any usefulness in
approximating distributed lags. It is Mrs. Almon's use of Lagrangian interpolation
polynomials rather than ordinary polynomials that makes her presentation of the
method somewhat obscure. The simpler approach of the present paper is formally

equivalent to Mrs. Almon's approach.

The polynomial approximation gives rise to a straightforward linear esti-

mation problem. We begin by substituting equation (3) into (1):

p-1 N-1
= > -
(4) Yy : (0 + 0T+ o+ )xy
=0
p=l p-1
= 0 (Tzo Xyt ) o+ o) (* Tyt ) * ..
1=0
p-1 TN—l
+ ("= x, ) .
ON =0 t-1

By defining new variables z which are moving averages of the original variables,

t,J,



as follows:
(5) 2y 5 = T T x s

we have a linear model of ordinary form:

(6) Vg T Pyt %Py o et O824 a1 .

All estimation methods which are appropriate for linear equations are available to
the investigator of distributed lags if the method of polynomial approximation is

used.

In practice, the method proceeds as follows., First, a polynomial weighting
matrix, A, is generated; it is convenient to normalize it so that the lag interval

lies between - and - (instead of between O and p-1) -- this is done by

ptl ptl
taking powers of %f% instead of powers of T . The matrix A has N ¢olums and

p rows ; each colummn gives the weights applied to the lagged x's in generating one
z-variable while each row gives the weights applied to the estimates of & in cal-

culating the lag function B .

Next the z-variables are generated from A and x using the product relation



(7) [Zt,l Zt,N] = [xt’xt—l""’xt-wl] .

I 1 L2 1y N-1 -
- PR 2y N-1
1 & (HP .
o) D 2 D N-1

or,

(8) Z = x,A

This process is called "scrambling" at MIT.

The next step is to obtain estimates a of the coefficients of the z-variables
by whatever method is appropriate for the stochastic specification chosen for the

model. Finally, estimates ?3 of the lag coefficients can be obtained from a using

the relation
A 2
(9) B = Ao .
An estimate of the variance-covariance matrix V(g) can be calculated as

(10) v(B) = A V() A



Two additional statistics may be of interest. These are s, the sum of the

lag coefficients, anq/u., the mean lag. If u denotes a vector of p 1's, we can

calculate s from

. A
(11) s = u'p
A
= u'AQ R
and its variance from
(12) v(s) = uavidaw

Second, if we define the vector v by

0
1
(13) v = I ,
p-1
then
= Lo
(14) lk = S V'B
Its asymptotic variance is
a5) v - (gvi-h wnavdargov-g v S
8 s

Tre process of calculating the lag coefficients and these statistics is called

"unserambling" at MIT.



We turn now to variations of this basic method; these take the form of

what Bischoff (2) calls zero restrictions. A zero restriction is used to impose

a priori the hypothesis that the lag distribution approaches zero at one or both
ends. If the method of polynomial approximation is used in estimating the lag
distribution, zero restrictions are imposed by limiting the components Zt,j to
those corresponding to polyhomials which meet the restrictions.

Now in normalized form, the basic polynomial lag function (3) is

+1 2
(16) Be = oy *+ a, (o) oy (o *
T™+1
N-1
+ aN ( P+l ) *

If a zero restriction is imposed at the near end, formule (16) is modified by

eliminating the constant term:

- I+l T+l 42
T+l \N-1
oy, (T0) .

This form of the distributed lag function always has small coefficients for the
shortest lags. The name "zero restriction' is derived from the fact that if a
hypothetical p_, were calculated from formula (17), it would be zero no matter

what values the q-coefficients had.



A zero restriction is imposed at the far end in a similar way. Instead of

formula (16), we use

. _ 1+l
(18) By = @ [l- ;—%] t oo, Hl)
T+l, N-1 I+l
+ xR + aN"l ( ) - p+l . *

In this case, & hypothetical Bp is always zero, so that the lag function is cons-

frained to be close to zero for the longest lags.

Finally, zero restrictions may be imposed at both ends by dropping the first

term from equation (18):

_ T+L1\2 T+l T+1,3 T+l
19) By = oy |G - Al oo |G - o
T+l \N-1 T+l

Equation (19) is the form which Mrs. Almon proposed.

Note that all three kinds of zero restrictions are simply modifications of
the weighting matrix A -~ all of the formulas given earlier for the unscrambling

phase still hold for the modified versions of A.



Programs for Polynomial Distributed lags

1. AMAT
This routine generates the A-matrix.

Calling sequence: CALL AMAT(NPER, NDEG, JZERO,A)

NPER Number of periods, p.

NDEG Number of terms in approximating polynomial. On input it
should be the highest power of gf% plus one. On return it will
be reduced to take account of zero restrictions so that it is

equal to the number of columns in A,

JZERO Zero restriction code;
1 for both.
2 for far only.
3 for near only.

4 for neither,

A A-matrix, packed by columns; length = NPER*NDEG.

2. SCRAMB

This routine generates the z-variables, given the matrix A and the variable x.

Calling sequence: CALL SCRAMB(NOBX,NPER,NDEG,A,X,Z)

NOBX Number of observations in X. Number of observations in Z is

NOBX -~ NPER.



NPER
NDEG

3. UNSCRM

Number of periods, p.
Degree as returned by AMAT.
A-matrix,

Input vector; length = NOBX.

Output matrix. Length = (NOBX - NPER %NDEG.

This routine calculates various statistics which are useful in interpreting

distributed lag estimates.

Calling sequence: GALL UNSCRM(NPER,NDEG,NOV,LOC,DMEAN, SMEAN, SUM, SSUM, B, D,

NPER
NDEG
NOV

LoC

DMEAN
SMEAN
SUM
SSUM
3

™
i/

V,VS,A,S,W)
Number of periods, p.
Degree as returned by AMAT.
Total number of variables in regression including those not
associated with the distributed lag.
Position in B of the set of estimates for fhe distrivuted lag
being unscrambled,
Mean lag.
Standard error of DMEAN.
Sum of lag coefficients.
Standard error of sum of lag‘coefficients.
Vector of regression estimates. Length = NOV.

Vector of estimates of the distributed lag. Length = NPER,



VS

(1)

(2)

~10-

Estimate of variance-covarience matrix of B, Length = NOVix2 .
Variance-covariance matrix of estimates of o for this distributed.
lag, extracted from V by the program., Length = NDEG&¢2,
Polynomiall weighting matrix A. Length = NPER*NDEG.
Vector of standard errors of D. Length = NPER,

Seratch vector. Length = NPER,
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