Integrating Functions via Distance Sensitive Hashing

Paris Siminelakis Moses Charikar

Stanford University

ML Lunch @ Stanford, CA
April 18th, 2018

Problem and Motivation

Problem

$$
\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset \mathcal{S}^{d-1}, \phi:[-1,1] \rightarrow \mathbb{R}, \text { query } y \in \mathcal{S}^{d-1}
$$

Problem

$$
\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset \mathcal{S}^{d-1}, \phi:[-1,1] \rightarrow \mathbb{R}, \text { query } y \in \mathcal{S}^{d-1}
$$

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

Problem

$$
\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset \mathcal{S}^{d-1}, \phi:[-1,1] \rightarrow \mathbb{R}, \text { query } y \in \mathcal{S}^{d-1}
$$

Problem

$$
\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset \mathcal{S}^{d-1}, \phi:[-1,1] \rightarrow \mathbb{R}, \text { query } y \in \mathcal{S}^{d-1}
$$

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

Problem

$$
\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \subset \mathcal{S}^{d-1}, \phi:[-1,1] \rightarrow \mathbb{R}, \text { query } y \in \mathcal{S}^{d-1}
$$

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

Partition Function Estimation

Kernel Density Estimation

$\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset r \mathcal{S}^{d-1}$, distribution \mathcal{D}, prob. of $y \in \mathcal{S}^{d-1}$?

Problem: Data structure that answers queries in sub-linear time?

Kernel Density Estimation

$\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset r \mathcal{S}^{d-1}$, distribution \mathcal{D}, prob. of $y \in \mathcal{S}^{d-1}$?

Problem: Data structure that answers queries in sub-linear time?

Kernel Density Estimation

$\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset r \mathcal{S}^{d-1}$, distribution \mathcal{D}, prob. of $y \in \mathcal{S}^{d-1}$?

Problem: Data structure that answers queries in sub-linear time?

Kernel Density Estimation

$\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset r \mathcal{S}^{d-1}$, distribution \mathcal{D}, prob. of $y \in \mathcal{S}^{d-1}$?

$$
\begin{gathered}
\operatorname{KDE}_{\mathcal{X}}(y)=\frac{1}{n} \sum_{i=1}^{n} K(x, y) \\
K(x, y)=e^{-\frac{\|x-y\|^{2}}{\sigma^{2}}}=e^{\frac{2 r^{2}}{\sigma^{2}}(\langle x, y\rangle-1)} \\
\text { outlier detection, clustering, } \ldots
\end{gathered}
$$

Problem: Data structure that answers queries in sub-linear time?

Kernel Density Estimation

$\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset r \mathcal{S}^{d-1}$, distribution \mathcal{D}, prob. of $y \in \mathcal{S}^{d-1}$?

$$
\begin{gathered}
\operatorname{KDE}_{\mathcal{X}}(y)=\frac{1}{n} \sum_{i=1}^{n} K(x, y) \\
K(x, y)=e^{-\frac{\|x-y\|^{2}}{\sigma^{2}}}=e^{\frac{2 r^{2}}{\sigma^{2}}(\langle x, y\rangle-1)} \\
\text { outlier detection, clustering, } \ldots
\end{gathered}
$$

Problem: Data structure that answers queries in sub-linear time?

Empirical Gradient Estimation

$$
\left\{\left(x_{i}, s_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}, \quad \mathcal{L}(\cdot)=\sum_{i=1}^{n} \ell\left(\left\langle s_{i} x_{i}, \cdot\right\rangle\right), \nabla_{y} \mathcal{L}(y) ?
$$

Discriminative sampling for $S G$

Problem: Data structure that gets lower-variance SG?

Empirical Gradient Estimation

$$
\left\{\left(x_{i}, s_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}, \quad \mathcal{L}(\cdot)=\sum_{i=1}^{n} \ell\left(\left\langle s_{i} x_{i}, \cdot\right\rangle\right), \nabla_{y} \mathcal{L}(y) ?
$$

$$
\text { Logistic } \ell(\rho)=1 /(1+\exp (-\rho))
$$

Problem: Data structure that gets lower-variance SG?

Empirical Gradient Estimation

$$
\left\{\left(x_{i}, s_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}, \mathcal{L}(\cdot)=\sum_{i=1}^{n} \ell\left(\left\langle s_{i} x_{i}, \cdot\right\rangle\right), \nabla_{y} \mathcal{L}(y) ?
$$

Logistic $\ell(\rho)=1 /(1+\exp (-\rho))$

$$
\|\nabla_{y} \ell(\underbrace{\left\langle s_{i} x_{i}, y\right\rangle}_{\rho_{i}(y)})\|=\left\|x_{i}\right\| e^{-\log \left(1+e^{\rho_{i}}\right)}
$$

Empirical Gradient Estimation

$$
\left\{\left(x_{i}, s_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}, \mathcal{L}(\cdot)=\sum_{i=1}^{n} \ell\left(\left\langle s_{i} x_{i}, \cdot\right\rangle\right), \nabla_{y} \mathcal{L}(y) ?
$$

Logistic $\ell(\rho)=1 /(1+\exp (-\rho))$

$$
\|\nabla_{y} \ell(\underbrace{\left\langle s_{i} x_{i}, y\right\rangle}_{\rho_{i}(y)})\|=\left\|x_{i}\right\| e^{-\log \left(1+e^{\rho_{i}}\right)}
$$

Discriminative sampling for $S G$

Problem: Data structure that gets lower-variance SG?

Empirical Gradient Estimation

$$
\left\{\left(x_{i}, s_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{d} \times\{ \pm 1\}, \quad \mathcal{L}(\cdot)=\sum_{i=1}^{n} \ell\left(\left\langle s_{i} x_{i}, \cdot\right\rangle\right), \nabla_{y} \mathcal{L}(y) ?
$$

Logistic $\ell(\rho)=1 /(1+\exp (-\rho))$

$$
\|\nabla_{y} \ell(\underbrace{\left(s_{i} x_{i}, y\right)}_{\rho_{i}(y)})\|=\left\|x_{i}\right\| e^{-\log \left(1+e^{\rho_{i}}\right)}
$$

Discriminative sampling for $S G$

Problem: Data structure that gets lower-variance SG?

Applications of "Partition Function Estimation"

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left(x x_{i}, y\right)\right.}
$$

- Kernel Density Estimation
- Robust Optimization: let $\beta=c \log n$

- Variance reduction for Stochastic Gradients

Applications of "Partition Function Estimation"

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

■ Kernel Density Estimation

- Robust Optimization: let $\beta=c \log n$

- Variance reduction for Stochastic Gradients

Applications of "Partition Function Estimation"

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

■ Kernel Density Estimation

- Robust Optimization: let $\beta=c \log n$

$$
\frac{1}{\beta} \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\beta \phi\left(\left\langle x_{i}, y\right\rangle\right)}\right) \approx \max _{i \in[n]}\left\{\phi\left(\left\langle x_{i}, y\right\rangle\right)\right\}
$$

- Variance reduction for Stochastic Gradients

Applications of "Partition Function Estimation"

$$
Z(y)=\sum_{i=1}^{n} e^{\phi\left(\left\langle x_{i}, y\right\rangle\right)}
$$

■ Kernel Density Estimation

- Robust Optimization: let $\beta=c \log n$

$$
\frac{1}{\beta} \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\beta \phi\left(\left\langle x_{i}, y\right\rangle\right)}\right) \approx \max _{i \in[n]}\left\{\phi\left(\left\langle x_{i}, y\right\rangle\right)\right\}
$$

■ Variance reduction for Stochastic Gradients

Modelling Binary data with Exponential Families

$\mathcal{X}=\{-1,+1\}^{d}$, parameter vector $y \in r \mathcal{S}^{d-1}$, density on \mathcal{X}

$$
p_{y}(x)=\frac{1}{Z(y)} e^{\langle x, y\rangle}=\frac{1}{Z(y)} e^{e}
$$

with $Z(y)=\sum_{x \in \mathcal{X}} e^{(x, y)}$ being instrumental for
1 Sampling: given y sample $x \sim p_{y}$
2 Maximum likelihood: estimate gradient
3 Hypothesis testing: $z_{1}, \ldots, z_{m} \sim p_{y}, y=y_{1}$ or $y=y_{2}$?
$Z(y)$ requires time 2^{d} compute exactly

Modelling Binary data with Exponential Families

$\mathcal{X}=\{-1,+1\}^{d}$, parameter vector $y \in r \mathcal{S}^{d-1}$, density on \mathcal{X}

$$
p_{y}(x)=\frac{1}{Z(y)} e^{\langle x, y\rangle}=\frac{1}{Z(y)} e^{r \sqrt{d}\left\langle\frac{x}{\|x\|} \cdot, \frac{y}{\|y\|}\right\rangle}
$$

with $Z(y)=\sum_{x \in \mathcal{X}} e^{\langle x, y\rangle}$ being instrumental for
II Sampling: given y sample $x \sim p y$
2 Maximum likelihood: estimate gradient
3 Hypothesis testing: $z_{1}, \ldots, z_{m} \sim p_{y}, y=y_{1}$ or $y=y_{2}$?
$Z(y)$ requires time 2^{d} compute exactly

Modelling Binary data with Exponential Families

$\mathcal{X}=\{-1,+1\}^{d}$, parameter vector $y \in r \mathcal{S}^{d-1}$, density on \mathcal{X}

$$
p_{y}(x)=\frac{1}{Z(y)} e^{\langle x, y\rangle}=\frac{1}{Z(y)} e^{r \sqrt{d}\left\langle\frac{x}{\|x\|}, \frac{y}{v y \|}\right\rangle}
$$

with $Z(y)=\sum_{x \in \mathcal{X}} e^{\langle x, y\rangle}$ being instrumental for
1 Sampling: given y sample $x \sim p_{y}$
[Maximum likelihood: estimate gradient
3 Hypothesis testing: $z_{1}, \ldots, z_{m} \sim p_{y}, y=y_{1}$ or $y=y_{2}$?

Modelling Binary data with Exponential Families

$\mathcal{X}=\{-1,+1\}^{d}$, parameter vector $y \in r \mathcal{S}^{d-1}$, density on \mathcal{X}

$$
p_{y}(x)=\frac{1}{Z(y)} e^{\langle x, y\rangle}=\frac{1}{Z(y)} e^{r \sqrt{d}\left\langle\frac{x}{\|x\|}, \frac{y}{\|y\|}\right\rangle}
$$

with $Z(y)=\sum_{x \in \mathcal{X}} e^{\langle x, y\rangle}$ being instrumental for
1 Sampling: given y sample $x \sim p_{y}$
2 Maximum likelihood: estimate gradient
3 Hypothesis testing: $z_{1}, \ldots, z_{m} \sim p_{y}, y=y_{1}$ or $y=y_{2}$?
$Z(y)$ requires time 2^{d} compute exactly

Previous Work and Main Result

Reducing Space through Random Sampling

$L(\phi)$ Lipschitz const, $\phi_{\max }-\phi_{\min } \leq 2 L(\phi)$, equiv. estimate:

$$
Z(y)=\frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} e^{\phi(\langle x, y\rangle)-\phi_{\max }} \in\left[e^{-2 L(\phi)}, 1\right]
$$

Random Sampling and Median-of-means:

mean of n samples

median of K means

For $Z(y)=\mu \in\left[\Omega\left(\frac{1}{n}\right), 1\right]$ we require $O\left(\frac{1}{\epsilon^{2}} \frac{1}{\mu} \log \left(\frac{1}{\delta}\right)\right)$ samples.

$$
n=\Theta\left(e^{2 L(\phi)}\right) \text { and } \mu \in\left[n^{-1}, 1\right]
$$

Reducing Space through Random Sampling

$L(\phi)$ Lipschitz const, $\phi_{\max }-\phi_{\min } \leq 2 L(\phi)$, equiv. estimate:

$$
Z(y)=\frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} e^{\phi(\langle x, y\rangle)-\phi_{\max }} \in\left[e^{-2 L(\phi)}, 1\right]
$$

Random Sampling and Median-of-means:

$$
m=\underbrace{\left[\frac{6}{\boldsymbol{\epsilon}^{\mathbf{2}}} \exp (2 L(\phi))\right]}_{\text {mean of } n \text { samples }} \cdot \underbrace{\left[9 \log \left(\frac{1}{\delta}\right)\right]}_{\text {median of } K \text { means }}
$$

Reducing Space through Random Sampling

$L(\phi)$ Lipschitz const, $\phi_{\max }-\phi_{\min } \leq 2 L(\phi)$, equiv. estimate:

$$
Z(y)=\frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} e^{\phi(\langle x, y\rangle)-\phi_{\max }} \in\left[e^{-2 L(\phi)}, 1\right]
$$

Random Sampling and Median-of-means:

$$
m=\underbrace{\left[\frac{6}{\boldsymbol{\epsilon}^{\mathbf{2}}} \exp (2 L(\phi))\right]}_{\text {mean of } n \text { samples }} \cdot \underbrace{\left[9 \log \left(\frac{1}{\delta}\right)\right]}_{\text {median of } K \text { means }}
$$

For $Z(y)=\mu \in\left[\Omega\left(\frac{1}{n}\right), 1\right]$ we require $O\left(\frac{\mathbf{1}}{\boldsymbol{\epsilon}^{2}} \frac{1}{\mu} \log \left(\frac{1}{\delta}\right)\right)$ samples.

$$
n=\Theta\left(e^{2 L(\phi)}\right) \text { and } \mu \in\left[n^{-1}, 1\right] .
$$

Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:

$$
(1 \pm \epsilon) Z^{-1}(y) \rightarrow \log (1+\epsilon)-\text { MIPS } \rightarrow\left(1+\frac{\epsilon}{r^{2}}\right)-\text { ANN }
$$

to solve the linear case for $x, y \in r \mathcal{S}^{d-1}$ where $L(\phi)=r^{2}$.
1 Empirically outperforms baseline methods
2 ANN data structure by Andoni-Razenshteyn [STOC'15]

3 This is tight in worst case Andoni et al. [SODA'17]
Mussmann, Chen, Frmon [UAI'17]: lazy evaluation \Rightarrow sneed up.

Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:

$$
(1 \pm \epsilon) Z^{-1}(y) \rightarrow \log (1+\epsilon)-\text { MIPS } \rightarrow\left(1+\frac{\epsilon}{r^{2}}\right)-\text { ANN }
$$

to solve the linear case for $x, y \in r \mathcal{S}^{d-1}$ where $L(\phi)=r^{2}$.
1 Empirically outperforms baseline methods.
ANN data structure by Andoni-Razenshteyn [STOC'15]
${ }^{3}$ This is tight in worst case Andoni et al. [SODA'17]
Mussmann, Chen, Ermon [UAl'17]: lazy evaluation \Rightarrow speed up.

Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:

$$
(1 \pm \epsilon) Z^{-1}(y) \rightarrow \log (1+\epsilon)-\operatorname{MIPS} \rightarrow\left(1+\frac{\epsilon}{r^{2}}\right)-\text { ANN }
$$

to solve the linear case for $x, y \in r \mathcal{S}^{d-1}$ where $L(\phi)=r^{2}$.
1 Empirically outperforms baseline methods.
2 ANN data structure by Andoni-Razenshteyn [STOC'15] :

$$
n^{1-O\left(\frac{\epsilon}{r^{2}}\right)}=e^{2 L(\phi)-O(\epsilon)}
$$

3 This is tight in worst case Andoni et al. [SODA'17]
Mussmann, Chen, Ermon [UAI'17]: lazy evaluation \Rightarrow speed up.

Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:

$$
(1 \pm \epsilon) Z^{-1}(y) \rightarrow \log (1+\epsilon)-\operatorname{MIPS} \rightarrow\left(1+\frac{\epsilon}{r^{2}}\right)-\text { ANN }
$$

to solve the linear case for $x, y \in r \mathcal{S}^{d-1}$ where $L(\phi)=r^{2}$.
1 Empirically outperforms baseline methods.
2 ANN data structure by Andoni-Razenshteyn [STOC'15] :

$$
n^{1-O\left(\frac{\epsilon}{r^{2}}\right)}=e^{2 L(\phi)-O(\epsilon)}
$$

3 This is tight in worst case Andoni et al. [SODA'17]
Mussmann, Chen, Ermon [UAl'17]: lazy evaluation \Rightarrow speed up.

Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:

$$
(1 \pm \epsilon) Z^{-1}(y) \rightarrow \log (1+\epsilon)-\operatorname{MIPS} \rightarrow\left(1+\frac{\epsilon}{r^{2}}\right)-\text { ANN }
$$

to solve the linear case for $x, y \in r \mathcal{S}^{d-1}$ where $L(\phi)=r^{2}$.
1 Empirically outperforms baseline methods.
2 ANN data structure by Andoni-Razenshteyn [STOC'15] :

$$
n^{1-O\left(\frac{\epsilon}{r^{2}}\right)}=e^{2 L(\phi)-O(\epsilon)}
$$

3 This is tight in worst case Andoni et al. [SODA'17]
Mussmann, Chen, Ermon [UAl'17]: lazy evaluation \Rightarrow speed up.

Main Result

Theorem [S, Charikar'18]

For any convex function ϕ there exists a data structure using

- preprocessing time/space $O\left(\frac{1}{\epsilon^{2}}{ }^{L(\phi)} \log \left(\frac{1}{\delta}\right) \cdot d n\right)$
- answers any query y in $O\left(M_{\phi} \frac{\mathbf{1}}{\boldsymbol{\epsilon}^{2}} \frac{1}{\sqrt{\mu}} \log \left(\frac{1}{\delta}\right) d\right)$ time.
where $\mu=Z(y)$ and $M_{\phi}=\exp \left(\{L(\phi) \log (L(\phi))\}^{\frac{2}{3}}\right)$,

Main Result

Theorem [S, Charikar'18]

For any convex function ϕ there exists a data structure using

- preprocessing time/space $O\left(\frac{\mathbf{1}}{\boldsymbol{\epsilon}^{2}}{ }^{L(\phi)} \log \left(\frac{1}{\delta}\right) \cdot d n\right)$
- answers any query y in $O\left(M_{\phi} \frac{\mathbf{1}}{\boldsymbol{\epsilon}^{2}} \frac{1}{\sqrt{\mu}} \log \left(\frac{1}{\delta}\right) d\right)$ time. where $\mu=Z(y)$ and $M_{\phi}=\exp \left(\{L(\phi) \log (L(\phi))\}^{\frac{2}{3}}\right)$,

$$
\text { Assuming } n=\Theta\left(e^{2 L(\phi)}\right) \text { and } \mu=\frac{1}{n}
$$

Method	Space	QUERY
Random Sampl.	$O(n)$	$O(n)$
MIPS-ANN	$O\left(n^{2-O(\epsilon)}\right)$	$O\left(n^{1-O(\epsilon)}\right)$
OURS	$O\left(n^{\frac{3}{2}+o(1)}\right)$	$O\left(n^{\frac{1}{2}+o(1)}\right)$

Main Result

Theorem [S, Charikar'18]

For any convex function ϕ there exists a data structure using

- preprocessing time/space $O\left(\frac{1}{\boldsymbol{\epsilon}^{2}}{ }^{L(\phi)} \log \left(\frac{1}{\delta}\right) \cdot d n\right)$
- answers any query y in $O\left(M_{\phi} \frac{\mathbf{1}}{\boldsymbol{\epsilon}^{2}} \frac{1}{\sqrt{\mu}} \log \left(\frac{1}{\delta}\right) d\right)$ time.
where $\mu=Z(y)$ and $M_{\phi}=\exp \left(\{L(\phi) \log (L(\phi))\}^{\frac{2}{3}}\right)$,

KERNEL	$\phi(\rho)$	$L(\phi)$		
$e^{\langle x, y\rangle}$	$r^{2} \rho$	r^{2}		
$e^{-\\|x-y\\|_{2}^{2}}$	$2 r^{2}(\rho-1)$	$2 r^{2}$		
$\left(\\|x-y\\|_{2}^{2}+1\right)^{-1}$	$-\log \left(1+(1-\rho) 2 r^{2}\right)$	$2 r^{2}$		
$\overline{1+e^{-\langle x, y\rangle}}$	$-\log \left(1+e^{-r^{2} \rho}\right)$	r^{2}		
$\left(\langle x, y\rangle+c r^{2}\right)^{-k}$	$-k \log \left(r^{2}(\rho+c)\right)$	$\frac{k}{c-1}$		

Extensions

We show two reductions:
1 Euclidean space \rightarrow Sphere:
partition in thin annuli and round vectors a la Andoni-Razhenshteyn [STOC'15]
2 Vector sums \rightarrow sum of norms:
Estimate vector sums at least as well as estimating the sum of norms

Data Structure

Ingredients:

- T hashing schemes $\mathcal{H}_{1}, \ldots, \mathcal{H}_{T}$ with collision probabilities $p_{t}(\langle x, y\rangle)=\mathbb{P}_{h \sim \mathcal{H}_{t}}[h(x)=h(y)]$. [Distance Sensitive]
- T weight functions w_{1}, \ldots, w_{T} such that $e^{\phi(\langle x, y\rangle)}=\sum_{t} w_{t}(\langle x, y\rangle)$ for all x, y. [Convex Decomposition]
Preprocessing:
■ Sample $h_{t} \sim \mathcal{H}_{t}$ and create hash table H_{t} for dataset X.

Query Algorithm:

- Let X_{t} be a uniform sample from $H_{t}(q)$ (hash bucket of q)
- Form an unbiased estimator by reweighting:

Data Structure

Ingredients:

- T hashing schemes $\mathcal{H}_{1}, \ldots, \mathcal{H}_{T}$ with collision probabilities $p_{t}(\langle x, y\rangle)=\mathbb{P}_{h \sim \mathcal{H}_{t}}[h(x)=h(y)]$. [Distance Sensitive]
- T weight functions w_{1}, \ldots, w_{T} such that $e^{\phi(\langle x, y\rangle)}=\sum_{t} w_{t}(\langle x, y\rangle)$ for all x, y. [Convex Decomposition]

Preprocessing:

■ Sample $h_{t} \sim \mathcal{H}_{t}$ and create hash table H_{t} for dataset X.

Query Algorithm:

- Let X_{t} be a uniform sample from $H_{t}(q)$ (hash bucket of q)
- Form an unbiased estimator by reweighting:

Data Structure

Ingredients:

- T hashing schemes $\mathcal{H}_{1}, \ldots, \mathcal{H}_{T}$ with collision probabilities $p_{t}(\langle x, y\rangle)=\mathbb{P}_{h \sim \mathcal{H}_{t}}[h(x)=h(y)]$. [Distance Sensitive]
- T weight functions w_{1}, \ldots, w_{T} such that $e^{\phi(\langle x, y\rangle)}=\sum_{t} w_{t}(\langle x, y\rangle)$ for all x, y. [Convex Decomposition]

Preprocessing:

■ Sample $h_{t} \sim \mathcal{H}_{t}$ and create hash table H_{t} for dataset X.
Query Algorithm:
■ Let X_{t} be a uniform sample from $H_{t}(q)$ (hash bucket of q)
■ Form an unbiased estimator by reweighting:

$$
Z(y)=\sum_{t=1}^{T} \frac{w_{t}\left(\left\langle X_{t}, y\right\rangle\right)}{p_{t}\left(\left\langle X_{t}, y\right\rangle\right)}\left|H_{t}(y)\right|
$$

Multi-resolution HBE

Data-structure: median-of-means on unbiased estimator

$$
Z(y)=\sum_{t=1}^{T} \frac{w_{t}\left(\left\langle X_{t}, y\right\rangle\right)}{p_{t}\left(\left\langle X_{t}, y\right\rangle\right)}\left|H_{t}(y)\right|
$$

that we call Multi-resolution Hashing-Based-Estimators.
Challenges:
■ Specify weighting scheme depending on convex fun ϕ

- Select hashing schemes depending on convex fun ϕ.

■ Provably bound the variance of the overall estimator.

Proof Ideas

Primer on Importance sampling

Setting: weights w_{1}, \ldots, w_{n} e.g. $w_{i}=K\left(x_{i}, y\right)$,
Goal: approximate $\mu=\sum_{i=1}^{n} w_{i}$

Importance Sampling

Black box Q, returns index i with probability q_{i}

- Unbiased estimator: let $I \sim Q$ then $Z_{Q}=\frac{w}{q_{I}}$

- Variance: controlled by $\mathbb{E}\left[Z_{Q}^{2}\right]=\sum_{i=1}^{n} \frac{w_{i}^{2}}{q_{i}}$

Primer on Importance sampling

Setting: weights w_{1}, \ldots, w_{n} e.g. $w_{i}=K\left(x_{i}, y\right)$,
Goal: approximate $\mu=\sum_{i=1}^{n} w_{i}$

Importance Sampling

Black box Q, returns index i with probability q_{i}.

- Unbiased estimator: let I $\sim Q$ then $Z_{Q}=\frac{w_{I}}{q_{I}}$

- Variance: controlled by $\mathbb{E}\left[Z_{Q}^{2}\right]=\sum_{i=1}^{n} \frac{w_{i}^{2}}{q_{i}}$

Primer on Importance sampling

Setting: weights w_{1}, \ldots, w_{n} e.g. $w_{i}=K\left(x_{i}, y\right)$,
Goal: approximate $\mu=\sum_{i=1}^{n} w_{i}$

Importance Sampling

Black box Q, returns index i with probability q_{i}.

- Unbiased estimator: let $I \sim Q$ then $Z_{Q}=\frac{w_{I}}{q_{l}}$

$$
\mathbb{E}\left[Z_{Q}\right]=\sum_{i=1}^{n} q_{i} \frac{w_{i}}{q_{i}}=\sum_{i=1}^{n} w_{i}
$$

■ Variance: controlled by $\mathbb{E}\left[Z_{Q}^{2}\right]=\sum_{i=1}^{n} \frac{w_{i}^{2}}{q_{i}}$

Primer on Importance sampling

Setting: weights w_{1}, \ldots, w_{n} e.g. $w_{i}=K\left(x_{i}, y\right)$,
Goal: approximate $\mu=\sum_{i=1}^{n} w_{i}$

Importance Sampling

Black box Q, returns index i with probability q_{i}.

- Unbiased estimator: let $I \sim Q$ then $Z_{Q}=\frac{w_{I}}{q_{l}}$

$$
\mathbb{E}\left[Z_{Q}\right]=\sum_{i=1}^{n} q_{i} \frac{w_{i}}{q_{i}}=\sum_{i=1}^{n} w_{i}
$$

■ Variance: controlled by $\mathbb{E}\left[Z_{Q}^{2}\right]=\sum_{i=1}^{n} \frac{w_{i}^{2}}{q_{i}}$

Locality Sensitive Hashing

Randomized Space Partitions $\mathbb{P}[h(x)=h(y)]=f(\|x-y\|)$

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS'17]:
an estimator $\hat{Z}(y)$ with relative variance $O\left(\frac{1}{\sqrt{\mu}}\right)$

- Scale-free Property is hard to attain.

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS'17]:
■ Collision probability $p(x, y)=\Theta(\sqrt{K(x, y)})$ then one can get an estimator $\hat{Z}(y)$ with relative variance $O\left(\frac{1}{\sqrt{\mu}}\right)$.

- Scale-free Property is hard to attain.

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS'17]:
■ Collision probability $p(x, y)=\Theta(\sqrt{K(x, y)})$ then one can get an estimator $\hat{Z}(y)$ with relative variance $O\left(\frac{1}{\sqrt{\mu}}\right)$.

$$
\hat{Z}(y)=\frac{1}{n} \frac{K(X, y)}{p(X, y)}|H(y)|, \quad X \sim H(y)
$$

- Scale-free Property is hard to attain.

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS'17]:
■ Collision probability $p(x, y)=\Theta(\sqrt{K(x, y)})$ then one can get an estimator $\hat{Z}(y)$ with relative variance $O\left(\frac{1}{\sqrt{\mu}}\right)$.

$$
\hat{Z}(y)=\frac{1}{n} \frac{K(X, y)}{p(X, y)}|H(y)|, \quad X \sim H(y)
$$

■ Scale-free Property is hard to attain.

Limitations of HBE

Scale-free Property is hard to attain:

$$
p(x, y)=\Theta(\sqrt{K(x, y)})
$$

■ Gaussian, Exponential and "polynomial" using LSH

- Collision prob. that near 0 or $\gg 1$ exhibited the desirec (exponential, gaussian or polynomial) decay with distance.
- Machine Learning and Optimization we care more about Inner Products rather than distance.

Limitations of HBE

Scale-free Property is hard to attain:

$$
p(x, y)=\Theta(\sqrt{K(x, y)})
$$

■ Gaussian, Exponential and "polynomial" using LSH.
■ Collision prob. that near 0 or $\gg 1$ exhibited the desired (exponential, gaussian or polynomial) decay with distance.

- Machine Learning and Optimization we care more about Inner Products rather than distance.

Limitations of HBE

Scale-free Property is hard to attain:

$$
p(x, y)=\Theta(\sqrt{K(x, y)})
$$

■ Gaussian, Exponential and "polynomial" using LSH.
■ Collision prob. that near 0 or $\gg 1$ exhibited the desired (exponential, gaussian or polynomial) decay with distance.

- Machine Learning and Optimization we care more about Inner Products rather than distance.

Limitations of HBE

Scale-free Property is hard to attain:

$$
p(x, y)=\Theta(\sqrt{K(x, y)})
$$

■ Gaussian, Exponential and "polynomial" using LSH.
■ Collision prob. that near 0 or $\gg 1$ exhibited the desired (exponential, gaussian or polynomial) decay with distance.

- Machine Learning and Optimization we care more about Inner Products rather than distance.

Main contributions

■ Generalize results on HBE to Multi-resolution HBE .
■ Distance Sensitive Hashing on the Sphere instead of LSH.
■ Approximation Theory for Log-convex functions on Sphere.

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}^{*}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}^{*}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}^{*}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}(\rho)\right) d \rho
$$

Intuition

Given a function $w_{0}:[-1,1] \rightarrow \mathbb{R}$ want to approximate

$$
\int_{-1}^{1} w_{0}(\rho) d \rho=\int_{-1}^{1}\left(\sum_{t \in[T]} w_{t}(\rho)\right) d \rho
$$

Intuition

$$
w_{0}(\rho)=\sum_{t \in[T]} w_{t}(\rho)
$$

- Find appropriate hashing probabilities $\left\{p_{t}\right\}_{t \in[T]}$.
- Design a HBE for each w_{t} (Multi-resolution HBE)
- Bound the variance of resulting estimators.

Intuition

$$
w_{0}(\rho)=\sum_{t \in[T]} w_{t}(\rho)
$$

■ Find appropriate hashing probabilities $\left\{p_{t}\right\}_{t \in[T]}$.

- Design a HBE for each w_{t} (Multi-resolution HBE)
- Bound the variance of resulting estimators.

Intuition

$$
w_{0}(\rho)=\sum_{t \in[T]} w_{t}(\rho)
$$

- Find appropriate hashing probabilities $\left\{p_{t}\right\}_{t \in[T]}$.

■ Design a HBE for each w_{t} (Multi-resolution HBE)

- Bound the variance of resulting estimators.

Intuition

$$
w_{0}(\rho)=\sum_{t \in[T]} w_{t}(\rho)
$$

- Find appropriate hashing probabilities $\left\{p_{t}\right\}_{t \in[T]}$.

■ Design a HBE for each w_{t} (Multi-resolution HBE)
■ Bound the variance of resulting estimators.

Distance Sensitive Hashing [Aumuller et al. 2017]

$$
\begin{gathered}
g_{+}, g_{-} \sim \mathcal{N}\left(0, I_{d}\right),\left\{\left\langle x, g_{+}\right\rangle \geq \tau \wedge\left\langle x, g_{-}\right\rangle \leq-\gamma \tau\right\}, e^{O\left(\tau^{2}\right)} \text { times } \\
\log \left(p_{\gamma, \tau}(\rho)\right)=\Theta\left(-\left(\frac{1-\rho}{1+\rho}+\gamma^{2} \frac{1+\rho}{1-\rho}\right) \frac{\tau^{2}}{2}\right)
\end{gathered}
$$

Distance Sensitive Hashing [Aumuller et al. 2017]

$$
g_{+}, g_{-} \sim \mathcal{N}\left(0, I_{d}\right),\left\{\left\langle x, g_{+}\right\rangle \geq \tau \wedge\left\langle x, g_{-}\right\rangle \leq-\gamma \tau\right\}, e^{O\left(\tau^{2}\right)} \text { times }
$$

$$
\log \left(p_{\gamma, \tau}(\rho)\right)=\Theta\left(-\left(\frac{1-\rho}{1+\rho}+\gamma^{2} \frac{1+\rho}{1-\rho}\right) \frac{\tau^{2}}{2}\right)
$$

Effect of γ

Effect of τ

Multi-resolution HBE

hashing schemes $\left\{\mathcal{H}_{t}\right\}$, coll. prob. $\left\{p_{t}\right\}$, and weight func. $\left\{w_{t}\right\}$.

$$
Z_{T}(y)=\frac{1}{n} \sum_{t \in[T]} \frac{w_{t}\left(X_{t}, y\right)}{p_{t}\left(X_{t}, y\right)}\left|H_{t}(y)\right|, \quad X_{t} \sim H_{t}(y) \text { for } t \in[T]
$$

Multi-resolution HBE

hashing schemes $\left\{\mathcal{H}_{t}\right\}$, coll. prob. $\left\{p_{t}\right\}$, and weight func. $\left\{w_{t}\right\}$.

$$
Z_{T}(y)=\frac{1}{n} \sum_{t \in[T]} \frac{w_{t}\left(X_{t}, y\right)}{p_{t}\left(X_{t}, y\right)}\left|H_{t}(y)\right|, \quad X_{t} \sim H_{t}(y) \text { for } t \in[T]
$$

Multi-resolution HBE

hashing schemes $\left\{\mathcal{H}_{t}\right\}$, coll. prob. $\left\{p_{t}\right\}$, and weight func. $\left\{w_{t}\right\}$.

$$
Z_{T}(y)=\frac{1}{n} \sum_{t \in[T]} \frac{w_{t}\left(X_{t}, y\right)}{p_{t}\left(X_{t}, y\right)}\left|H_{t}(y)\right|, \quad X_{t} \sim H_{t}(y) \text { for } t \in[T]
$$

Technique to bound variance from [Charikar, S., FOCS'17],

Key design principle $w_{t}(x, y)=\frac{p_{t}^{2}(x, y)}{\sum_{t^{\prime}} p_{t}^{2}(x, y)} \cdot w_{0}(x, y)$ results in "Variance of Multi-resolution HBE is bounded by Variance of HBE with collision probability $p_{*}(x, y)=\max _{t \in[T]\{ }\left\{p_{t}(x, y)\right\}$ " Goal: hashing scheme $p_{*}(x, y)=\Theta\left(\sqrt{w_{0}(x, y)}\right)=\Theta\left(e^{\frac{1}{2} \phi(x, y)}\right)$

Fortunately, $\frac{1}{2} \phi(x, y)$ remains convex and lipschitz.

p^{2}-weighting scheme

Key design principle $w_{t}(x, y)=\frac{p_{t}^{2}(x, y)}{\sum_{t^{\prime}} p_{t^{\prime}}^{2}(x, y)} \cdot w_{0}(x, y)$ results in "Variance of Multi-resolution HBE is bounded by Variance of HBE with collision probability $p_{*}(x, y)=\max _{t \in[T]}\left\{p_{t}(x, y)\right\}$ "

Goal: hashing scheme $p_{*}(x, y)=\Theta\left(\sqrt{w_{0}(x, y)}\right)=\Theta\left(e^{\frac{1}{2} \phi(x, y)}\right)$.
Fortunately, $\frac{1}{2} \phi(x, y)$ remains convex and lipschitz.

p^{2}-weighting scheme

Key design principle $w_{t}(x, y)=\frac{p_{t}^{2}(x, y)}{\sum_{t^{\prime}} p_{t}^{2}(x, y)} \cdot w_{0}(x, y)$ results in "Variance of Multi-resolution HBE is bounded by Variance of HBE with collision probability $p_{*}(x, y)=\max _{t \in[T]}\left\{p_{t}(x, y)\right\}$ "

Goal: hashing scheme $p_{*}(x, y)=\Theta\left(\sqrt{w_{0}(x, y)}\right)=\Theta\left(e^{\frac{1}{2} \phi(x, y)}\right)$.
Fortunately, $\frac{1}{2} \phi(x, y)$ remains convex and lipschitz.

Approximation of Convex Functions I

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Approximation Theory of Convex Functions:

Approximation of Convex Functions I

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Approximation Theory of Convex Functions:

- Approximate Convex Func. by $O(\sqrt{L}(\phi))$ Piecewise Linear (Sandwich Algorithm [Rote'92])
- Approximate Linear func. using $O(\log (L(\phi)))$ hash functions.
- Trade-off evaluation time with approximation, apply result to $\tilde{\phi}=\phi /\{L(\phi) \log (L(\phi))\}^{1 / 3}$ and tensorize.

Approximation of Convex Functions I

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Approximation Theory of Convex Functions:

- Approximate Convex Func. by $O(\sqrt{L(\phi)})$ Piecewise Linear (Sandwich Algorithm [Rote'92])
- Approximate Linear func. using $O(\log (L(\phi)))$ hash functions.

■ Trade-off evaluation time with approximation, apply result to $\tilde{\phi}=\phi /\{L(\phi) \log (L(\phi))\}^{1 / 3}$ and tensorize.

Approximation of Convex Functions I

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Approximation Theory of Convex Functions:

- Approximate Convex Func. by $O(\sqrt{L(\phi)})$ Piecewise Linear (Sandwich Algorithm [Rote'92])
■ Approximate Linear func. using $O(\log (L(\phi)))$ hash functions.

Approximation of Convex Functions I

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Approximation Theory of Convex Functions:

- Approximate Convex Func. by $O(\sqrt{L(\phi)})$ Piecewise Linear (Sandwich Algorithm [Rote'92])
- Approximate Linear func. using $O(\log (L(\phi)))$ hash functions.
- Trade-off evaluation time with approximation, apply result to $\tilde{\phi}=\phi /\{L(\phi) \log (L(\phi))\}^{1 / 3}$ and tensorize.

Approximation of Convex Functions II

Goal, pick a set of parameters $\left\{\left(\gamma_{t}, \tau_{t}\right)\right\}_{t \in T}$ such that:

$$
\left|\sup _{t \in T}\left\{\log \left(p_{\gamma_{t}, \tau_{t}}(\rho)\right)\right\}-\frac{1}{2} \phi(\rho)\right|=O(1)
$$

Recap

■ Partition Function Estimation via Distance Sensitive Hashing.

- Improve upon state of the art by \sqrt{n} factor.

■ Multi-resolution HBE and Log-Convex Functions.

Future Work

■ Design and implement more practical Hashing Schemes.
■ Applications in Optimization and Learning.

Thank You!

psimin@stanford.edu

