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Abstract

The basic point of this paper is that fast, error-prone
methods of computation are useful in least squares calculations,
provided that information is available about the magnitude of
the errors. The main contribution of the paper is & set of
bounds on the errors of a certain class of efficient least
squares algorithms. These bounds should be useful to the statisti-
cian dealing with any but the most seriously ill-conditioned re-

gression problem.
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1. The Problem

Abundant experimental evidence now exists to demonstrate that
a certain amount of care is required in order to obtain accurate
results in least squares regressions. The papers of Longley [ 2]
and Wampler [ 3] are particularly relevant for practical statis-
ticians, since they report on the results of experiments with com-
puter programs that are in widespread use in empirical research.
Many of the vrograms performed very poorly on the various test
problems of the two authors, and it is reasonable to expect that
these programs are undergoing extensive revision in order to im-
prove their accuracy.

Among efficient computer programs, those that are more ac-

curate are also more time-~consuming. The dominant theme of the

lThis is a completely revised version of an earlier paper of the

same title, issued as Working Paper 130, IBER-CRMS, University of
California, Berkeley, March 1968, and as Working Paper 3, Depart-
ment of Economics, Massachusetts Institute of Technology, July

1967.



recent literature in this area has been an advocacy of more and
more accurate algorithms, which are necéssarily more and more de-
manding of computer time. Some truly extravagant algorithms have
been proposed and tested, achieving astonishing accuracy in very
badly conditioned problems. It would be‘natural to draw the con-
clusion that an accurate, expensive algorithm should be adopt-
ed for general use in least squares calculations, in order
to guard against serious errors in particularly difficult
problems. Clearly, however, this is a wasteful strategy. A
more economical approach is to use a chéap, rough algorithm for
well-conditioned problems and to save the refined and expensive
algorithm for problems that actually require it.

The purpose of this paper is to present an analytical basis
for the approach just suggested. The main contribution is a set
of bounds on the errors in a certain useful class of least squares

algorithms. These bounds can be calculated a posteriori to evalu-

ate the accuracy of a set of regression results, and a more accu-~
rate member of the class of algorithms can be selected if the
first set of results are inadequate. The more accurate methods
are essentially iterative refinements of the simplest method, and
make use of some of its intermediate results. As a consequence,
very little effort is lost by calculating results first for the
simplest algorithm as a routine procedure, and going on to the re-
finement only when necessary. There is no need for the user to

guess & priori how well conditioned his problem may be.



2. Approximate Error Bounds for Direct Calculation

Direct solution of the normal equations,
(1) X'Xb = X'y

(wvhere b isnx 1, Xis Txn, and y is T x 1) is the easiest known
algorithm for regression calculations. An efficient scheme is the
following:

(i) Form the matrix M = X'X and the vector m = X'y

(ii) Calculate an upper-triangular matrix, U, such that UU' =

M, by Cholesky's square root method [L4, pp. 305-307]
(iii) Solve the equation Uz = m by elimination
(iv) Solve the equation U'b = z for b.
This scheme takes full advantage of the symmetry of M. The optimal
allocation of computer resources generally involves the use of
single-precision storage for all errays and double-precision accumu-
lation of all inner products. This arrangement is assumed through-
out the paper.
The basic source of error in these and other computer calcula-
tions arises from the fact that numbers cannot be stored internally
in exact form, but must be approximated by members of a finite set

of numbers that can be expressed in a certain fixed number of binary



digits. We assume that all numbers are expressed in floating point
form, with t bits‘in the fraction part, and that each arithmetic
operation‘produces an exact answer that is rounded when it is stored.
The effect of rounding is to introduce é relative error of up to Q-t
in the result, as compared to the exact result for the previously
rounded inputs. This is an optimistic view, in that some machines
operate in a cruder fashion.

Our study rests on the backward error analysis of Wilkinson,
(5]. Instead of examining directly the difference between the
calculated and true results, we ask the opposite question: For what
problem are the computed results exactly correct? Our answer has
important implications for regression calculations -- it shows that
the errors made in calculating b = M’lm are at most of the same
order of magnitude as those caused by rounding the true M to the
number of digits stored in the computer. Even if b could be calcu-
lated exactly from the rounded M, it would not be significantly more
accurate than that calculated in single precision. The practical
implication of this observation is that refinement of the calcula-
tion of b from the rounded M would be pointless. The simple algo-
rithm outlined above gives results that are close to the theoretical
limitation in accuracy imposed by the roﬁnding of M. Higher accuracy

can be obtained in algorithms that solve Mb = m only by storing M in



double precision.

The basis for this conclusion is stated more precisely in

Theorem 1

When floating point arithmetic (with relative error § = 2_t)

is used to solve the equation
(2) Mb = m

where M is n x n and positive definite, and IMijl < (1-8) ﬁqiiMJJ’

the computed solution, b*, satisfies

(3) M+ E)p¥ =m ,
where

(%)

Eij| ¢ s /"““'MiiMJJ

Proof:

By reinterpreting a result of Wilkinson [ L4, pp. 305-307],

we obtain the following bounds for the Cholesky decompositibn:

(5) UU' =M + F



(6) |FiJ| <6 /MiiM,jj

A second result of Wilkinson [5, pp. 103-104] gives
(7) (U+G)z* = m
for the computed solution to
(8) Uz = m
where G is a diagonal matrix whose elements are bounded by

(9) 6551 ¢ 80,
Applying this result again, we have
(10) (U + H)'o* = 2%

for the comﬁuted solution to

(11) U'b = z¥

and H is a diagonal matrix with



(12) | Iniil §8U,,

Thus,

(13) (U+c)(U +H)'b*=mn

(14) (UU' + UH' + G'U + GH')b* = m

(15) (M+ F +UH'" + G'U + GH'")b* = m ,

s0 the matrix E given in the statement of the theorem is

(16)\ E=F + UH' + G'U + GH'

and

(17) lEij' § IFij‘ + |(UH')iJ' + l(G'U)ijl + I(GH')ijl
Now

(18) (UH')ij = UiJHJJ

S0

(19) l(UH')iJI < Gm

The same holds for I(G'U)ijl' Finally
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1

A

(20) I’(GH')i

S M, .
ii

A

Thus

(21) lEiJ| g Us /ﬁ;;ﬁ;;

Q.E.D.

Practical experience suggests that this bound overstates the
contribution of errors in solving Mb = m relative to those masde by
rounding M. The latter appear to dominate in most problems, and
the 4 in the bound just derived can safely be replaced by a number
less than one.

We have shown that numerical errors in solving the normal equa-
tions of least squares are sufficiently small that the computed re-
gression coefficients are the true coefficients for a regression
problem that is only very slightly different from the true problem.
This does not mean that the computed coefficients are anywhere near
the true coefficients. The experimental evidence shows that this is
far from the case. Our next step is to provide an assessment of the
consequences of errors in M and m (arising from either source) on

the calculated coefficients. Here we resort to linearization, which



necessarily introduces a lack of rigor, although since & is typical-
ly a very small number (in the neighborhood of 10_8), the missing
terms in 62, 63,... are negligible in any but the most pathological

cases.

We now state y

Theorem 2
Ir &, is the linear approximation to the error in the k'th re-

gression coefficient, defined as

% g abk % db

(22) g = E,, + e

k i=1 =1 8M1j i) 121 aml i

(where EiJ is the error, actual or imputed back from subsequent cal-

culations, in M,, and e, is the error in mi)

J

and
(23) B 51 < w8 M

(24) les| & W8 /M om,
%’ 2
(wvhere m_ = Vi)
o] £=1 t

then

. n n
(25) ngl § 8 [ka [(121' /Vi]l Mii)(Nz\/m;Jf N, le lbdi\[MJJ)]
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where V = Mt

Proof:

We observe first that
(26) = -V _.b

so, since V is positive definite,

b
k
(27) I—S‘M—i:j—l g ‘/;kk;ii leI

and
3b,
k _
(28) sm, - ki
i
SO
abk
(29) |§}i;| RVA
Thus
n n
(30) e, | s Nﬁigl JZl\/kaVii LA RV
n
* N26i£l\/ikkvii VASTEN
Q.E.D.
From Theorem 1, we see that for direct calculation, Nl = 5 and
N, =1, No great effort is required to evaluate this expression,

2
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since the gquantity in brackets is the same for all coefficients.

. The invgrse, V, and the squaré roots of its diagonal elements are
usually computed in any case, so the extraction of the square
roots of the diagonal elements of M and the actual evaluation of
this expression are the only extra steps. In practice, the ex-
pression is evaluated with the computed coefficients b¥. If the

J

result is devoted h then we know

JS

(31) b*¥ - h, §b, s b¥ + h R

J J

except for errors introduced by the linear approximation.
Computational experience with these bounds indicate that they

do not greatly overstate the actual magnitude of the errors in the

calculated regression coefficients. The reason is that the errors

introduced by rounding M and m are generally perverse; the statis-

tical cancellation of errors usually observed in matrix computations

\

does not occur in this case.
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3. Preliminary Transformation of the Data

In ill-conditioned regression problems the bounds Just derived
will generaily suggest the presence of serious errors in the coef-
ficienté calculated by direct solution of the normal equations.
Then it becomes necessary to employ a more accurate algorithm or to
use double-precision storage for the intermediate results, starting
with M and m. On machines with fast double-precision arithmetic and
sufficient storage, the latter strategy may be optimal. Wampler's
experimental results indicate that double precision gives entirely
satisfactory results for his problems, using simple elimination al-
gorithms that are numerically similar to the algorithm of Section
2. One difficulty with this approach is that there is no method of

evaluation, a posteriori, for coefficients calculated in this way.

The bounds of Section 2 cannot be applied (with a smaller &) because
they are crucially dependent on the use of double-precision accumu-
lation of inner products. The extension to the double-precision
case would require triple-precision asccumulation, which is entipely
uneconomical on modern machines.
The fest of this section is devoted to the study of algorithms

based on preliminary transformation of the data. The basic idea is
the following: Suppose that R is a nonsingular upper triangular

matrix that can be represented exactly in floating point with only
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t binary digits. Define o
(32) X = xR

Now suppose we calculate the least squares regression coefficients

for y and the transformed variables:
(33) ¥ = (XN y

Then it is easily seen that

0
=]
o'

(34) b

The value of these formulas derives from the fact that the only error
introduced in forming ¥ from X and b from v is in rounding the result.
By an astute choice of the matrix, R, we can deal with a new regres-
sion problem that demands far less accuracy in M and m, and then trans-
form the coefficients without losing any of the accuracy gained in cal-
culating % rather than b.

Error bounds for the algorithm based on transformation by an arbi-

trary matrix, R, are given in:
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Theorem 3

If the regression coefficients, %, for the transformed regres-
sion equation y = %% are calculated by the method of Section 2, and
the coefficients for the original problem are calculated as b = R%,

then bounds on the absolute value of the errors in b are

I In,l &
(35) h, = R,,.| h
3 ey I
where ﬁﬁ are the bounds of Theorem 2 for the transformed problem,
with Nl = 8 and N2 =2
Proof':

All that needs to be shown is that the elements of ﬁ = %’%

and m = i“y are within the bounds required by Theorem 2. First

T
(36) M., =7V (%Ti + fTi)(%TJ +f

1J =1 TJ)

where fT is the error introduced by rounding &Tk:

k

(37) ESN N

Tkl 3

A%
Thus the error in Mi s Eij’ is given by

J
7 T T
(38) B, = Zfri%q* Je X+ Y f

b oA te1 T e
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Now since

RPN
(39) TL' ritrgl € l‘tzl ri)(T
< VW T ,

ii 33

(40) IEij| < 35 MM

ii 3

T
2
Zlkrj)

A similar argument shows that

N
(W) eyl s 6 Myym

These are bounds on the errors in ﬁii and ﬁi before final rounding,
which adds another relative error bounded by 8. Errors in the solu-

tion can be imputed to Mij

k 8. Thus the hypotheses of Theorem 2 are fulfilled with Nl = 8 and

and are bounded in relative magnitude by

N2 = 2. Q.E.D.

The choice of the matrix R should strike a balance between the value
of the improved accuracy obtainable when R is a full (non-sparse) triangu-
lar matrix and the cost of calculaﬁing R and carrying out the transforma-
tion X = XR on the data. We will discuss two methods for calculating
R, one involving a spafse R (and therefore an inexpensive transforma-—

tion), and one involving a full R. The second method provides excep-

tionally accurate results.
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A well-known method for improving the accuracy of regression
calculations is to subtract the mean of each right—hand Qariable
from each observation on that variable. This method is valid only
wheﬁ one of the right-hand variables (say the first) is a consﬁant,

in which case it can be represented as follows:

r-l ~u2 e e —pnT

(L2) BR= .

‘o-.'O

where ui is the mean of XTi and XT = 1 for all t. This transforma-

1

tion produces an unambiguous improvement in the accuracy of every

regression coefficient except possibly the first. From the relations

(43) M = R'MR
and
(4h) v = &

and the fact that V is positive definite, it can be shown that

(k5) M, = M1
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(46) Mii < .Mii , (generally by many orders of magnitude),

(47) 9‘11 <V

and

(48) V.. =v

ii ii
Since %i = bi for i=2,..., n, it is immediately apparent from Theorem
2 that substantial gains in accuracy can be obtained by subtracting
means. This does not imply that a preliminary data transformation of
this type is always to be recommendea. The calculation of the means
and the subsequent subtraction from the dats and accumulation of ﬁ
require two passes over the data. The second pass would be wasteful
if the problem were sufficiently well conditioned to permit satis-
factory fesults to be obtained with the one-pass algorithm of Section
2. .

Subtraction of means is limited in its application to regres-
sions with constants. As a result, many computer programs give sat-
isfactory results in ill-conditioned problems with constants, but
break down completely in equally ill-conditioned problems without
constants. The pfesent framework suggests a simple generalization
of the method of subtracting means that is applicdble to all regres-

sion problems. We take
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=

1j .
(L9) ., = HQL , i=2,..., n .

RG]

If Xrl is constant, this is the conventional method; otherwise it is

a new method with the same desirable property of reducing &ii Vii

for all i. The improvement obtained with this method depends on how

closely th is correlated with Xt2""’

correlations are high, the error bounds for the new method may be

an' If all or most of the

many orders of magnitude better than those for direct calculation.
The error bound of Theorem 2 attains its irreducible minimum
when M is a diagonal matrix, that is, when tﬁe transformation has
the effect of making the columns of % orthogonal. This suggests
that an accurate and costly algorithm might be based on the use of
a full triangular matrix R to transform the data, with R chosen so

as to make M an identity matrix. That is,

(50) M=R'MR = I
or
(51) )R t=n

but since M = UU', we conclude that

wh' .

(52) R
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Accurate calculation of this matrix is almost as difficult as the
calcuiation of regression(coefficientsw Unlike the cﬁefficients
themselves, however, there is no great need for an accurate R,

Lven a rather inaccurate approximation to the true orthogonalizing
R is likely to yield a transformed problem that is much better con-
ditioned than the original problem. Since we are equipped to cal-
culate and evaiuate results for an arbitrary R, and not just the
one that orthogonalizes %, there is no harm in using even a rather
bad approximation to the desire& R.

The useful feature of this choice of R is that UL is calcu-
lated as an intermediate step in the calculation of V in the simple
algorithm of section 2. This means that a candidate for R is im-
mediately available if the results of the first calculation are
Judged inadequate. The second-stage transformetion and calculation
can be viewed as an iterative refinement of the first results. 1In
the next section we will refer to this procedure as the two-pass

orthonormalization algorithm. Its pumerical properties are simi-

lar to those of the iterated Gram-Schmidt least sguares algorithm?
with two iterations, but it requires only 2 passes through the raw
data, while the Gram-Schmidt requires 2n passes. In addition, it

requires substantially fewer arithmetic operations.

\

2Davis, [1].
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L. An Example

In Table 1 we present results for a test problem proposed by

Wampler:
(53) X5 =,(r—l)i'l s i=1,...,6, t=1,..., 21
(54) b, =1 , all i,
1
and
= Xb

(55) Y

Using single-precision arithmetic with t=27 (IBM 7094 and Univac
1108), no conventional least squares program was able to achieve
usable accuracy for this problem (see Wampler's Table 1 in [3]).
This evidence of ill-conditioning is confirmed by our results for
direct calculation, presented in the upper left of Table 1. The
actual errors are large, but lie within the calculated bounds. The
bounds are quite sharp; some of the errors are more than a tenth of
their calculated bounds. The two-pass orthonormalization algorithm
of section 3 reduces the actual errors (for t=27) by a factor of
about 10000, achieving an accuracy that might suffice in some ap-
plications. Unfortunately, the béunds are not as sharp for the

second algorithm, and these results would have to be rejected in



Table 1

Results for Wampler's
First Test Problem

21

t = 27
Direct Calculation | , Two-pass Orthonormalization
True
coefficient Calcu%a?ed Actusl Cai:;i;ﬁed Calculated Actual Caiiii:ted
coefficient error bound coeffiecient error bound
1.0000 -23.2903 | ~2k.2903 39k .107h .9863 -.0137 7.7320
1.0000 54,5911 53.5911 433,5782 1.0028 .0028 6.2701
1.0000 | -16.75ML | -17.7541 | 143.0566 .9995 -.0005 1.6656
1.0000 3.8877 2.8877 18.6305 1.0001 .0001 .1866
1.0000 .8786 -.121h 1.0365 1.0000 .0000 .0093
1.0000 1.0032 .0032 .0206 1.0000 .0000 .0002
t = 36
1.000000 .968786 .03121% .T6149% 1.000004 . 00000k .015098
1.000000 .994278 .005722 .836226 999986 .00001h .012242
1.000000 .982876 .01712k4 275732 1.000003 .000003 .003252
1.000000 1.001829 .001829 .035902 1.000000 .000000 000364
1.000000 .999888 .000112 .001997 1.000000 | .000000 .000018
1.000000 1.000002 .000002 000040 1.000000 000000 000000
Note: These results were obtained by simulating lower precision arithmetic (with

rounding) on a machine with t=h8 (CDC 6400).

\
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normal use of the bounds.

Table 1 also presents results for a somevwhat higher level of
precision (t=36, typical for machines ﬁith L8 bit words). The
bounds for the errors in direct calculation are slightly less tight
than for t=27, but they still provide a useful indication of the ac-
curacy of the results. Finally, with t=36, the two-pass orthonor-
malization algorithm yields sufficiently accurate results in this
problem for almost any applicetion of the regression coefficients.
Once again, the calculated error bounds are less successful in eval-
uating the accuracy of the orthonomalization.‘ |

Finally, in Table 2 we present results for a reasonably well-
conditioned problem, also studied by Wampler. The matrix of right-
hand variables is the same as in the first problem, but the coef-

ficients are
(56) b, = 10 , i=l,..., 6

With fairly high-precision arithmetic (t=36), quite accurate results

are obtained by direct calculation.3 Furthermore, the bounds are
sharp enough to give a useful indication of the accuracy of the co-

efficients.

3The fact that Wampler's second problem is so much more tractable
than the first, in spite of the fact that they share the same X'X,
shows how futile it is to attempt to evaluate the accuracy of re-
sults purely on the basis of X'X. Yet many computer programs at-
tempt exactly this by calculating the determinant of X'X. More
elaborate measures, such as the condition number of X'X, have the
same defect. :



Table 2

Results for Wampler's

Second Test Problem

t = 36, Direct calculation

True Calculated Actual Calculated

coefficient coefficient error error bound
1. OOOOOO .999999 .000001 .000016
0.1000000 .1000005 .0000005 .00001 74
0.01000000 ‘.009999hh .00000056 .00000575
0.001000000 .QOlOOOOGh .000000064 .0000007L9
0.0001000000 .0000999963 0000000037 0000000416
0.00001000000 .00001000001 .00000000001 .0000000008

23
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5. Conclusion

The main contribution of this paper is to provide bounds on the
errors of least squares calculations. The usefulness of the bounds
- is not so much to prove the superiority of more advanced algorithms
(the usual application of error bounds), but to make it possible to
use fast methods of computation, especially direct calculation, in
spite of the fact that these methods are known to break down in ill-
conditioned problems. We pave also proposed a two-pass procedure
for handling the more difficult cases by taking advantage of infor-
mation agcumuléted in the unsuccessful attempt at direct calculation.
' The two-pass algorithm is by no means the most accurate least squares
algorithm available, but, again, the ready availability of bounds on

its errors makes its use appropriate in a wide variety of applications.
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