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1. 1Introduction

Vdfwabhb
Statistical models of unobserved cSmpmewEs scem destined for an

increasing role in econometric work. Especially in cross-sections, the
differences in the values of the left-hand variables among observations

with identical values of the right-hand variables are sufficiently large

to justify careful analysis of the apparently random component of the

behavior under study. The simple characterization of randomness implicit

in the stochastic specification of the regression model seems inadequate

when the right-nand variables in a problem account for on%y gismall portion o

of the dispersion of the left-hand variable| In a number of

social sciences, the following elaboration of the stochastic
model has been found useful: Part of the apparent randomness
in individual behavior arises from the distribution among

the population of an unobserved characteristic, indexed

by a scalar, g . The rest is attributable to the

genuine randomness of the behavior of indivhkduals with
identical wvalues of 9 « Examples of modeis of this

kind include (i) #Y¢ accident-proneness: 7 is the
parameter of a Poisson probability distribution of the

number of accidents in the course of a year; (ii) mover-stayer
models: 6 is the probability of moving from one
activity to another and is higher for some kinds of people
(movers) than for others (stayers); (iii) sex composition
of families: f is the probability ¢f that a particular

child is a girl; some couples are girl-prone and others are



boy-prone; (iv) discvribution of true scores: 9 is
the true IQ of an individual and is measured with random
error by a number of tests; the problem is to d¥ find the
distribution of the true score within the population given
the distribution of the observed scores; and (v) the
permanent income model: 6} is permanent income; observed
income is the sum of permanent income and a transitory
component,

Several of these applications are dgxX¢¥ described in
greater detail in section 2 of this paper. They share one
important limitation: They start with restrictive assugmptions
about the form of the distribution of the unobserved variable.

The present paper takes up the following questions:
B S — What can be discovered about the

underlying distribution of characteristics from the observed body of data?

Are the assumptions about the distributions of unobserved characteristics

made by previous authors verifiable, or must they be accepted on pure faith?

A general statistical model suitable for this discussion

is the following: ILet Y be the observed variable and let

G be its cumulative distribution:

G(¥, £) =Prov(y <y | § )

The problem, then, is to derive as much information as
possible about the distribution of the unobserved variable,

say F( 0 ), given the distribution of the observed variable,



Within this general framework, two classes of models have been
studied. In the first, y is assumed to be integer-valued

(ts ’ ~ grovp of
and # distribution withiqﬁindividuals of a given type, 6 ’
is assumed to be of known form, for example, Poisson or
binomial, The first three applications listed above have
this form. In the second class, y is taken as continuous,
G is not assumed to be known but does have the particular
form G(Y, ) = H(Y= #). Thus y can be written as the sum

n

) .
of 6 and another random vari‘able)/, expressing the transitory

component of individual experience:

Y= 6 +u
Moclcls
The problem in this class of amspbowe. is to find not only
G but also H, the distribution of the transitory component,
The present paper considers only the first Z£X¥¢ class of
models. Analysis of the second class appears in a
companion paper, Carlton and Hall (1974),
thd €t peger

The Semamd section jembeds the statistical model in the
mathematical theory of Tchebycheff systems. Various
characterizations of the limits of knowledge of the distribution
of the unobserved variable are offered, including an
identification theorem, The'£g=:; section discusses and
applies an important generalization of the Tchebycheff
ineqdﬁ@ity due to Daniel McFadden. The fourth section
works out £ a simple example dealing with the sex composition
of families. The paper concludes with some remarks on the

moverg-stayer model and possible extensions of the theory.
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2. Statistical and Mathematical Theory

In general we will be concerned with the distribution
of an integer-valued function, g(y), of the vector, ¥¥
y, of observations fram the same individual. For example,
in the study of the sex composition of families reported
briefly in Section L, y; and y, are "dummy variables"
for the sexes of the first and second children in a
Bamily (O if a boy and 1 if a girl), and we examine
g(y)=y1+y2, the number of girls in the family. In the
generalized mover-stayer model, we will study the
distribution of the number of spells in a given state.
Throughout, we will suppose that g(y) takes on the values

1 through M, and will denote its distribution as a(@ ):

Prob I.g(y)=i l Q] = a;(@ ) | (2.1)

We suppose further that £ is distributed among the

population according to the cumulative distribution
function F( & ) giving the fraction of the population

whose unobserved characteristic is less that [ :

F(§) =Prob] B < B ] (2.2)



Since we need to deal with distributions that assign
positive probability to a single value of 6 s

we also define

F&( B) = Prob [ b < §] (243)

The observed distribution of g(y) anong the members
of the population is the distribution of g(yd conditional

on & , weighted by the £ distribution of & .

Sh
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is a substantial statistical literature dealing with problems of this

form. In the vocabulary of that literature, equation 2.( is a mixture.

The distribution a(8) is the kernel and F(8) is the mixing distribution.

A survey of the statistical theory of mixtures appears in Maritz (1970),
Chapter 2. In addition, there is an important body of mathematical
thought about problems of the sort considered here. In the mathematical

literature, equation Z.x is called a Tchebycheff system (see Karlin

and Studden (1966), Chapters I through V). It appears that statistical
and mathematical work in this area has proceeded almost completely
independently. The matnematical theory is substantially more general
and more fully developed, so it forms the basis for this paper.

Our problem is to obtain information about the distribution of
'the unobserved component, F(6), given the observed probability ¢ and the
known kernel a(8). 1In this section we present theorems that give a
fairly precise characterization of the limits of knowledge about F(6).
Most of these theorems are simply re-interpretations of results of Krein

(1951) and other mathematical students of Tchebycheff systems.

We begin with the

Assumption of Distinct Types: The matrix [a(el),...,a(OM)]

has rank M for any distinct set of types 61,...,6M-

This assumption is the defining characteristic of a Tchebycheff system.



It rules out models where the probabilities associated with one
particular type of individual can be expressed as a linear combination
of the probabilities associated with M - 1 or fewer other typeé. This
assumption does not seem unduly strong, and it is satisfied by tne
applications studied in this paper.

Next we define two useful constructions. First,

P
1 P
o = {¢ satisfying ¢ = J a(8)dFr(8) for some F(0)}. (Z.f)
0
Here we consider all F(8) that are non-decreasing, continuous from the
left, and have a finite number of discontinuities. ¢ is the set of all
possible observed probabilities consistent with a given problem as

defined by a(6). Second,

b
1
V(¢) = {F(e) satisfying f a(e8)dr(8) = ¢}. (2.‘)

0

V($) is the set of all distributions of unobserved types in the
population that are consistent with a particular observed probability,
¢. The essence of the problem is that V(¢) may contain a variety of
distributions. Oﬁr characterization of the limits of knowledge about
F(6) deals, therefore, with the extremal members of V(¢).

The first theorem establishes that no observed probability proves
that there are more than (M + 2)/2 different types in the population

(proofs and references appear in the appendix to this section):

Theorem 2.1: For any ¢ € ¢, there exists a cdf,

F(0) € V(¢), with no more than (M + 2)/2 points of increase.
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If we let fj be the mass at one of the points of increase, ej, then Theorem

2.1 shows that it is always possible that ¢ is a discrete mixture:

47
N
¢ = jzlfj a(s,) (2.,{)

with N < (M + 2)/2. Here fj is the fraction of the population having
type ej. This result appears independently in the statistical literature
on mixtures in the form of an identification theorem: Given ¢, one can

calculate unique fj and Gj satisfying

Y
N
J-Zlfi a(e,) = ¢ (z.ﬁ)

only if N < 1 + M/2. See Teicher (1963), p. 1269.
The second theorem shows that for any observed ¢ (with one class
of exceptions) we cannot rule out the possibility that a positive

fraction of the population has an arbitrary type, 0%:

Theorem 2.2: Suppose ¢ is in the interior of ¢ and
suppose 6% is an arbitrary type in [0,1]. Then there is

d-lgf)__
a cdf, F(0), in V(¢) with positive mass p(6%) IVOK. =F
F(o¥) o+ &%

This result imposes a limitation on the form of knowledge about F that
we can deduce from ¢: Except in borderline cases, we will never be able
to state that any particular type, or any range of types, is non~existent
in the population. On the other hand, p(8%*) may be close to zero; the
theorem does not prevent us from finding useful bounds on the fraction

of the population of a certain type or range of types.

The next theorem provides a bound on the fraction of the population



of type 6%:

Theorem 2.3: Consider the problem of finding probabilities

fl""’fN and types GJ,...,GN obeying
g 1
) £, a(8,) = ¢ .
j=1 J ]
where 61 = 0% and N, 62, 63 and J take on one of the

following sets of values: If M is odd, either N =

1+ W =-1)/2,3J=2,0rli=2+-1)/2,J3-=4,

62 = 0, 63 = 1; if i is even, N = 1 + 4/2, J = 3, and
either 62 = 0 or 62 = 1. Then this system has a unique
solution and‘fl is the maximal mass at 0% for any

F € V(¢).

Thus the problem of finding the distribution of types that is most
concentrated at 8% is simply one of solving a system of ! equations in
M unknowns: N values of fj and N - J + 1 values of ej. The solution
is called the canonical representation of ¢ involving 6%,

A related problem is to find bounds on the fraction of the

population whose type is less than some value 6*:

Theorem 2.4 (iMarkov-Krein Theorem):

PR L CLo N A W
. . *
Jaej<e* Jaejfﬁ fd

for all F ¢ V(¢) (2./5)

where £, and ej are the canonical representation

3

involving 0%,
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The Markov-Krein theorem shows that the canonical repreéentation is
extremal not only with regafd to the mass at 6* but also with regard to
the mass below 6*. The upper and lower bounds on F(6*) differ by precisely
the maximal mass, fl.

vﬁnéettanaeeéy::zggwmathematical theory of Tchebycheff systems does
not provide bounds on the fraction of the population between two arbitrary
types. We would like to be able to answer the following question:

Suppose we have a pair of types BL and GH’ and we let P = F(GH).— F(GL),
the fraction of the population between eL and eH. What are the largest
and smallest values of P consistent with a particular ¢? The Tchebycheff
inequality answers this question for the particular case where ¢ gives
the first two moments of F(8). There is an extensive mathematical
literature on generalizations of the Tchebycheff inequality (summarized
in detail in Karlin and Studden (1966), chapters XII-XIV), but it does
compitable  beunds
not contain any reaudbss of sufficient generality for our purposes.
Mathematicians have been concerned exclusively with sharp bounds on P,
that is, bounds that are attained by some F € V(¢), or at least that are
approached arbitrarily closely by members of v{¢).

Before going on to our approach to the problem of bounds on the
probability in an interval on the 6 axis, which involves non-sharp bounds,
we need to deal with the fundamental problem of identifiability. What
conditions are required for it to be possible to fiﬁd out anything about
the fraction of the population in an interval? There has been a good
deal of work on the identifiability of mixtures (see Maritz (1970), pp.
20-35), all using a strict definition of identifiability: A mixing

distribution is said to be identifiable if its exact form can be deduced



from the value of ¢. Strong assumptions about F(8) are required for
identifiability. A leading result in the statistical literature has
already appeared here as Theorem 2.1.

A much weaker notion of identifiability seems appropriate in this

paper:

Definition: The probability P is identifiable if there

is some ¢ in the interior of & such that V(¢) contains

no distributions with P = 0.

We gain information about P if we can show that it is positive, that some
fraction of the population has types between GL and GH. A problem, as
defined by a(8), has an identifiable P if there is some observed outcome

¢ for which P must be positive. It is a remarkable fact that no additional

assumptions are needed to ensure identifiability in a Tchebycheff system:

Theorem 2.5: Every P is identifiable.



4. The Sex Composition of Families

The following example illu;trates the nature of the information
about the distribution of an unobsérved component in a simple case.
Suppose that we observe a large number of apparently identical families
with two children, and suppose further that a fraction ¢1 of the families
have no girls, ¢2 have one girl, and ¢3 have two girls. Each family
has a probability 6 that a given child will be a girl. In terms of the
general model given earlier, if y is the number of girls in a family,

= 1 = 2
Xf. a(e,ug y T ‘
k\v\&ry )
= Ef: where u is pineNEEE=ifmendeid vith parameter 0, (4.1)
boad ¢ 1S the At baae 4 ‘?}“'\9‘2,'

If all families have the same 6, then ¢ will be the binomial distribution:

6= @ -0% 4, =200 -0); and ¢,= 0> 4.2)

If 0 varies among families, then ¢ will be the mixed binomial,2

1

4, = I - 0)2ar(e) ; (4.3)
0
1

4, = f 26(1 - 8)dF(6) ; (4.4)
]
1

by = f 0%ar (o) . (4.5)
0

2This possibility has been discussed in the literature on
mathematical demography (for example, Goodman (1961) and Weiler (1959)).
This treatment of the sex composition of families is only an example and
does not consider other aspects of the problem, especially the effects
of the efforts of parents to influence the composition through stopping
rules. On this, see Ben Porath and Welch (1972).
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In our earlier notation, the kernel is:
a-e? )
a(8) = | 26(1 - 0) . (4.6)
62 )

Ben Porath and Welch (1972) report the following distribution for the
sexes of the first two children of American families: ¢1 = 0.262,

¢2 = 0,497, and ¢3 = 0,241, The mean of this distribution is 0.979,
suggesting that if 6 had a single value, it would be half the mean,
0.489. Hoﬁever, the binomial distribution with parameter 6 = 0.489 is
[0.261, 0.500, G.239], wnhich has somewhat less dispersion than the
observed ¢. No single value of 6 can explain the observed distribution
of sexes, so we are forced to consider a distribution of the propensity
to have girls, 6, within the population.

The theory of Tchebycheff systems discussed in Section 2 focuses
attention on the canonical representations involving alternative values
of 0%, a preassigned type. Since M is 3 for this problem, either N = 2
and J = 2, in which case the canonical representation requires solving
for fl’ fZ’ and 62, or N = 3 and J = 4, in which case the canonical
representation requires solving a linear system for fl’ f2, and f3. In
both cases fl is the upper bound on the fraction of the population that
has probability 8* of having a girl, by Theorem 2.3. Further, from
Theorem 2.4, when N = 2 and 8% < 62, fl is the upper bound on the fraction
of the population with 6 less than 6%, F(0%); when N = 2 and 6* > 62, fl

is the upper bound on the fraction of the population with 6 at or above
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f*, 1 - F(6*%), and when N = 3, fl + f2 is the upper bound on E?G*) and
fl + f3 is the upper bound on 1 - F(6%*). Table 1 presents canonical
representations for a variety of values of 6%, For 0% outside a short
interval enclosing 0.439, the canonical representation has only one
additional type, 62. The first part of Table 1 shows a variety of
representations of this kind. When 6% is extreme, the representation
gives a low weight (£f%*) to 6* and a higa weight to a 62 that is close to
0.489. As 6* approaches 0.489, it receives higher weight and the second

type, 0., becomes more extreme. At the critical points 0% = 0.4868 and

2
8% = 0.4923, 6? reaches 1, and we enter the region where the representation

gives welght to three values of 6: the two extremes, 6§ = 0 and € = 1,

Table 1

Canonical Representations for the liixed Binomial

Model of the Sex Composition of Families

0% 6, £* £,
0.0 L4923 .0058 .9942
0.30 .4968 .0372 .9628
0.40 .5050 .1479 .8521
G.48 .6358 .9390 .0610
0.50 .3571 .9265 .0735
0.60 L4769 .1022 .8978
0.70 .4829 .0304 .9696
1.00 . 4868 .0053 .9947

o* f, £* £,

(6 =0) (6 =1)

.49 .0034 .9944 .0022



2%
28~

and 8 = 6%, One such representation is shown in the second part of
Table 1. According to this representation, the observed distribution
of sex compositions could be generated by’a population in which 99 44/100%
of couples had a probability of 0.49 of having girls, 0.34% had nothing
but boys, and 0.22% had nothing but girls.

From Table 1 we can derive the Markov-Krein bounds P and P for
the fraction of the population with 6 between O and BH. These bounds
are presented in Table 2, along with the outside and inside bounds
calculated by the methods of Section 3. All of the bounds agree that it
is quite ﬁossible that no couple has a probability of having a girl

below 0.48 and also possible that none has a probability above 0.50 (but

Table 2

Bounds on the Fraction of the Population with 6 between 0 and BH

Oy 2o P 2y Py P Py
0.30 9 0 0 0236 °%% 0372 .0375
0.40 0 0 0 L1018 134 L1479 1580 1429
0.48 0 0 0 L1545 .58C 9390 9545, 4413
0.49 L0053 0 .0034 ,0036,0039 2853 Av5k .9966.947% 9979
0.50 .9530.01% 0735 LQZ47.01¢ 1.0 1.0 1.0
0.60 .8220°57°" 8978 .8930.%4%% 1.0 1.0 1.0
0.70 .9657 4651 9696 .9697 1.0 1.0 1.0
Explanation:
E,—ﬁ: Markov-Krein exact bgﬂgdséqqgf ved fr%?cafbl cépU\n
EO’ PO: OutsinAPounds, vith-eﬂ!pst?!r{¥~1&51—725——~367“'337’7381
Y ey vy e s L E IR IAEED TGy SRS G600~
P P_: Inside bounds; same points as above. S—haa—368-—vertieen

I
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there must be some couples with probabilities either below .48 or

above 0.50). There may be as many as 3.727% with probabilities below

9.30, as many as 14.79% below 0.40, and as many as 93.90% below 0.48.

At least 0.34% and possibly as much as 99.667% of the population have‘
probabilities below 0.49. At least 7.357% have probabilities below 0.50,

at least 89.78% below 0.60, and at least 96.96% below 0.70. Propptie Both

Po and

outside bound%?o)and the lower inside bound_l_’_I perform well as approximations

to the sharp bounds. ;Pﬁ-dm-wm

A hedd toy §b\,\(,/

QQ@C(U\\ \‘k'\ ) 0 L’t .
~iaaeum . Recalculation of the inside bounds with a finer partition

would remedy this problem.
Table 3 presents bounds for various intervals that do not begin

at zero. No Markov-Krein sharp bounds are available for these intervals,

Table 3

Bounds on the Fraction of the Population with 6 between OL and GH

eL‘ BH E() E'I PI PO

9.30 0.70 L9625 1% WWZ 0000  1.0000

0.40  0.60 | .8500.7% .gs51"" 1.0000  1.0000

0.40 0.50 0 0 9,95—5/”7;,9@«\' 4987

0.40 0.48 0 0 . 15458650 9543 443

0.48 0.50 0 0 .994% 1949 9954

0.48 0.49 0 0 9857 . 9856 9951 qa53

0.49 0.50 0 0 .9943" 9944 9944

0.50 0.70 0 0 .925870205 9470, 4291

For explanation, see Table 2.



so the only way‘to judge the sharpness of the outside bounds is through
the inside bounds. At least 96.2;% of all couples have probabilities
between 0.30 and 0.79, and we know that there exists a distribution
consistent with ¢ in which only 96.g§% of the population lies between
0.30 and 0.70. On the other hand, it is possible that 99.547 of the
population has 6 between 0.48 and 0.50, and we know for sure that
a4,49

S5 LHB9-7 can be in this interval.

A fairly wide variety of distributions of the propensity to have
girls is consistent with the observed data on the distribution of the
number of girls among the first two children. Although little can be
done to localize the distribution in the vicinity of 0.5, our methods
give faifly specific information about the fraction of the population
with extreme propensities. The data are not consistent with any
distributions with large fractions of the population having extreme
values of 6. An increase in the number of times each unit is observed,
in this case the number of children, would refine our knowledge considerably.

A study of sex composition that examined more than the first two children

would need to deal explicitly with the problem of stopping rules, however.
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Cezéf/ Mixed Markov Processes and the iover-Stayer lfodel

This section illustrates the application of the methods discussed
earlier to a problem of considerable interest in the study of social
mobility. Suppose there are two states that an individual may occupy
in each period: poor or not poor, employed or not employed, lower class
or middle class, or some other dichotomy. Suppose further that a :arkov

process governs transitions between the states; there is a probability 0
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that an individual in the first state in one period will move to the
second state in the next period, and a probability § that an individual
in the second will move to the first. The probabilities of remaining
in the states are then 1 - 6 and 1 - § respectively. Iodels of this
kind fitted to data on observed transitions of individuals under the
assumption that & and § are the same for all of them have suffered from
an important defect: They understate the probability that an individual
will remain for many successive periods in the same state, even though
they predict correctly the probability that an individual chosen at
random from the inhabitants of one state will move to the other state
in the next period (Blumen, Kogan, and McCarthy (1955)).

The mover-stayer model resolves this paradox by assuming that
there are actually two kinds of people, movers, who have positive 6, and
stayers, whose 0s are zero. The probabilities of observed transitions
are the mixture of two different Markov processes. Methods for
estimating the parameters of thektwo processes and the single mixing
probability have been developed by Goodman (196p). Recently Spilerman
(1972) has proposed an extension of the model in which the observed
probabilities are treated as the mixture of all of the powers of a
particular transition matrix. None of the literature on the mover-stayer
model takes advantage of the statistical theory of mixtures, however.

A natural generalization of the mover-stayer model is the mixture
of all ilarkov processes. To keep within the confines of the theory
developed in this paper, however, we will suppose that individuals differ
only with respect to their probability of upward mobility, 0, and that

§ is known and constant within the population. Then it is appropriate
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to study the distribution of the number of spells in the second state
over a certain number of periods, T. Individuals with high values of 6
will tend to nave more spells than do those with low 6. We define the

observed probability, ¢, in the following way:

¢l = fraction of the population with no spells
¢i = fraction with i - 1 spells
O = fraction with M - 1 or more spells

Data on spells of unemployment during a year are reported by the U. S.
Census Bureau in precisely this form, with M = 4.

We define ai(e) as tie probability of i -1 spells in T periods
induced by a Markov process with‘parameters 6 and 8. There is no simple

~ S ple
closed form for ai(e), but it can be calculated from thesediessdws

recursion| EZE"Q?E;{;j)'be”fﬁé”giégéﬂiii£§”of having i - 1 spells in t -
ﬁé?ESEEWQAé of finishing in state j at time t. Taen X/W/J/’
Q(e+1,1,1) = (1 - 0)Q(t,i,1) + 80(t,1,2) .
~. I 1‘
\ é
e QeHL,2) = ¢.1)
‘\,\\\‘
with -
' \\\_\\
Q(0,1,3) =0
Q(O,l,l);/g’}/-
0(0,17) = 1 - p* .
//&t_,-l,l) =0, t=1,...,T I

~

»‘/v \
Here”p* is the probability of being in the first state at time O ihd\
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might reasonably be taken as the steady-state probability gﬁwbefﬁgﬂin

e

A NtheN§%rst state: e
S . p* = efi 5 | (#.3)
Finally, B &"““‘“»uw
”’;;(é) = Q(T,i,1) + Q(T,1,2) ,ki = L - 1 dg.4)

a(8) =1-a,(8) - ... - a0

e

o

This puts the mixture into our standard form,

1 i
¢ = I a(8)d¥(e) . (5.6)

0
All of our earlier techniques can be applied to obtain information about
the distribution of the probability of upward mobility among the
population. The mover-stayer model is the special case where F(8)
concentrates all its probability at 6 = 0 and at one other value of 6.
From Theorem 2.1, if our data distinguish only among no spells, one
spell, and two or more (¥ = 3), then there is always a simple mover-stayer
model that expléins the observed ¢, namely the canonical representation
involving 6* = 0. Other distributions will also be consistent with ¢,
however, and if the data on the number of spells are richer, the simple
mover-stayer model will not generally be able to explain ¢. In any case,
the assumption that there are exactly two types of people is a highly

restrictive one; our methods provide a workable method for relaxing it.
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/- Extensions

Many investigators are likely to be willing to make restrictive

assumptions about the form of the distribution of the unobserved
component in order to tighten the results by ruling out implausible
distributions. This can be done through the conventional device of
confining the distribution to a family indexed by a limited number of
paramekers. If tne number of parameters is equal to the number of
observed probabilities, then it is often straightforward to calculate
F(8) from ¢. For example, if a(®) is binomial and F(6) is a beta
distribution, then the parameters can be calculated directly from ¢;

see Maritz (1979), pp. 22-23. On the other hand, a weak parametrization
thatbimposes notining more than smoothness on F(8) will usually have

more than M parameters, So more than one member of the parametric family
of distributions will be consistent with the observed ¢. The problem
then is essentially similar to the problem treated in this paper. In
particular, if the family is linear in its parameters, the set of parameters
consistent with ¢ is mathematically the same as the set SI derived in
Section 3. The family of distributions whose densities are step functions
is an important example of such a family.

Second, in practice we do not observe the probabilities ¢ but

only the corresponding frequencies, say @. If we apply our methods to

@, then our bounds become random variables that estimate the bounds but
are not truly bounds tuemselves. A confidence region enclésing % induces
a confidence interval for each bound. The only serious problem in

dealing with ¢ arises wnen it does not lie in 9. For example, in a small
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population it is possiblg that every family has one girl and one boy,
but there is no mixture of binomial distributions that gives rise to
the corresponding set of probabilies. Fortunately, if ¢ is in the
interior of ¢, the probability that & lies outside 9 approaches zero as
the sample size increases.

Third, in many applications the probabilities of alternative
outcomes depend on the observed cnaracteristics of the individual as
well as on his unobserved type. The easy way to incorporate this
dependence in our model is to let F(6;x) be the distribution of 6 within
the subpopﬁlation of individuals with characterisfics x. Then the

observed mixture also depends on X: 77

1
p(x) = I a(8)dF(8;x) (%-l)

0
Given ¢(x) for a particular x, we can then apply our methods to derive
information about F(6;x). In practice, we sﬁecify $(x) as a multinomial
probability depending on x in a reasonably flexible way, using a
multinomial logit or other convenient specification. Note that ¢(x)
does not have the same structure as a(8)--for example, the study of mixed
Markov processes does not involve the estimation of the parameters of a
Markov process. From ¢(x), we calculate boqnds on F(0;x) for representative

values of x. - S — o

Fourth, the model of equation 1.2 and the methods of
Section 3 (but not the Tchebycheff theory of Section 2)
generalize in an onvious way to the case of several
unobserved variables. Of course, problems of higher

demension require correspondingly more observations
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from each individual in order to obtain useful knowledge

of the joint distribution of the unobserved variable.
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Concluding Remarks ;

Unobserved differences among individuals are an important source:

/

of diversity in their observed behavior. For the case in which the

probability distribution among the alternatives is a known function of
the unobserved type, this paper has shown that exact but not complete
knowledge of the distribution can be obtained. The assumptions of

previous authors about these distributions can, in fact, he tested.
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Appendix to Section 2

General remark. Proofs of the results in this section are all

taken from Karlin and Studden (1966) (hereafter K & S). They deal with
a somewhat more general problem in which F(6) is not reQuired to obey
f:dF(B) = 1 and a(f) is not required to satisfy Zai(e) = 1. In their
exposition,® is a convex cone, while under our assumptions it is a convex
subset of the unit simplex. However, the results invoked here apply
without modification, because our ¢ is simply the intersection of their

% and the unit simplex.

Proof of Theorem 2.1: If ¢ is on the boundary of ¢, apply Theorem

1I.2.1, K & S. Otherwise, apply their Corollary II.3.1. If M is add,
N=(M+1)/2.

Proof of Theorem 2.2: The appropriate cdf, F(8), can be taken

as defined in Theorem 2.3. K & §, Theorem II.3.1, establish that the
mass is positive.

Proof of Theorem 2.3: K & S, Theorem II.4.1 (attributed to Krein

(1951)), show that the canonical representation involving 8* assigns
maximal mass to 0*. Existence and uniqueness of the canonical representation
follow from their Theorem II1.3.1 and Corollary II.3.2, respectively.

Proof of Theorem 2.4: See K & S, Theorem III.2.1.

Proof of Theorem 2.5: We need to‘exhibit a ¢ such that all

F € V(¢) have positive mass in the interval [0 ]. Define 0, =

L’eH

k
N-k+1 k-1 o i = (b
3 6L + = eH. If M is odd, let N M+ 1)/2 and
1 N
= - A2.
¢ =5 1 ae): (A2.1)

k=1
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otherwise, let N = (M + 2)/2 and

N
¢ =5 L als)
N+1 k=1 k
+ 1 a(0) (A2.2)
N+1 - '
For this ¢, the values of 6, and £, = l-or-—l— are a canonical
or this ¢, a k kT WO N

representation. By K & S's Lemma II.3.1, every F(8) € V(¢) assigns
positive mass to [ek—l’ek]’ so clearly P must be positive. Finally,

K & S's Theorem II.2.1 establishes that ¢ is in the interior of &.



