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Problem: Data structure that answers queries in sub-linear time?
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Empirical Gradient Estimation

{(a, s}y CRY x {1}, L) = 271 U(sixi, ), VyL(y)?

Logistic ¢(p) = 1/(1 + exp(—p))

7, ({si )| = e e

* pi(y)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?
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Z(y) = Z e?((xiy))
i=1

m Kernel Density Estimation

m Robust Optimization: let 8 = clogn

Iog< Zef*“ ) ~ max{((x,))}

i€[n]

m Variance reduction for Stochastic Gradients
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Modelling Binary data with Exponential Families

X = {—1,+1}d, parameter vector y € rS91, density on X

() — Lerﬂ<ﬁ ﬁ>
Z(y) Z(y)

with Z(y) = > cx e®¥) being instrumental for

py(x) =

Sampling: given y sample x ~ p,
Maximum likelihood: estimate gradient
Hypothesis testing: z;,...,zp ~p,, y =y1 or y = y»?

Z(y) requires time 29 compute exactly
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L(¢) Lipschitz const, @max — @min < 2L(¢), equiv. estimate:

_ 1 $((6y))—bmax = [a—2L(®)
Z(y)_’X’XeZXe G[e a]-]

Random Sampling and Median-of-means:

m— | Gepto)] - [one()]

mean of n samples  median of K means

For Z(y) = € [Q(%), 1] we require 0(21;%, log($)) samples.

n=0(e*?)) and ;1 € [n1,1].
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r

to solve the linear case for x,y € rS9=! where L(¢) = r°.
Empirically outperforms baseline methods.

ANN data structure by Andoni-Razenshteyn [STOC'15] :

A1-0(5) _ g2L(6)-0(e)

This is tight in worst case Andoni et al. [SODA'17]

Mussmann, Chen, Ermon [UAI'17]: lazy evaluation = speed up.
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Theorem [S, Charikar'18]

For any convex function ¢ there exists a data structure using

m preprocessing time/space O(ElzeL(‘ﬁ) log(%) - dn)
B answers any query y in O(M¢Elz Iog(%)d) time.
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Results

Extensions

We show two reductions:
Euclidean space — Sphere:

partition in thin annuli and round vectors a la
Andoni-Razhenshteyn [STOC'15]

Vector sums — sum of norms:

Estimate vector sums at least as well as
estimating the sum of norms
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Algorithm
Data Structure

Ingredients:
m T hashing schemes Hji, ..., H7 with collision probabilities
pe((x,¥)) = Pnun,[h(x) = h(y)]. [Distance Sensitive]
m T weight functions wy, ..., wr such that

ed((xy)) — > we((x,y)) for all x,y. [Convex Decomposition]

Preprocessing:
m Sample h; ~ H; and create hash table H; for dataset X.

Query Algorithm:
m Let X; be a uniform sample from H;(q) (hash bucket of q)

m Form an unbiased estimator by reweighting:

Z vl )|Ht( y)|



Algorithm

Multi-resolution HBE

Data-structure: median-of-means on unbiased estimator

)
Z(y) = met(yn

that we call Multi-resolution Hashing-Based-Estimators.
Challenges:

m Specify weighting scheme depending on convex fun ¢
m Select hashing schemes depending on convex fun ¢.

m Provably bound the variance of the overall estimator.
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Primer on Importance sampling

Setting: weights wi, ..., w, e.g. w; = K(xj,y),
Goal: approximate ;1= 7 ; w;

Importance Sampling
Black box @, returns index i with probability g;.

= Unbiased estimator: let / ~ Q then Zg = %

n i n
E[Zol =Y ait =D w
i=1 ! i=1

2
= Variance: controlled by E[Z3] = Y7, %

unbiased estimators of low variance and median of means



Locality Sensitive Hashing

Randomized Space Partitions P[h(x) = h(y)] = f(||x — y||)
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Limitations of HBE

Scale-free Property is hard to attain:

p(x,y) =O(vVK(x,y))

m Gaussian, Exponential and “polynomial” using LSH.

m Collision prob. that near 0 or > 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

m Machine Learning and Optimization we care more about
Inner Products rather than distance.



Main contributions

m Generalize results on HBE to Multi-resolution HBE .
m Distance Sensitive Hashing on the Sphere instead of LSH.

m Approximation Theory for Log-convex functions on Sphere.
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Intuition

m Find appropriate hashing probabilities {p; }.c[7]-
m Design a HBE for each w; (Multi-resolution HBE)
m Bound the variance of resulting estimators.
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l—p 21+p 72
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L)
4 N
RS

hashing schemes {#;}, coll. prob. {p:}, and weight func. {w}.

1 we(Xe, y) ~ or
Zr(y) = - tez[;] pe(Xer ) |He(y)], Xe~ Hi(y) for t € [T]

Technique to bound variance from [Charikar, S., FOCS'17].
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Key design principle w;(x,y) = pi(x.y)

= =5 . | .
ITACE) wo(x, y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p.(x,y) = max.c[r1{p:(x, y)}"

Goal: hashing scheme p.(x,y) = O(y/wo(x,y)) = @(e%¢(X:Y))_

Fortunately, %(b(x,y) remains convex and lipschitz.
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Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Approximation Theory of Convex Functions:

m Approximate Convex Func. by O(1/L(¢)) Piecewise Linear
(Sandwich Algorithm [Rote’92])

m Approximate Linear func. using O(log(L(¢))) hash functions.

m Trade-off evaluation time with approximation, apply result to

b= ¢/{L(¢)log(L(¢))}*/? and tensorize.
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Goal, pick a set of parameters {(7¢, 7¢) }te 7 such that:

supllog(p, (1)) = 30(0)] = 0(1)
teT

log(pe(r)

log(pe(r)
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angle (x,y)

angle (x,y)



Effect of -

m Partition Function Estimation via Distance Sensitive Hashing.
m Improve upon state of the art by 1/n factor.
m Multi-resolution HBE and Log-Convex Functions.



Future Work

m Design and implement more practical Hashing Schemes.

m Applications in Optimization and Learning.



Thank You!

psimin@stanford.edu
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