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Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation
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Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?
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Empirical Gradient Estimation

{(xi , si )}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi )

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?
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Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Kernel Density Estimation

Robust Optimization: let β = c log n

1

β
log

(
1

n

n∑
i=1

eβφ(〈xi ,y〉)

)
≈ max

i∈[n]
{φ(〈xi , y〉)}

Variance reduction for Stochastic Gradients
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Modelling Binary data with Exponential Families

X = {−1,+1}d , parameter vector y ∈ rSd−1, density on X

py (x) =
1

Z (y)
e〈x ,y〉 =

1

Z (y)
e
r
√
d
〈

x
‖x‖ ,

y
‖y‖

〉

with Z (y) =
∑

x∈X e〈x ,y〉 being instrumental for

1 Sampling: given y sample x ∼ py

2 Maximum likelihood: estimate gradient

3 Hypothesis testing: z1, . . . , zm ∼ py , y = y1 or y = y2?

Z (y) requires time 2d compute exactly
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Reducing Space through Random Sampling

L(φ) Lipschitz const, φmax − φmin ≤ 2L(φ), equiv. estimate:

Z (y) =
1

|X |
∑
x∈X

eφ(〈x ,y〉)−φmax ∈ [e−2L(φ), 1]

Random Sampling and Median-of-means:

m =

⌈
6

ε2ε2ε2
exp(2L(φ))

⌉
︸ ︷︷ ︸
mean of n samples

·
⌈

9 log(
1

δ
)

⌉
︸ ︷︷ ︸

median of K means

For Z (y) = µ ∈ [Ω( 1n ), 1] we require O( 1
ε2
1
ε2
1
ε2

1
µ log(1δ )) samples.

n = Θ(e2L(φ)) and µ ∈ [n−1, 1].
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Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O( ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.
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Main Result

Theorem [S, Charikar’18]

For any convex function φ there exists a data structure using

preprocessing time/space O( 1
ε2
1
ε2
1
ε2
eL(φ) log(1δ ) · dn)

answers any query y in O(Mφ
1
ε2
1
ε2
1
ε2

1√
µ log(1δ )d) time.

where µ = Z (y) and Mφ = exp
(
{L(φ) log(L(φ))}

2
3

)
,
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e〈x,y〉 r2ρ r2

e−‖x−y‖
2
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Extensions

We show two reductions:

1 Euclidean space → Sphere:

partition in thin annuli and round vectors a la
Andoni-Razhenshteyn [STOC’15]

2 Vector sums → sum of norms:

Estimate vector sums at least as well as
estimating the sum of norms
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Data Structure

Ingredients:

T hashing schemes H1, . . . ,HT with collision probabilities
pt(〈x , y〉) = Ph∼Ht [h(x) = h(y)]. [Distance Sensitive]

T weight functions w1, . . . ,wT such that
eφ(〈x ,y〉) =

∑
t wt(〈x , y〉) for all x , y . [Convex Decomposition]

Preprocessing:

Sample ht ∼ Ht and create hash table Ht for dataset X .

Query Algorithm:

Let Xt be a uniform sample from Ht(q) (hash bucket of q)

Form an unbiased estimator by reweighting:

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|
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Multi-resolution HBE

Data-structure: median-of-means on unbiased estimator

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|

that we call Multi-resolution Hashing-Based-Estimators.
Challenges:

Specify weighting scheme depending on convex fun φ

Select hashing schemes depending on convex fun φ.

Provably bound the variance of the overall estimator.
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Proof Ideas
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Primer on Importance sampling

Setting: weights w1, . . . ,wn e.g. wi = K (xi , y),
Goal: approximate µ =

∑n
i=1 wi

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = wI
qI

E[ZQ ] =
n∑

i=1

qi
wi

qi
=

n∑
i=1

wi

Variance: controlled by E[Z 2
Q ] =

∑n
i=1

w2
i

qi

unbiased estimators of low variance and median of means
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Locality Sensitive Hashing

Randomized Space Partitions P[h(x) = h(y)] = f (‖x − y‖)
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Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS’17]:

Collision probability p(x , y) = Θ(
√
K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O( 1√
µ).

Ẑ (y) =
1

n

K (X , y)

p(X , y)
|H(y)|, X ∼ H(y)

Scale-free Property is hard to attain.
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K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O( 1√
µ).

Ẑ (y) =
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K (X , y)
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Limitations of HBE

Scale-free Property is hard to attain:

p(x , y) = Θ(
√
K (x , y))

Gaussian, Exponential and “polynomial” using LSH.

Collision prob. that near 0 or � 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Machine Learning and Optimization we care more about
Inner Products rather than distance.
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Main contributions

Generalize results on HBE to Multi-resolution HBE .

Distance Sensitive Hashing on the Sphere instead of LSH.

Approximation Theory for Log-convex functions on Sphere.
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Design a HBE for each wt (Multi-resolution HBE)

Bound the variance of resulting estimators.
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Distance Sensitive Hashing [Aumuller et al. 2017]

g+, g− ∼ N (0, Id), {〈x , g+〉 ≥ τ ∧ 〈x , g−〉 ≤ −γτ}, eO(τ2) times

log(pγ,τ (ρ)) = Θ

(
−
(

1− ρ
1 + ρ

+ γ2
1 + ρ

1− ρ

)
τ2

2

)
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Multi-resolution HBE

hashing schemes {Ht}, coll. prob. {pt}, and weight func. {wt}.

ZT (y) =
1

n

∑
t∈[T ]

wt(Xt , y)

pt(Xt , y)
|Ht(y)|, Xt ∼ Ht(y) for t ∈ [T ]

Technique to bound variance from [Charikar, S., FOCS’17].
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p2-weighting scheme

Key design principle wt(x , y) = p2t (x ,y)∑
t′ p

2
t′ (x ,y)

· w0(x , y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p∗(x , y) = maxt∈[T ]{pt(x , y)}”

Goal: hashing scheme p∗(x , y) = Θ(
√
w0(x , y)) = Θ(e

1
2
φ(x ,y)).

Fortunately, 1
2φ(x , y) remains convex and lipschitz.
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Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.
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Approximation of Convex Functions I
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Approximation of Convex Functions II

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)
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Recap
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Partition Function Estimation via Distance Sensitive Hashing.

Improve upon state of the art by
√
n factor.

Multi-resolution HBE and Log-Convex Functions.
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Future Work

Design and implement more practical Hashing Schemes.

Applications in Optimization and Learning.
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Thank You!
psimin@stanford.edu
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