
Introduction Geometric Requirements Unified Framework Robustness Discussion

Navigability is a robust property

Paris Siminelakis Dimitris Achlioptas
Stanford UC Santa Cruz

Workshop on Algorithms and Models for the Webgraph,
TU Eindhoven , Netherlands

December 11, 2015



Introduction Geometric Requirements Unified Framework Robustness Discussion

Outline

1 Introduction

2 Geometric Requirements

3 Unified Framework

4 Robustness

5 Discussion



Introduction Geometric Requirements Unified Framework Robustness Discussion

Small World Phenomenon

Small World Phenomenon existence of short paths between any
two people using personal acquaintances.

Interpretation: Small Diameter

D = O(log n) w .h.p

Reason: Expansion

Branching process - Renormalization

How to find such paths efficiently? ⇒ Geometry
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Navigability

Millgram’s Experiment given occupation and location of a
random individual, send a message to the person most likely to
know that person.
[Kleinberg’99] Algorithmic interpretation to Milgram’s experiment.

Navigability: greedy decentralized search in poly log(n) time.

Rank Based Augmentation (RBA)

P(u, v) ∝ 1

Vol(Bu(r))α

Uniform over distance scales for α = 1

Distance is cut in half every log(n) steps.

How general is this phenomenon?
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Geometric Requirements

Geometric Requirements
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Graph Augmentation

Can any graph be turned into a small world? [Duchon et al. DISC’05]

[Local Connectivity]
- Connected Graph G .
[Geometry]
- Shortest path metric
[Augmentation]
- RBA using SP-metric.

Navigable for O(log log n) Doubling Dimension [Slivkins
PODC’05]

Necessary for RBA-type augmentation [Fraigniaud’10]..
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(λ, β)-set system Σ = {S1, . . . ,Sm} with Si ⊂ V and ∪Si = V .

Bounded Growth:
|Si | ≤ R and u ∈ Si ⇒
| ∪ Si | ≤ βR.

Descent Property:
∀S ∈ Σ and ∀u, t ∈ S ⇒
∃S ′ ∈ Σ, t ∈ S ′, |S ′| ≥ λ|S |.
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Navigability in Set Systems

(λ, β)-set system Σ = {S1, . . . ,Sm} with Si ⊂ V and ∪Si = V .

[Local Connectivity]
- Adding Ω(log2 n) links.
[Geometry]
- dΣ(u, v) := min

S∈Σ
{|S | − 1|u, v ∈ S}.

[Augmentation]
- RBA with dΣ semi-metric.

Navigability only for 1-RBA [Kleinberg NIPS’03]
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Unified framework for Navigability

Unified Framework for
Navigability
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Unified Framework

Geometry (V ,D): a set V and a semi-metric d : V × V → R+.

[Local Connectivity]
- substrate E0.
[Geometry]
- γ-coherent semi-metric d .
[Augmentation]
- Uniformly Rich product measure.
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Coherent Geometries

Geometry (V ,D): a set V and a semi-metric d : V × V → R+.

[Coarsening] γ > 1
d(u, v) ∈ Ik := [γk−1, γk)

[Bounded Growth]
Vol(Bk(u)) ∝ γk , ∀u ∈ V

[Coherence]
Vol(G (u, v)) ≥ φ · γk .

“Bounded” Density Fluctuations for all non-trivial scales.

Example: n random points in [0, 1] are (1 + c
n )-coherent.
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Set Systems are Coherent Geometries

Theorem[Achlioptas, S’15]

For every (λ, β)- set system Σ, there exists γ(λ, β) such that
(V , dΣ) is a γ-coherent geometry, where

dΣ(u, v) = min
S∈Σ
{|S | − 1|u, v ∈ S}

Proof: main quantity to control Vol(Bk(u)). B[k](u) = ∪i≤kBi (u).

Vol(Bk(u)) = Vol(B[k](u))−Vol(B[k−1](u))

Upper bound: easy follows from bounded growth.

Lower bound: uses the descent property.
a. ∃S ∈ Σ such that u ∈ Σ and |S | ∈ [γk−1, γk ] for each k .
b. coarsening of geometry.
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Uniform Richness

A product measure Q ∈ [0, 1]n×n such that: (u, v)
ind∼ Ber(Qij), is

called uniformly rich d(u, v) ∈ [γk−1, γk)⇒ Q(u, v) ≥ c
logθ n

γk .

Theorem[Achlioptas, S’15]

Coherent geometry (V , d) with substrate E0, let EQ ∼ Ber(Q)
where Q a uniformly rich product measure, then

G (V ,E0 ∪ EQ) is navigable.

Proof sketch:

Substrate ⇒ ∃ local path P(s, t) ⊂ E0.

Coherence ⇒ enough good pairs.

Uniform Richness ⇒ ∃ good edge w.h.p.
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Robustness of Navigability

Robustness of Navigability
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Questions about Navigability

Independence: where does it come from? Is it necessary?

Evolvability: of RBA or Uniform richness.

Robustness: Kleinberg showed unique exponent for
augmentation through RBA.

Graph G uniformly at random such that total length being ≤ B?
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Graphs of Bounded Cost

Agnostic approach: uniformly at random subject to constraints.
Cost-geometry Γ = (V , d , c), with c : V × V → R+ symmetric.

GΓ(B) =

{
E ⊂ V × V

∣∣∣∣∣∑
e∈E

ce ≤ B

}

c= 1: essentially G (n,m) with m = B edges.

c = 0: essentially G (n, 1/2) uniform at random.

c =

{
1 d = 1
∞ d > 1

nearest neighbor percolation

No independence assumption, geometry drives edge formation!
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Product measure approximation

Theorem[Achlioptas, S ICALP’15]

For all sufficiently symmetric sets S of graphs, ∃ product measures
Q± such that if G ∼ U(S),G± ∼ Ber(Q±) then w.h.p.

G− ⊆ G ⊆ G+

Intuition:

Uniform measure ⇒ counting.

Symmetry ⇒ counting possible.

Concentration around MaxEnt solution (product measure).

For Bounded cost graphs the product measure has an explicit form!

Qij =
1

1 + exp(λ(B)cij)
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Inevitabilty

A cost function c is γ-consistent if it is constant in [γk−1, γk).

Theorem[Achlioptas, S’15]

A Γ = (V , d , c) coherent cost geometry:

Navigability: for every B ≥ B+(Γ) almost all elements of
GΓ(B) are navigable.

Sparsity: for every B0 ≤ B ≤ B− almost all elements of
GΓ(B) have at most poly-log density.

Proof:

Coupling with product measure.

Proof for product measure.

Use monotonicity and coupling to translate back to uniform
measure.
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RBA through Indexing

Corollary [Achlioptas, S ’15]

Let B̄k = |∪u∈VBk (u)|
n , and c = 1

β log B̄k , for B−(Γ) ≤ B ≤ B+(Γ):

1 Navigability with poly-log density.

2 Robustness: B+/B− = Ω(logθ n).

3 RBA for B∗, P(u, v) ∝ 1
Vol(Bk (u)) .

Kleinberg’s Phase transition ⇒ artifact of λ parametrization.

Rank Based Augmentation ⇒ cost of indexing.

Optimal adaptation of technology (cost) to geometry!
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Historical Emergence of Navigability

Technology: cost function c (cost communicating at distance d).
Economic activity: total budget B
Consider the cost function (King-Plosser-Rebelo preferences):

ck(β) :=

{
B̄β
k −1
β , β > 0

log B̄k , β = 0

Navigability and Sparsity for β = 0 ⇒ Technological
breakthrough!
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Summary

Why? ⇒ Coherent Geometry

How? ⇒ Uniform richness

When?⇒ Technology becomes as good as Indexing!

Robustness: almost all feasible graphs are Navigable!
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Open questions

Inhomogeneous random graph: generate a sample in time
proportional to the density?
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Questions?

Thank You!
psiminelakis@gmail.com

”How can i link, with three, four, or at most five links of the chain,
trivial, everyday things of life. How can I link one phenomenon to
another? How can i join the relative and the ephimeral with steady,
permanent things - how can I tie up the part with the whole”

Frigyes Karinthy 1929, Chains.
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