Integrating Functions via
Distance Sensitive Hashing

Paris Siminelakis Moses Charikar

Stanford University

ML Lunch © Stanford, CA

April 18th, 2018

Problem and Motivation

Problem

Problem

X ={x1,x2,%3,..., %}y €S9 ¢:[-1,1] = R, query y € S9!

Problem

Problem

X ={x1,x2,%3,..., %}y €S9 ¢:[-1,1] = R, query y € S9!

Problem
Problem

X ={x1,x0,%3,..., %} CS9 1 ¢:[-1,1] = R, query y € S9!

Z(y) = Z RSB
i=1

Problem

Problem

X ={x1,x0,%3,..., %}y €S9 ¢:[-1,1] = R, query y € S9!

Problem

Problem

X ={x1,x0,%3,..., %}y €S9 ¢:[-1,1] = R, query y € S9!

Z(y) = Z e?((xi:))
i=1

Partition Function Estimation

Problem

Kernel Density Estimation

X ={x1,...,%xa} C rS971, distribution D, prob. of y € S9~1?

Problem

Kernel Density Estimation

X ={x1,...,xa} C rS971, distribution D, prob. of y € S9=1?

Problem

Kernel Density Estimation

X ={x1,...,xa} C rS971, distribution D, prob. of y € S9=1?

KDEx(y) = £ X7, K(x,7)

K(x,y) = e,ux%\ﬁ - e%(@@)’)*l)

Problem

Kernel Density Estimation

X ={x1,...,xa} C rS971, distribution D, prob. of y € S9=1?

KDEx(y) = £ X7, K(x,7)

K(x,y) = e,ux%\ﬁ - e%(@@)’)*l)

outlier detection, clustering,

Problem

Kernel Density Estimation

X ={x1,...,xa} C rS971, distribution D, prob. of y € S9=1?

KDEx(y) = £ X7, K(x,7)

K(x,y) = e,ux%\ﬁ - e%(@@)’)*l)

outlier detection, clustering,

Problem: Data structure that answers queries in sub-linear time?

Problem

Empirical Gradient Estimation

{(, sy CRYx {1}, L) = 271 U(sixi, o)), VyL(y)?

Problem

Empirical Gradient Estimation

{(xi,si) ¥y CRIx {£1}, L(-) = 27y U{sixi,), VyL(y)?

Problem

Empirical Gradient Estimation

{(xi,si) ¥y CRIx {£1}, L(-) = 27y U{sixi,), VyL(y)?

Logistic £(p) = 1/(1 + exp(—p))

||vy€(<5ixi,y>)” = ”XiHe_ log(14-e”i)

* pi(y)

Problem
Empirical Gradient Estimation

{(xi,si) ¥y CRIx {£1}, L(-) = 27y U{sixi,), VyL(y)?

Logistic £(p) = 1/(1 + exp(—p))

||vy€(<5ixi,y>)” = ”XiHe_ log(14-e”i)

* pi(y)

Discriminative sampling for SG

Problem
Empirical Gradient Estimation

{(a, s}y CRY x {1}, L) = 271 U(sixi,), VyL(y)?

Logistic ¢(p) = 1/(1 + exp(—p))

7, ({si)| = e e

* pi(y)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem
Applications of “Partition Function Estimation”

Problem
Applications of “Partition Function Estimation”

Z(y) = Z e?((xi-y))
i=1

m Kernel Density Estimation

Problem
Applications of “Partition Function Estimation”

Z(y) = Z e?((xi-y))
i=1

m Kernel Density Estimation

m Robust Optimization: let 8 = clogn

Iog< Zef*“) ~ max{((x,))}

i€[n]

Problem
Applications of “Partition Function Estimation”

Z(y) = Z e?((xiy))
i=1

m Kernel Density Estimation

m Robust Optimization: let 8 = clogn

Iog< Zef*“) ~ max{((x,))}

i€[n]

m Variance reduction for Stochastic Gradients

Modelling Binary data with Exponential Families

X = {—1,+1}d, parameter vector y € rS91, density on X

(x,¥)

P = 757

Modelling Binary data with Exponential Families

X = {—1,+1}d, parameter vector y € rS91, density on X

() — Lerﬂ<ﬁ ﬁ>
Z(y) Z(y)

with Z(y) = > cx e®¥) being instrumental for

py(x) =

Problem

Modelling Binary data with Exponential Families

X = {—1,+1}d, parameter vector y € rS91, density on X

() — Lerﬂ<ﬁ ﬁ>
Z(y) Z(y)

with Z(y) = > cx e®¥) being instrumental for

py(x) =

Sampling: given y sample x ~ p,
Maximum likelihood: estimate gradient
Hypothesis testing: z;,...,zp ~p,, y =y1 or y = y»?

Problem

Modelling Binary data with Exponential Families

X = {—1,+1}d, parameter vector y € rS91, density on X

() — Lerﬂ<ﬁ ﬁ>
Z(y) Z(y)

with Z(y) = > cx e®¥) being instrumental for

py(x) =

Sampling: given y sample x ~ p,
Maximum likelihood: estimate gradient
Hypothesis testing: z;,...,zp ~p,, y =y1 or y = y»?

Z(y) requires time 29 compute exactly

Results

Previous Work and Main Result

Reducing Space through Random Sampling

L(¢) Lipschitz const, @max — @min < 2L(¢), equiv. estimate:

= L ©(<X7y>)_¢max —2L((b)
Z(y)_’X’XEZXe G[e a]-]

Reducing Space through Random Sampling

L(¢) Lipschitz const, @max — @min < 2L(¢), equiv. estimate:

= L ©(<X7y>)_¢max —2L((b)
Z(y)_’X’XEZXe G[e a]-]

Random Sampling and Median-of-means:

m— | Gepto)] - [one()]

mean of n samples median of K means

Reducing Space through Random Sampling

L(¢) Lipschitz const, @max — @min < 2L(¢), equiv. estimate:

_ 1 $((6y))—bmax = [a—2L(®)
Z(y)_’X’XeZXe G[e a]-]

Random Sampling and Median-of-means:

m— | Gepto)] - [one()]

mean of n samples median of K means

For Z(y) = € [Q(%), 1] we require 0(21;%, log($)) samples.

n=0(e*?)) and ;1 € [n1,1].

Results
Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:
(1£6)Z 1 (y) — log(1 + €) — MIPS — (1 + r%) — ANN

to solve the linear case for x,y € rS9~1 where L(¢) = r2.

Results
Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:
(1+6)Z 7 (y) = log(1 +) — MIPS — (1 + —) — ANN
r

to solve the linear case for x,y € rS9~1 where L(¢) = r2.

Empirically outperforms baseline methods.

Results
Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:
(1+6)Z 7 (y) = log(1 +) — MIPS — (1 + —) — ANN
r

to solve the linear case for x,y € rS9~1 where L(¢) = r2.

Empirically outperforms baseline methods.
ANN data structure by Andoni-Razenshteyn [STOC'15] :

A1-0(5) _ g2L(6)-0(e)

Results
Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:
(1+6)Z 7 (y) = log(1 +) — MIPS — (1 + —) — ANN
r

to solve the linear case for x,y € rS9=! where L(¢) = r°.
Empirically outperforms baseline methods.

ANN data structure by Andoni-Razenshteyn [STOC'15] :

A1-0(5) _ g2L(6)-0(e)

This is tight in worst case Andoni et al. [SODA'17]

Results
Previous Work

Mussman and Ermon [ICML'16] employed a series of reductions:
(1+6)Z 7 (y) = log(1 +) — MIPS — (1 + —) — ANN
r

to solve the linear case for x,y € rS9=! where L(¢) = r°.
Empirically outperforms baseline methods.

ANN data structure by Andoni-Razenshteyn [STOC'15] :

A1-0(5) _ g2L(6)-0(e)

This is tight in worst case Andoni et al. [SODA'17]

Mussmann, Chen, Ermon [UAI'17]: lazy evaluation = speed up.

Results
Main Result

Theorem [S, Charikar'18]

For any convex function ¢ there exists a data structure using

m preprocessing time/space O(ElzeL(¢) log($) - dn)
® answers any query y in O(M¢Elg log($)d) time.

where ;1 = Z(y) and My = exp ({L(éf)) |0g(L(¢)))}%)'

Results

Main Result

Theorem [S, Charikar'18]

For any convex function ¢ there exists a data structure using

m preprocessing time/space O(ElgeL("") Iog(%) - dn)

® answers any query y in O(/\/l¢;15 log(})d) time.

where 1 = Z(y) and My = exp ({L(9) log(L(#))}?).

: _ 2L (¢ _1
Assuming n = ©(e?t(?)) and 1 = 1
METHOD SPACE QUERY
RANDOM SAMPL. O(n) O(n)
MIPS-ANN O(n>=0)) O(n'~0)

OURS O(n2teM) O(pzte(d)y

Results

Main Result

Theorem [S, Charikar'18]

For any convex function ¢ there exists a data structure using

m preprocessing time/space O(ElzeL(‘ﬁ) log(%) - dn)
B answers any query y in O(M¢Elz Iog(%)d) time.

where ;1 = Z(y) and My = exp ({L(gb) Iog(L(q/)))}%),

KERNEL o(p) L(¢)
e<X=y> r2p r2
e~ lx=yl 2r2(p — 1) 212
(Ix=yl3+1)7" —log(l+ (1 —p)2r?) 22
e —log(1+e™"7) r’

((x,y) +cr?)k —klog(r?(p + c)) =

Results

Extensions

We show two reductions:
Euclidean space — Sphere:

partition in thin annuli and round vectors a la
Andoni-Razhenshteyn [STOC'15]

Vector sums — sum of norms:

Estimate vector sums at least as well as
estimating the sum of norms

Algorithm
Data Structure

Ingredients:

m T hashing schemes Hji, ..., H7 with collision probabilities
pe((x,¥)) = Pnun,[h(x) = h(y)]. [Distance Sensitive]
m T weight functions wy, ..., wr such that

ed((xy)) — > we((x,y)) for all x,y. [Convex Decomposition]

Algorithm
Data Structure

Ingredients:

m T hashing schemes Hji, ..., H7 with collision probabilities
pe((x,¥)) = Pnun,[h(x) = h(y)]. [Distance Sensitive]
m T weight functions wy, ..., wr such that

e =3~ wy({x,y)) for all x,y. [Convex Decomposition]
Preprocessing:
m Sample h; ~ H; and create hash table H; for dataset X.

Algorithm
Data Structure

Ingredients:
m T hashing schemes Hji, ..., H7 with collision probabilities
pe((x,¥)) = Pnun,[h(x) = h(y)]. [Distance Sensitive]
m T weight functions wy, ..., wr such that

ed((xy)) — > we((x,y)) for all x,y. [Convex Decomposition]

Preprocessing:
m Sample h; ~ H; and create hash table H; for dataset X.

Query Algorithm:
m Let X; be a uniform sample from H;(q) (hash bucket of q)

m Form an unbiased estimator by reweighting:

Z vl)|Ht(y)|

Algorithm

Multi-resolution HBE

Data-structure: median-of-means on unbiased estimator

)
Z(y) = met(yn

that we call Multi-resolution Hashing-Based-Estimators.
Challenges:

m Specify weighting scheme depending on convex fun ¢
m Select hashing schemes depending on convex fun ¢.

m Provably bound the variance of the overall estimator.

Proof Ideas

Primer on Importance sampling

Setting: weights wi, ..., w, e.g. w; = K(xj,y),
Goal: approximate ;1= 7 ; w;

Primer on Importance sampling

Setting: weights wi, ..., w, e.g. w; = K(xj,y),
Goal: approximate ;1= 7 ; w;

Importance Sampling
Black box @, returns index i with probability g;.

Primer on Importance sampling

Setting: weights wi, ..., w, e.g. w; = K(xj,y),
Goal: approximate ;1= 7 ; w;

Importance Sampling
Black box @, returns index i with probability g;.

= Unbiased estimator: let / ~ Q then Zg = %

n i n
E[Zol =Y ait =D w
i=1 ! i=1

2
= Variance: controlled by E[Z3] = Y7, %

Primer on Importance sampling

Setting: weights wi, ..., w, e.g. w; = K(xj,y),
Goal: approximate ;1= 7 ; w;

Importance Sampling
Black box @, returns index i with probability g;.

= Unbiased estimator: let / ~ Q then Zg = %

n i n
E[Zol =Y ait =D w
i=1 ! i=1

2
= Variance: controlled by E[Z3] = Y7, %

unbiased estimators of low variance and median of means

Locality Sensitive Hashing

Randomized Space Partitions P[h(x) = h(y)] = f(||x — y||)

Proof
Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS'17]:

Proof
Algorithmic Framework

Hashing-based-Estimators [Charikar, S. FOCS'17]'

m Collision probability p(x, y) = ©(1/K(x,y)) then one can get
an estimator Z(y) with relative variance O(ﬁ)

Proof
Algorithmic Framework

Hashing-based-Estimators [Charikar, S. FOCS'17]'

m Collision probability p(x, y) = ©(1/K(x,y)) then one can get
an estimator Z(y) with relative variance O(ﬁ)

5 -]'K(X7)/)
20 = np(X,y)

[H)I, X~ H(y)

Proof
Algorithmic Framework

Hashing-based-Estimators [Charikar, S. FOCS'17]'

m Collision probability p(x, y) = ©(1/K(x,y)) then one can get
an estimator Z(y) with relative variance O(ﬁ)

5 _]'K(X7)/)
20 = np(X,y)

[H)I, X~ H(y)

m Scale-free Property is hard to attain.

Limitations of HBE

Scale-free Property is hard to attain:

p(x,y) =O(vVK(x,y))

Limitations of HBE

Scale-free Property is hard to attain:

p(x,y) =O(vVK(x,y))

m Gaussian, Exponential and “polynomial” using LSH.

Limitations of HBE

Scale-free Property is hard to attain:

p(x,y) =O(vVK(x,y))

m Gaussian, Exponential and “polynomial” using LSH.

m Collision prob. that near 0 or > 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Limitations of HBE

Scale-free Property is hard to attain:

p(x,y) =O(vVK(x,y))

m Gaussian, Exponential and “polynomial” using LSH.

m Collision prob. that near 0 or > 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

m Machine Learning and Optimization we care more about
Inner Products rather than distance.

Main contributions

m Generalize results on HBE to Multi-resolution HBE .
m Distance Sensitive Hashing on the Sphere instead of LSH.

m Approximation Theory for Log-convex functions on Sphere.

Intuition

Given a function wy : [—1,1] — R want to approximate

/1 wo(p)dp

-1

Proof
Intuition

Given a function wy : [—1,1] — R want to approximate

/11 wo(p)dp = /11 (Z W?(p)) dp

te[T]

v

Proof
Intuition

Given a function wp : [—1,1] — R want to approximate

/ 11 mo(p)dp = [11 (Z w:(p)) dp

te[T]

v

Proof
Intuition

Given a function wp : [—1,1] — R want to approximate

/ " wo(p)dp = / S wi))

-1 -1 te[T]

Proof
Intuition

Given a function wy : [—1,1] — R want to approximate

/11 va(p)dpz/1 > wilp) | dp

-1 te[T]

Proof
Intuition

Given a function wy : [—1,1] — R want to approximate

/11 va(p)dpz/1 > wilp) | dp

-1 te[T]

v

Proof
Intuition

Given a function wy : [—1,1] — R want to approximate

/11 wo(p)dp = /11 (Z Wt(p)) dp

te[T]

v

Intuition

Given a function wy : [—1,1] — R want to approximate

Intuition

Intuition

wo(p) = D wi(p)

te[T]

m Find appropriate hashing probabilities {p; }.c[7]-

Intuition

m Find appropriate hashing probabilities {p; }.c[7]-
m Design a HBE for each w; (Multi-resolution HBE)

Intuition

m Find appropriate hashing probabilities {p; }.c[7]-
m Design a HBE for each w; (Multi-resolution HBE)
m Bound the variance of resulting estimators.

Distance Sensitive Hashing [Aumuller et al. 2017]

g8 ~N(0,lg), {{x,81) > 7 A (x,g-) < =77}, €9 times

1+p 1—-p

Distance Sensitive Hashing [Aumuller et al. 2017]

gr.8- ~N(0,1g), {(x.81) > 7 A(x,g-) < =77}, €% times

l—p 21+p 72
log(p. -(p)) = O (— L
og(py,7(p)) @< <1+p+71_p> 2>

o Effect of v o Effect of r
9.00 _—
— 4.00 /
— 100 |
0.43 H
[— o.0s ' -

L -20,
0.5 1.0 -1.0

Multi-resolution HBE

hashing schemes {#;}, coll. prob. {p:}, and weight func. {w}.

Multi-resolution HBE

L)
4 N
RS

hashing schemes {#;}, coll. prob. {p:}, and weight func. {w}.

1 we(Xe, y) ~ or
Zr(y) = - tez[;] pe(Xer) |He(y)], Xe~ Hi(y) for t € [T]

Proof
Multi-resolution HBE

L)
4 N
RS

hashing schemes {#;}, coll. prob. {p:}, and weight func. {w}.

1 we(Xe, y) ~ or
Zr(y) = - tez[;] pe(Xer) |He(y)], Xe~ Hi(y) for t € [T]

Technique to bound variance from [Charikar, S., FOCS'17].

Proof
p>-weighting scheme

Key design principle w;(x,y) = <23

= =5 . | .
ITACE) wo(x, y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p.(x,y) = max.c[r1{p:(x, y)}"

Proof
p>-weighting scheme

Key design principle w;(x,y) = pi(x.y)

= =5 . | .
ITACE) wo(x, y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p.(x,y) = max.c[r1{p:(x, y)}"

Goal: hashing scheme p.(x,y) = O(y/wo(x,y)) = @(e%¢(X:Y))_

Proof
p>-weighting scheme

Key design principle w;(x,y) = pi(x.y)

= =5 . | .
ITACE) wo(x, y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p.(x,y) = max.c[r1{p:(x, y)}"

Goal: hashing scheme p.(x,y) = O(y/wo(x,y)) = @(e%¢(X:Y))_

Fortunately, %(b(x,y) remains convex and lipschitz.

Proof
Approximation of Convex Functions |

Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Proof
Approximation of Convex Functions |

Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Approximation Theory of Convex Functions:

Proof
Approximation of Convex Functions |

Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Approximation Theory of Convex Functions:

m Approximate Convex Func. by O(1/L(¢)) Piecewise Linear
(Sandwich Algorithm [Rote’92])

Proof
Approximation of Convex Functions |

Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Approximation Theory of Convex Functions:

m Approximate Convex Func. by O(1/L(¢)) Piecewise Linear
(Sandwich Algorithm [Rote’92])

m Approximate Linear func. using O(log(L(¢))) hash functions.

Proof
Approximation of Convex Functions |

Goal, pick a set of parameters {(7¢,7¢)}+cT such that:

sup10g(p, (7)) = 30(0)] = O(1)

teT

Approximation Theory of Convex Functions:

m Approximate Convex Func. by O(1/L(¢)) Piecewise Linear
(Sandwich Algorithm [Rote’92])

m Approximate Linear func. using O(log(L(¢))) hash functions.

m Trade-off evaluation time with approximation, apply result to

b= ¢/{L(¢)log(L(¢))}*/? and tensorize.

Approximation of Convex Functions Il

Goal, pick a set of parameters {(7¢, 7¢) }te 7 such that:

supllog(p, (1)) = 30(0)] = 0(1)
teT

log(pe(r)

log(pe(r)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
angle (x,y)

angle (x,y)

Effect of -

m Partition Function Estimation via Distance Sensitive Hashing.
m Improve upon state of the art by 1/n factor.
m Multi-resolution HBE and Log-Convex Functions.

Future Work

m Design and implement more practical Hashing Schemes.

m Applications in Optimization and Learning.

Thank You!

psimin@stanford.edu

	Problem
	Results
	Algorithm
	Proof

