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Statistical models of unobserved components seem destined for an
increasing role in econometric work, Especially in cross-sections, the
difference in the values of the left-hand variables émong observations with
identical values of the right-hand variables are sufficiently large to
Justify careful analysis of the apparently random component of the behavior
under study. The simple characterization of randomness implicit in the
stochastic specificatibn of the regression model gseems inadequate when the
right-hand variables in a problem account for only a small portion of the
dispersion of the left-hand variable. Many recent authors have sought to
attribute part of the randomness in their samples to variations within the
population of characteristics that are not observed. For example, Griliches
(1972) assigns part of the dispersion of earnings conditional on education
to the unobserved differences in ability of individuals with equal amounts
of education. McFadden (1972) hypothesizes a distribution of tastes within
the population to explain choices of modes of transportation by individual
commuters. The present paper takes up the following question: what can be
discovered about the underlying distribution of characteristics from the
observed body of data? Are the assumptions about the_distributions of
unobserved characteristics made by previous authors verifiable, or must they
Be accepted on pure faith?

A generél statistical model suitable for this discussion is the

following

y = h(x,0,u)

where y 1s the scalar left-hand variable, assumed to be qualitative (taking

on only a finite number of integer Valuesl), x is a vector of observed

1 If the left~hand variable is continuous, y can be defined by a set of
intervals of values of the variable.



characteristics, 6 is the unobserved characteristic, and u is a disturbance
whose distribution may depend on x and ©. Apart from the presence of 6,
this would be a regression model if the distribution of u did not depend

on x and 6; in the quélitative case especially, however, this dependence is
critical. Our discussion concerns the untangling of the separate effecté
of ® and u, where the role of x is subsidiary, so for the rest of the paper
we consider the case of sampling from a population whose members are

observationally identical, where it is appropriate to suppress x:

y = h(6,u)

All observations from the same individual are assumed to correspond to the
same 6, but each one involves a new drawing from the distribution of u.
Finally, we assume prior knowledge of h(6,u) and of the distribution of
u. The last assumpﬁion should become more plausible as the discussion

progresses.

Models of unobserved components are particularly important in the study
of the distribution of income. The major theme of the most influential recent
work on income distribution, Christopher Jencks' book, Inequality (1972),
iQ exactly that observed differences among individuals account for very
lictle of the dispersion of income among them: "Neither family background,
cognitive skill, educational attainment, nor occupational status explains much
of the variation in men's incomes. Indeed, when we compare men who are
identical in all these respects, we find only 12 to 15 percent less inegquality
than among random individuals. How aré we to explain these variations among

men who seem to be similarly situated?" (p. 227). Jencks replies that



ummeasured differences in motivation, ability, and especially iuck account
for the bulk of the dispersion in income. His discussion is limited by his
faiiure to distinguish between unobserved differences among individuals, on
the one hand, and differences in the experience of the same individual at
different points in time, on the other. In the context of measuring income,

this distinction is familiar to economists in Milton Friedman's notion of
the permanent and transitory components of measured income. Jencks alludes

briefly to the distribution of permanent income (footnote 1, p. 233) but
the distinction has no role in his discussion.

The class of stﬁtistical models studied here provides a general framework
for separating the two sources of the apparently random differences among
individuals at a point in time. Systematic differences among individuals are
indexed by the random variable 8, and differences in ;he experiences of a
single individual by the random variable u. Friedman's model is a special case

of the general model in which 6 and u are simply added together
y=606+4+u

Here 6 is permanent income and u is transitory income. If y is observed for a
few successive years, then it is tempting to estimate permanent income for the

kth individual as the average income over the years:

~ 1 T

® Ttg yt
The difficulty is that the distribution of @ among the members of the population
has more dispersion than the distribution of 6. This problem arises most
critically in Jencks' data, where T is 1, but even where T is 3 or 4 one does
not know how much the distribution of 6 tells about the distribution of 6.
What is needed, and what this paper supplies, is a method for extracting as

much reliable information as possible about the distribution of 6.



The Sex Composition of Families

The details of the problem considered in this paper can best be
introduced through an example. Suppose that we observe a large number of
apparently'identicai families with two child:en, and suppose further that
a fraction ¢l of fhe families have no girls, ¢2 have ohe'girl, and ¢3 have
two girls. Each family has a probability 6 that a given child will be a
girl, In terms of the general model just given, if vy is the number of girls

in a family,

y = h(8,u)

= y, where u is binomial of order 2 with parameter ©.

If all families have the same 9» then ¢ wili be the common binomial
distribution:
¢, = (1-9)2; ¢, = 20(1-6); and ¢, = 82
1 : 2 > - 3

If 6 varies among families, then ¢ will no longer be binomial.2 The problem
treated in this paper is the estimation of.the distribution of 6 given only
the observed distribution $. Suppose, first, that there is a finite set of
alternative propensities to bear girls, say 31,...,9N, and that a fraction
Py of the population has propensity 91, P, has propensity 92, and so forth.

Then the relation between these and the observed ratios is

2This possibility has been discussed in the literature on mathematical
demography (for example, Goodman (1961) and Weiler (1959)). The problem of
estimating the underlying distribution does not seem to have been studied
by demographers. My treatment of the sex composition of families is only



A matrix form of this is convenient; let ¢ and p be vectors of length M
(M = 3 in this case) and N, respectively, and let A be a matrix with M rows

and N columns, each of whose columns is the probability associated with one

of the values of €. Then
$ = Ap

What can be deduced about p given the known A and the observed ¢? This is
the basic question answered by this paper.
The question becomes interesting only when N is larger than M,
Then the equation above together with the requirement that p is a probability
(pj e 0, j=1, ..., N and ij = 1) defines a set, S(A,¢), of alternative
values of p that are compatible with the observed ¢. The paper characterizes
the solution set in a number of ways, the most important being an identification
theorem giving necessary and sufficient conditions that there exist some
vector ¢ fpr which a given probability, say Py» is bounded striétly above zero.
A more realistic hypothesis is that © obeys a continuous distribution

described by a density function, £(8). Then the observed probabilities are

¢ = J a(®) £(8)dd

whére a(®) is a vector-valued function giving the set of probabilities in a
unit with parameter 9: in the example of the sex composition of families,

(1 - 8)?

a(d) = |26(1 - 9)
92

It would be asking too much to expect to extract any information about £(9)

at a single point. Information can be obtained about the cumulative distribution

an example and does not consider other aspects of the problem, especially the
effects of the efforts of parents to influence the composition through
stopping rules. On this, see Ben Porath and Welch (1972).
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of © at a finite set of points, however. Let such a set be 51, cees Oyt

Further, let

Ei,j -gmin<e£§ ai(e)

31770
;i g = maz ai(e)

<] =0=
3-17%"%4

where 50 = —o and EN = 4o, Now

]
Jao s ae = F o, £ fe)ae
)
j~1
and
P N - 6.
BENORIORUER A L ORY
I 5
i-1
53 :
Let Py = J9 f(8) d6 ; this is just the probability that a unit

ej_l
drawn at random will have a 6 between 63-1 and 6,. Then we have the system

3
of inequalities,

Ap 24 = Rp

where A and A are the M by N matrices of values of éij and Eij Again, the

paper characterizes the set of solutions, S(A, A, ¢) and presents necessary
and sufficient conditions for the identifiability of Py*

The problem of drawing inferences about thebdensity, £(60), given
only the finite set of parameters describing it, ¢, is a generalization of

the problem agsociated with the Chebysheff inequality. The latter takes two



parameters, the first and second moments of f(6), and gives a lower bound on

U+t
ﬁ—t £(©)de where u 1s the first moment of f(9). Our generalization permits

arbitrary definitions of the intervals for which the bounds are calculated,
allows any number of parameters, each of which may be an arbitrary weighting
of f(8), and gives both upper and lower bounds. It reduces to the Chebysheff
inequality for intervals that are symmetric about the mean of f(®), and where
the parameters, ¢, are equivalent to the first and second moments of £(6).
The distribution of the sex composition ¢f families is such a case, where the
mean of £(8) is %¢2 + ¢3 and the second moment 183 ¢3. Note that ¢ has only

two independent parameters, since the three ¢i must sum to one,

3 Steven Shavell pointed out the relation between ¢ and the moments of £(6).
In the case of a population of families with M-1 children, ¢ is equivalent

to the first M-1 moments of £(8). 1In other ¢ases, however, there may not be
any way to recover the moments from ¢, so we do not pursue this point here.



The Discrete Case

The'solution set, S(A,¢) 1s a convex polyhedron. & As such, it can
be fully described by its finite set of vertices, v(l), e s V(R), in that

S(A,¢) 1is the convex hull of its vertices.

sa,e) =< v, ., v®)s

Each vertex is an extreme value of the set of probabilities consistent with
the observed distribution, ¢. From the vertices we can compute bounds on

the individual probabilities:

(k)
By "B, R Yy

- (k)
Py “k=1,72% R V3

The set of probabilities that fall within these bounds understates the
information available about p, because it encloses S(A,¢). Still, the
individual bounds are a compact way to summarize the information in the
set of vertices, since there may be a large number of them.

The computétion of the vertices is in principle straightforward.
Each vertex has at most M non-zero values, so each is é solution to a set

of M equations in M unknowns,
Av = ¢
where A is a square matrix consisting of M columns selected from the N

columns of A, and v is the vector of corresponding non-zero elements of the

vertex, v. There are

N!

4 For economists, Gale (1960), chapter 2, provides all the algebraic background



ways to choose ;. Not all of these give rise to vertices, however, since

some of the solutions may have negatiﬁe elements. The set of vertices can

be obtained by generating all the possible solutions in a systematic way and
selecting those that are non-negative. The pivot method provides an efficient
way to do this by exchanging one column for another at each steﬁ.

What conditions are required to assure that this procedure yields any
useful information about p? This is the problem of identification. It is
clear that p is not identified in the usual econometric sense, which would
require that exact knowledge of ¢ imply exact knowledge of p. Here we must
gsettle for a weaker notion of identifiability. The natural definition seems
to be that there be some possible value of the observed ¢ such that the
probability under consideration, say Pys is definitely positive, that is,
that units Qith 0= %_must exist in the population. To make this more formal,
let a(l), vee s a(N) be the columns of A. The set of possible values of ¢
implied by the model is just the convex hull of these columns. Then Py is

identifiable if

m ’ min P >0
¢e<:f1), cre s a@s [?ES(A,¢) %]

The probability 1 will be identifiable if the columm a(l) has
something to say about ¢ that is independent of the other columns. One's
first thought is that identifiability depends on a condition on the rank of

)

- submatrices of A, that a =’ should not be a linear cbmbination of less than

M other columns, but this is not so. Suppose

o n
1 1 1 2
2 3 6 3
1 2 1
A= 10 ¥ 3 3
1 1l 1
5 3z z 0
2 3 6 B

necessary to understand what follows. A more extensive treatment and a complete
list of references appears in Valentine (1964), Part 12.



and ¢ =

Nl © NI

This has the unique solution

e’
]
OO OW

and so Py is identified despite the linear dependence

LD @ 3

= 23

This example shows that non-negativity of the elements of p has identifying
(L

power that can make up for linear dependence of a on other columns.

The true condition for identifiability of P is a refinement of the
(1)

requirement that a not be a linear combination of less than M other
columns. The refinement is that a linear combination is permissable 1if at

least one of its coefficients is negative. This is stated formally in the

Identification Theorem for the Discrete Case

A necessary and sufficient condition for the identifiability of Py
) (N)

is that a(l) be a vertex of < a seesy @ > .

Proof:
(i) Necessity. Suppose that a(l) is not a vertex. Then there is a
vector N
_ -1j
i
A= |0
| M

N
with Ai 4 0, i=2,..., N, and 122 Ai=l, such that

A =0

10
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Now consider a solution, p, to
Ap= ¢
*
Let p be defined by

*
p =p+p;)

* *
Note that p % 0 and Py is zero. Now

*
Ap = Ap + plAA
SAP

=9

. *
Thus for each solution, p, there corrcsponds another solution, p , such that
. :
P = Q,so Py is not identifiable.

(ii) Sufficiency. We need to exhibit a vector ¢ such that all solutions
(1)

to Ap = ¢ have P, > 0. Consider ¢ = a . Since a(l) is not a non-negative

combination of the other columns of A,

—

1
0

is the unique solution, and it has Py > 0.
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Application to the Distribution of Family Compositions

We return briefly to the example considered ét the beginning of the
paper. Our purpose is to show that the hypotheses of the theorem on identification
for the discrete casé can be met in practical work and to indicate the
tightness of the bounds on p that are obtained for alternative values of ¢.
The question of identification in the problem of family composition
can be answered quickly and unambiguously. Identifiability holds for any
value of N, provided only that 91 seses 9N are distinct. To préve this, it
suffices to show that no column of A can be written as a convex combination
of any three other columns (see Gale, 1960, Theorem 2.11, p. 50). Consider

such a combinatioh with coefficients Al, A2 and 1 - Al - Az. Then

2 = .2 = .2 = .2
(1-6)° = xl(l-el) + 12(1—62) + (1—xl-xz)(1-63)
26(1-6) = 21191(1-91) + 2x292(1-92) + 2(1—A1-A2)63(1—63)

02 = .82 + A 02

-2
181 T A8, + (17272500,

The solution to this system is

(8,-0) (5 ,-0)
A -
17 @, 8) @8

| (810) (85-0)

Ay

(6,-6,)(64-65)

(61-6)(92—9)

1-A.-A, =
172 7 = = \m %
(eB-el)(e3—ez)

Without loss of generality we take Bléﬁ 633. Then it is impossible for all

- —

three of these coefficients to be non-negative: If e<el, Az < 0., If el <e<62,



—

1-A1—A2<0. 1f 6;< 8 < 63, Al< 0. Finally, if 6 > [} . A2< 0. Thus no convex
combination is possible. No matter how many values of © are considered in the
discrete problem of family composition, there is a ¢ such that the probability
assigned to a given one of them is definitely positive.

Now consider the following obaserved distribution of'compositions:
¢1 = (.26, ¢2 = 0.48, and ¢3 = 0.26. This distribution shows more dispersion
than the binomial, and must therefore correspond to a distribution of © that

is not concentrated at a point. If we consider ej = 0.3, 0.4, 0.5, 0.6, 0.7,

then the vertices of .5(A,¢)’ are the following:

Py Py Py Py Ps
8 = .3 0 = .4 & = .5 8 = .6 8 = .7

e 0 0.5 0 0.5 0

w2 .17 0 0.5 0.33 0
v o0.13 0 0.75 0 0.13
e 0 0.33 0.5 0 0.17

The individual bounds are 0 = Py =0.17, 0 = P, = 0.5, 0= Py 2 0.75,

0= P, 2 0.5, and O = Pg 2 0.17. This ¢ does not identifyiany individual pj

13

in the sense defined earlier, but it does ddentify certain combinations of them:

< < < < < <
0.5 = P, + Py = 0.83, 0.5 = P, + P, = 0.83, and 0.75 = P, + P4 +p, = 1.0,
The following distribution of sexes of the first two children of

American families is reported by Ben Porath and Welch (1972):
¢1 = 0,262, ¢2 = 0,497, and ¢3 = 0.241

The mean of the distribution of € , % ¢2 + ¢3 , 18 0.489, so there is a slight

tendency for families to have more boys than girls. With the same set of Ej‘



as in the previous example, the vertices of S(A, ¢) are

Pl p2 P3 ' P4 Ps-

6 = .3 0 = .4 6 = .5 8 = .6 0 = .7
ey .02 .06 .92 0 0
e 0 .13 .85 .02 0
3 .08 .12 .87 0 .01

Thus 0 = p, = .08, .06 =p, = .13, .87 = p, S.92,05p, = .02 and

0 = p5<- .01, The data are consistent with only a very small proportion of
families with 6 = 0.3, 0.6, or 0.7, In fact, the bound on Py + Pj is very

sharp: 0.98 = p, + Py = .99.
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The Continuous Case

The continuous case requires
< < -
Ap = ¢ = Ap

It bears a closg connection to the discreté case in the following way: Any

p in the set of solutions to the continuous case, S{A, A, ¢) can be portrayed
as the solution to a particular discrete problem characterized by a pair of
vectors that play the roles of probabilities, and any solution to such a
discréte problem is also a solution to the continuous problem. This is

formalized in a

Lemma
S (é! A’ ¢) 'wen(;) S (Ai‘p)
4 ¢
where A= |-A|, v =1[1...1],¢ = |[-¢ and
v 1
H(;) = {y| ¢ : ; and Y, . = 1}
Proof:

(i) Consider p€s(A, A, ¢), so Ap = ¢. Let ¢ = Ap; yeH(¢). Then
peS(A,W), as required.
(ii) Consider peS(A,y) for some PeH(¢). Then Ap = - ¢, and

peS(A, A, ¢), as required.

The set of solutions, S(A, A, ¢), is again a convex polyhedron and
can be represented most compactly as the convex hull of its vertices. Each

vertex is a solution to the system
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~ ) ] _
[ A 1] [@] 0

satisfying the constraints p = 0 and ] = ¢, and with no more than 2M + 1

non-zero elements in p and ¢ together, say k from p, p, and 2M + 1 - k

from ¢y, ¢. Then p and @ must satisfy

A 0 p ¢
* ~
A -1 n 0

where ¢ consists of the k elements of ¢ corresponding to the elements of y
~ ~ * -~
not included in ¢, and A and A contain the appropriate elements of A,

Since the system is block-triangular, it has the recursive solution
= A-1¢

*A
:Ap

<> 3

~ ~

p contains the non-zero elemen;s of a vertex of S(A, A, ¢) if p = 0 and the
elements of & are no larger than the corresponding elements.of ;. Again, the
vertices of the set of all solutions can be calculated by generating
systematigally the solutions for all possible choices of the elements of
‘; and ;.

The problem of identification arises more acutely in the continuous
case than in the discrete case. In addition to the uncertainty about p
inherent in the discrete case, further uncertainty is introduced by the lack
of knowledge about where the probability is distributed inside each interval.
In what follows we give necessary and sufficient conditions for the identifiability
of Py- Although these conditions are rather more complicated than those for
the discrete case, they are basically of the saﬁe form and can be verified for

a given problem in a finite number of computational steps. We begin by
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defining the set of all possible observable probabilities compatible with a

given pair of matrices A and A:

o ={9¢ I.there exists p such that A p = ¢ Y P P = 0, ¢ 20

and Ip, = I¢, =1}

It is possible to show that ¢ is a convex polyhedfon and thus can be

represented as the convex hull of a finite set of vertices:

o = (¢(1)’ ,¢(Q)>

Second, define B as the convex hull of the columns of the stacked matrix A
other than its first column:

-(2) s,

B =< a s see o

Then we have the

Identification'Theorem for the Continuous Case: Py is identifiable if and

only if H(;(k))/)B is empty for at least one vertex of ¢, ¢(k).

Proof: (i) Necessity. Suppose there is no such ¢(k). Then for every k,

K Ap(k) and pik) = 0. By the Lemma, p(k)ss(é,z,¢

‘ k
Now consider an arbitrary ¢ed. It can be written ¢ =kglAk¢( ). Let

-

H(¢(k))[\B contains a ¢( (k)).

¢(k)) and peS(A, A, ¢). But p; = 0, and

p(k). Then peS(A, A, LAy

p= EAk

identifiability cannot hold.

(ii) Sufficiency. Consider a ¢(k) such that H(;(k))/\B is empty,

@™,

and consider any yYeH(¢ Suppose there were a peS(A,w) with Py = 0. Then

Ap = ¥, and yecB, a contradiction. [hus for any pewgg(;(k))S(A,w), Py > 0, and °

Py is 1dcntifiable.‘
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The following is a much simpler necessary condition:

-

Corollary : Py is identifiable only if H(a )/)B is empty.

~

Proof: Suppose, on the contrary, that H(a(l))[wB is not empty. Then there is a

ivector A with ll =0, ij = 1 such that a‘l) = AA. Now consider an arbitrary

¢e®. By hypothesis there is a yeH(¢) and a p such that y = Ap; pj =0
)
and ij = 1. Letp, = 0 and pj = plkj + Py j > 1. Define §' = Ap' =
- -1 - < , ~ -
pl(AA - at )) + Ap. Thus ¢' = ¢, so ¥ €H(¢). But p'eS(A,p'), and P; is

not identifiable.
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Further Application to the Sex Composition of Families

For the distribution of the number of girls among the first two
children reported by Ben Porath and Welch (¢1 = 0,262; ¢2 = ,497; ¢3 = ,24]1),

S(A, A, ¢) has the 23 vertices shown in Table 1. Here we have used six

intervals along the 0 axis: 50 = 0.1, 51 = 0,3, 52 = 0.4, 63 = 0,5, 64 = 0,6,
55 = 0.7, and 66 = 0.9. The bounds on the individual probabilities are as
follows:

0 = Prob [0.1 =6 = 0.3] = .037

0 = Prob [0.3 = 6 = 0.4] = .150

0 = Prob [0.4 = 8 = 0.5] = .963

0 = Prob [0.5 =6 = 0.6] = .963

0 £ Prob [0.6 5 6 & 0.7] £ .150

0 < prob {0.7 =6 = 0.9] = .038

Although none of the individual probabilities is identified by this value of ¢,

certain sums are identified, forbexample,

HA
tA
A

.850 = Prob [0.4 = 1.000

L}
[ea]

0.6]

A
A
A

Prob [0.3 0.7] 1.000

#A

.962

HA
A
A

1.000

HA

.037 = Prob [0.1 0.5]

These results tend to confirm the earlier impression that the observed
distribution of the sex composition of families is not consistent with a

great deal of dispersion in the underlying probabilities of having girls.



TABLE 1 Vertices of S(A, A, ¢) for BPW data

Py Py P3 Py Pg Pg
.037 0 0 .963 0 0
0 .056 0 .944 0 0
0 0 .109 891 0 0
.037 0 .963 0 0 0
0 o .850 0 .150 0
0 0 .963 0 0 .037
0 .100 .900 0 0 0
.004 0 .090 906 0 0
0 .023 .060 .918 0 0
0 0 .128 .850 .022 0
0 0 - .120 .873 0 .007
.023 .060 .918 0 0 0
0 .150  .800 .050 0 0
0 .133 .850 0 .017 0
o 124 .870 0 0 .007 -
0 .094 0 .851 .056 0
0 0 .283 .567 .150 0
0 .082 0 .901 0 .017
0 0 .200 .762 0 .038
.022 .060 .918 0 0 0
0 .128 .850 .022 0 0
0 .120 873 0 .007 0

0 114 .884 0 0 - .002

20



Parametric Restrictions on £(98)

The previous analysis makes no assumptions about the form of the density

of the unobserved component, f(6). Most investigators are likely to be willing

to make more or less restrictive assumptions about £(8) in order to tighten
the results by ruling out implausible densities. If £(8) is thought to
depend on K parameters, say 8, then the relation between the observed ¢ and

the underlying distribution of individual types is

¢ =_f a(8)£(0,8)do

I1f K is less than or equal to the number of independent observed data points,
M-1, and if £(6,8) 1s sufficiently well behaved so that the relation cén be
inverted to get B as a function of ¢, then this is a perfectly conventional
statistical model and none of the problems considered earlier in this paper
will arise.5 But if K exceeds M-1, and if £(6,8) is linear in B (not, of
course, in 6), then the problem is very much like the discrete problem
considered earlier.

Suppose, therefore, that £(6,8) = g(8)B8. Then
¢ = F a(e)g(e)pde
-—C0
If we define the mattix A by

Ay

i =_{° ai(e)gj (e)de )

then the matrix form of the model is

¢=AB,

3 Steven Shavell has pursued this line of thought in the problem of sex
composition by assuming that £(8,8) is a beta distribution, for which the
necessary inversion is straightforward.

21
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exactly the form of the discrete problem considered earlier. Each column of
A can be scaled so tﬁat it sums to one. If, in addition, non-negativity of
g(6)B8 requires non-negativity of B, then the set of vectors of parameters, 8,
is precisely the set S(A,¢) discussed earlier.

The step function is one natural choice for g(9):

gj(e) =1 if © =0 <6

=0 otherwise

For this case, the scaled matrix A is
8
1 k|
A, = ——— a, (e8)de R
5 i

8
and £(8) = —L1—— {5, <@ < 8

6, -8
h| j-1

= () otherwise

Thus Prob [53_1 = _j

80 each 8, has the same interpretation as the pj in the continuous problem; it

3

is the fraction of the population with @ falling between §j_1 and §j.

For the problem of the sex composition of families with two children,

L@a-8 p93-@a-8)3
j-l) ( ej) )
(1) 1 -2 =2 2 =3 =3
- 6 -85 . - £ (87 -8
- 17 %173 Oy 7 850
3 - 1l -3 3

3(6:]-6_1‘1)
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Again we examine the set of distributions consistent with the data of Ben

Porath and Welch, this time using a somewhat different set of values of 6 .:

]
0.1, 0.4, 0.47, 0.49, 0.51, 0.6, 0.9. The set has the following 8 vertices:

By By By By Bs Be
014  .108 0 .878 0 0
019 0 .283  .698 0 0
008 0  .840 0 .152 0
0 .106  .704 0 .190 0
0 243 0 .662  .096 0
0 193 0 .798 0 .008
0 0 735 .249 0 .017
0 0 .903 0 .086  .011

The following bounds on individual probabilities and sums of pairs of probabilities

are implied:

[ WA

0 = Prob [0.1 =6 < 0.4] = ,019

0 = Prob {0.4 =8 < 0.47] = .243
0 = Prob [0.47 = 6 < 0.49] = ,903
0 < Prob [0.49 = 6 < 0.51] = .878

S Prob [0.51 = 8 < 0.6] 5 .190

(=]
[

o
)

s Prob [0.6 = 6 < 0.9] S .017
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0 = Prob [0.1 S 8 < 0.47] = .243

Prob [0.4 = 6 < 0.49] = .903

A

.108

BA

.662 = Prob [0.47 = 8 < 0.51] = .984

A

.086 = Prob [0.49 = § <0.6] = .878

0 = Prob [0.51 = 6 < 0.9] = .190
No more than 3.6% of all families have probabilities of having girls below 0.4

or above 0.6, and at most 33.87% and perhaps as few as 1.6%Z have probabilities

below 0.47 or above 0.51.
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Sampling

So far, the observed probabilities, ¢, have been taken as known. In

practical work, we have only a set of frequencies for a finite sample, say

~

¢, which we regard as a random variable. If the total sample contains n

individuals, the probability of a given sample, LAEEERRS AY is

I ¢
k=1 Y

cola? gt
l 2 L ) M

Prob [y,,...,y._ ] =
1 n

where Y1 is the number of individuals with Ve = 1, Y, the number with Vg = 2,
and so forth (ZYi = n), This probability may be interpreted as the likelihood

of ¢, in which case it is convenient to deal with the log-likelihood,

M
log L(¢) = I, Y, log ¢,

It is well known that the likelihood achieves its unique maximum when each

element of ¢ is set equal to the corresponding sample frequency:

<

i

% "%

The properties of this estimator are discussed by Rao (1965, pp. 291-295).
In the parametric case just discussed,

¢ = AB
so the log-likelihood of B is

log L(B) =1=%1 Y, 1og(AB)i

Let @ be the set of possible values of ¢; ¢ is the convex hull of the columns

of A. Then maximum likelihood estimation of B involves two cases: First, if
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$e¢, then the likelihood of B attains its maximum for ény B that implies the
observed frequencies, ;, that is, the set S(A,;). The vertices of this set
give the extreme values of 8 for which the likelihood attains its maximum,
and from the vertices individual bounds on the maximum likelihood estimates
of each B, can be calculated. Second, sampling variation may cause ; to lie

3

outside ¢. In this case ¢ cannot be taken as the set of observed frequencies,

~

but must instead be the value of ¢ that maximizes L(¢) within ¢. There does
not seem to be any simple way to solve this problem in non-linear programming.
Fortunately, if ¢ is in the interior of &, the probability that the second
case will arise approaches zero as the sample size increases.

In addition to finding the set of maximum likelihood estimates.of g, it
is also useful to indicate the potential effect of sampling errors in & on

the set of B's. If the sampling variability of ¢ can be characterized by a

confidence region, R, in ¢, then the 8et

*
VW)

takes simultaneous account of the uncertainty about p caused by the sampling
variability of & and that caused by the nature of the relation between ¢ and
P. R* is not a'confidence region in the usual sense, however, because a

probability on ¢ does not induce a probability on the set of all p's. If R

() (m)

is a convex polyhedron with vertices r sesey T , then

R* = < S(A,r(l)),..., S(A,r(m)) >.
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Concluding Remarks

This paper has presented three methods for estimating the distribution
of an unobserved component from the distribution of an observed statistic.
The first method, based on the assumption that the unobserved component has a
discrete distribution, has little intrinsic interest, but is mathematically
identical to the third method. The second method makes no assumptions about
the distribution of the unobserved component, and therefore gives the weakest
results, It is probably of more theoretical than practical interest. Our
study of it demonstrates that exact but not complete knowledge of the distribution
can be obtained, so the assumptions qf previous authors can, in fact, be tested.
Finally, the third method imposes prior knowledge about the smoothness of the
distribution of the unobserved component. This is done through the conventional
device of confining the distribution to a family indexed by a limited number
of parameters. The third method is probgbly of greatest potential usefulness

in practical work.
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