
Problem Results Algorithm Proof

Integrating Functions via
Distance Sensitive Hashing

Paris Siminelakis Moses Charikar

Stanford University

ML Lunch @ Stanford, CA

April 18th, 2018

Problem Results Algorithm Proof

Problem and Motivation

Problem Results Algorithm Proof

Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation

Problem Results Algorithm Proof

Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation

Problem Results Algorithm Proof

Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation

Problem Results Algorithm Proof

Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation

Problem Results Algorithm Proof

Problem

X = {x1, x2, x3, . . . , xn} ⊂ Sd−1, φ : [−1, 1]→ R, query y ∈ Sd−1

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Partition Function Estimation

Problem Results Algorithm Proof

Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?

Problem Results Algorithm Proof

Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?

Problem Results Algorithm Proof

Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?

Problem Results Algorithm Proof

Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?

Problem Results Algorithm Proof

Kernel Density Estimation

X = {x1, . . . , xn} ⊂ rSd−1, distribution D, prob. of y ∈ Sd−1?

KDEX (y) = 1
n

∑n
i=1 K (x , y)

K (x , y) = e−
‖x−y‖2

σ2 = e
2r2

σ2 (〈x ,y〉−1)

outlier detection, clustering, . . .

Problem: Data structure that answers queries in sub-linear time?

Problem Results Algorithm Proof

Empirical Gradient Estimation

{(xi , si)}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem Results Algorithm Proof

Empirical Gradient Estimation

{(xi , si)}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem Results Algorithm Proof

Empirical Gradient Estimation

{(xi , si)}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem Results Algorithm Proof

Empirical Gradient Estimation

{(xi , si)}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem Results Algorithm Proof

Empirical Gradient Estimation

{(xi , si)}ni=1 ⊂ Rd × {±1}, L(·) =
∑n

i=1 `(〈sixi , ·〉), ∇yL(y)?

Logistic `(ρ) = 1/(1 + exp(−ρ))

‖∇y `(〈sixi , y〉︸ ︷︷ ︸
ρi (y)

)‖ = ‖xi‖e− log(1+eρi)

Discriminative sampling for SG

Problem: Data structure that gets lower-variance SG?

Problem Results Algorithm Proof

Applications of “Partition Function Estimation”

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Kernel Density Estimation

Robust Optimization: let β = c log n

1

β
log

(
1

n

n∑
i=1

eβφ(〈xi ,y〉)

)
≈ max

i∈[n]
{φ(〈xi , y〉)}

Variance reduction for Stochastic Gradients

Problem Results Algorithm Proof

Applications of “Partition Function Estimation”

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Kernel Density Estimation

Robust Optimization: let β = c log n

1

β
log

(
1

n

n∑
i=1

eβφ(〈xi ,y〉)

)
≈ max

i∈[n]
{φ(〈xi , y〉)}

Variance reduction for Stochastic Gradients

Problem Results Algorithm Proof

Applications of “Partition Function Estimation”

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Kernel Density Estimation

Robust Optimization: let β = c log n

1

β
log

(
1

n

n∑
i=1

eβφ(〈xi ,y〉)

)
≈ max

i∈[n]
{φ(〈xi , y〉)}

Variance reduction for Stochastic Gradients

Problem Results Algorithm Proof

Applications of “Partition Function Estimation”

Z (y) =
n∑

i=1

eφ(〈xi ,y〉)

Kernel Density Estimation

Robust Optimization: let β = c log n

1

β
log

(
1

n

n∑
i=1

eβφ(〈xi ,y〉)

)
≈ max

i∈[n]
{φ(〈xi , y〉)}

Variance reduction for Stochastic Gradients

Problem Results Algorithm Proof

Modelling Binary data with Exponential Families

X = {−1,+1}d , parameter vector y ∈ rSd−1, density on X

py (x) =
1

Z (y)
e〈x ,y〉 =

1

Z (y)
e
r
√
d
〈

x
‖x‖ ,

y
‖y‖

〉

with Z (y) =
∑

x∈X e〈x ,y〉 being instrumental for

1 Sampling: given y sample x ∼ py

2 Maximum likelihood: estimate gradient

3 Hypothesis testing: z1, . . . , zm ∼ py , y = y1 or y = y2?

Z (y) requires time 2d compute exactly

Problem Results Algorithm Proof

Modelling Binary data with Exponential Families

X = {−1,+1}d , parameter vector y ∈ rSd−1, density on X

py (x) =
1

Z (y)
e〈x ,y〉 =

1

Z (y)
e
r
√
d
〈

x
‖x‖ ,

y
‖y‖

〉

with Z (y) =
∑

x∈X e〈x ,y〉 being instrumental for

1 Sampling: given y sample x ∼ py

2 Maximum likelihood: estimate gradient

3 Hypothesis testing: z1, . . . , zm ∼ py , y = y1 or y = y2?

Z (y) requires time 2d compute exactly

Problem Results Algorithm Proof

Modelling Binary data with Exponential Families

X = {−1,+1}d , parameter vector y ∈ rSd−1, density on X

py (x) =
1

Z (y)
e〈x ,y〉 =

1

Z (y)
e
r
√
d
〈

x
‖x‖ ,

y
‖y‖

〉

with Z (y) =
∑

x∈X e〈x ,y〉 being instrumental for

1 Sampling: given y sample x ∼ py

2 Maximum likelihood: estimate gradient

3 Hypothesis testing: z1, . . . , zm ∼ py , y = y1 or y = y2?

Z (y) requires time 2d compute exactly

Problem Results Algorithm Proof

Modelling Binary data with Exponential Families

X = {−1,+1}d , parameter vector y ∈ rSd−1, density on X

py (x) =
1

Z (y)
e〈x ,y〉 =

1

Z (y)
e
r
√
d
〈

x
‖x‖ ,

y
‖y‖

〉

with Z (y) =
∑

x∈X e〈x ,y〉 being instrumental for

1 Sampling: given y sample x ∼ py

2 Maximum likelihood: estimate gradient

3 Hypothesis testing: z1, . . . , zm ∼ py , y = y1 or y = y2?

Z (y) requires time 2d compute exactly

Problem Results Algorithm Proof

Previous Work and Main Result

Problem Results Algorithm Proof

Reducing Space through Random Sampling

L(φ) Lipschitz const, φmax − φmin ≤ 2L(φ), equiv. estimate:

Z (y) =
1

|X |
∑
x∈X

eφ(〈x ,y〉)−φmax ∈ [e−2L(φ), 1]

Random Sampling and Median-of-means:

m =

⌈
6

ε2ε2ε2
exp(2L(φ))

⌉
︸ ︷︷ ︸
mean of n samples

·
⌈

9 log(
1

δ
)

⌉
︸ ︷︷ ︸

median of K means

For Z (y) = µ ∈ [Ω(1n), 1] we require O(1
ε2
1
ε2
1
ε2

1
µ log(1δ)) samples.

n = Θ(e2L(φ)) and µ ∈ [n−1, 1].

Problem Results Algorithm Proof

Reducing Space through Random Sampling

L(φ) Lipschitz const, φmax − φmin ≤ 2L(φ), equiv. estimate:

Z (y) =
1

|X |
∑
x∈X

eφ(〈x ,y〉)−φmax ∈ [e−2L(φ), 1]

Random Sampling and Median-of-means:

m =

⌈
6

ε2ε2ε2
exp(2L(φ))

⌉
︸ ︷︷ ︸
mean of n samples

·
⌈

9 log(
1

δ
)

⌉
︸ ︷︷ ︸

median of K means

For Z (y) = µ ∈ [Ω(1n), 1] we require O(1
ε2
1
ε2
1
ε2

1
µ log(1δ)) samples.

n = Θ(e2L(φ)) and µ ∈ [n−1, 1].

Problem Results Algorithm Proof

Reducing Space through Random Sampling

L(φ) Lipschitz const, φmax − φmin ≤ 2L(φ), equiv. estimate:

Z (y) =
1

|X |
∑
x∈X

eφ(〈x ,y〉)−φmax ∈ [e−2L(φ), 1]

Random Sampling and Median-of-means:

m =

⌈
6

ε2ε2ε2
exp(2L(φ))

⌉
︸ ︷︷ ︸
mean of n samples

·
⌈

9 log(
1

δ
)

⌉
︸ ︷︷ ︸

median of K means

For Z (y) = µ ∈ [Ω(1n), 1] we require O(1
ε2
1
ε2
1
ε2

1
µ log(1δ)) samples.

n = Θ(e2L(φ)) and µ ∈ [n−1, 1].

Problem Results Algorithm Proof

Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O(ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.

Problem Results Algorithm Proof

Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O(ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.

Problem Results Algorithm Proof

Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O(ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.

Problem Results Algorithm Proof

Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O(ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.

Problem Results Algorithm Proof

Previous Work

Mussman and Ermon [ICML’16] employed a series of reductions:

(1± ε)Z−1(y)→ log(1 + ε)−MIPS→ (1 +
ε

r2
)−ANN

to solve the linear case for x , y ∈ rSd−1 where L(φ) = r2.

1 Empirically outperforms baseline methods.

2 ANN data structure by Andoni-Razenshteyn [STOC’15] :

n1−O(ε
r2
) = e2L(φ)−O(ε)

3 This is tight in worst case Andoni et al. [SODA’17]

Mussmann, Chen, Ermon [UAI’17]: lazy evaluation ⇒ speed up.

Problem Results Algorithm Proof

Main Result

Theorem [S, Charikar’18]

For any convex function φ there exists a data structure using

preprocessing time/space O(1
ε2
1
ε2
1
ε2
eL(φ) log(1δ) · dn)

answers any query y in O(Mφ
1
ε2
1
ε2
1
ε2

1√
µ log(1δ)d) time.

where µ = Z (y) and Mφ = exp
(
{L(φ) log(L(φ))}

2
3

)
,

Problem Results Algorithm Proof

Main Result

Theorem [S, Charikar’18]

For any convex function φ there exists a data structure using

preprocessing time/space O(1
ε2
1
ε2
1
ε2
eL(φ) log(1δ) · dn)

answers any query y in O(Mφ
1
ε2
1
ε2
1
ε2

1√
µ log(1δ)d) time.

where µ = Z (y) and Mφ = exp
(
{L(φ) log(L(φ))}

2
3

)
,

Assuming n = Θ(e2L(φ)) and µ = 1
n

Method Space Query

Random Sampl. O(n) O(n)
MIPS-ANN O(n2−O(ε)) O(n1−O(ε))

Ours O(n
3
2+o(1)) O(n

1
2+o(1))

Problem Results Algorithm Proof

Main Result

Theorem [S, Charikar’18]

For any convex function φ there exists a data structure using

preprocessing time/space O(1
ε2
1
ε2
1
ε2
eL(φ) log(1δ) · dn)

answers any query y in O(Mφ
1
ε2
1
ε2
1
ε2

1√
µ log(1δ)d) time.

where µ = Z (y) and Mφ = exp
(
{L(φ) log(L(φ))}

2
3

)
,

Kernel φ(ρ) L(φ)

e〈x,y〉 r2ρ r2

e−‖x−y‖
2
2 2r2(ρ− 1) 2r2

(‖x − y‖22 + 1)−1 − log(1 + (1− ρ)2r2) 2r2

1
1+e−〈x,y〉

− log(1 + e−r
2ρ) r2

(〈x , y〉+ cr2)−k −k log(r2(ρ+ c)) k
c−1

Problem Results Algorithm Proof

Extensions

We show two reductions:

1 Euclidean space → Sphere:

partition in thin annuli and round vectors a la
Andoni-Razhenshteyn [STOC’15]

2 Vector sums → sum of norms:

Estimate vector sums at least as well as
estimating the sum of norms

Problem Results Algorithm Proof

Data Structure

Ingredients:

T hashing schemes H1, . . . ,HT with collision probabilities
pt(〈x , y〉) = Ph∼Ht [h(x) = h(y)]. [Distance Sensitive]

T weight functions w1, . . . ,wT such that
eφ(〈x ,y〉) =

∑
t wt(〈x , y〉) for all x , y . [Convex Decomposition]

Preprocessing:

Sample ht ∼ Ht and create hash table Ht for dataset X .

Query Algorithm:

Let Xt be a uniform sample from Ht(q) (hash bucket of q)

Form an unbiased estimator by reweighting:

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|

Problem Results Algorithm Proof

Data Structure

Ingredients:

T hashing schemes H1, . . . ,HT with collision probabilities
pt(〈x , y〉) = Ph∼Ht [h(x) = h(y)]. [Distance Sensitive]

T weight functions w1, . . . ,wT such that
eφ(〈x ,y〉) =

∑
t wt(〈x , y〉) for all x , y . [Convex Decomposition]

Preprocessing:

Sample ht ∼ Ht and create hash table Ht for dataset X .

Query Algorithm:

Let Xt be a uniform sample from Ht(q) (hash bucket of q)

Form an unbiased estimator by reweighting:

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|

Problem Results Algorithm Proof

Data Structure

Ingredients:

T hashing schemes H1, . . . ,HT with collision probabilities
pt(〈x , y〉) = Ph∼Ht [h(x) = h(y)]. [Distance Sensitive]

T weight functions w1, . . . ,wT such that
eφ(〈x ,y〉) =

∑
t wt(〈x , y〉) for all x , y . [Convex Decomposition]

Preprocessing:

Sample ht ∼ Ht and create hash table Ht for dataset X .

Query Algorithm:

Let Xt be a uniform sample from Ht(q) (hash bucket of q)

Form an unbiased estimator by reweighting:

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|

Problem Results Algorithm Proof

Multi-resolution HBE

Data-structure: median-of-means on unbiased estimator

Z (y) =
T∑
t=1

wt(〈Xt , y〉)
pt(〈Xt , y〉)

|Ht(y)|

that we call Multi-resolution Hashing-Based-Estimators.
Challenges:

Specify weighting scheme depending on convex fun φ

Select hashing schemes depending on convex fun φ.

Provably bound the variance of the overall estimator.

Problem Results Algorithm Proof

Proof Ideas

Problem Results Algorithm Proof

Primer on Importance sampling

Setting: weights w1, . . . ,wn e.g. wi = K (xi , y),
Goal: approximate µ =

∑n
i=1 wi

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = wI
qI

E[ZQ] =
n∑

i=1

qi
wi

qi
=

n∑
i=1

wi

Variance: controlled by E[Z 2
Q] =

∑n
i=1

w2
i

qi

unbiased estimators of low variance and median of means

Problem Results Algorithm Proof

Primer on Importance sampling

Setting: weights w1, . . . ,wn e.g. wi = K (xi , y),
Goal: approximate µ =

∑n
i=1 wi

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = wI
qI

E[ZQ] =
n∑

i=1

qi
wi

qi
=

n∑
i=1

wi

Variance: controlled by E[Z 2
Q] =

∑n
i=1

w2
i

qi

unbiased estimators of low variance and median of means

Problem Results Algorithm Proof

Primer on Importance sampling

Setting: weights w1, . . . ,wn e.g. wi = K (xi , y),
Goal: approximate µ =

∑n
i=1 wi

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = wI
qI

E[ZQ] =
n∑

i=1

qi
wi

qi
=

n∑
i=1

wi

Variance: controlled by E[Z 2
Q] =

∑n
i=1

w2
i

qi

unbiased estimators of low variance and median of means

Problem Results Algorithm Proof

Primer on Importance sampling

Setting: weights w1, . . . ,wn e.g. wi = K (xi , y),
Goal: approximate µ =

∑n
i=1 wi

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = wI
qI

E[ZQ] =
n∑

i=1

qi
wi

qi
=

n∑
i=1

wi

Variance: controlled by E[Z 2
Q] =

∑n
i=1

w2
i

qi

unbiased estimators of low variance and median of means

Problem Results Algorithm Proof

Locality Sensitive Hashing

Randomized Space Partitions P[h(x) = h(y)] = f (‖x − y‖)

Problem Results Algorithm Proof

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS’17]:

Collision probability p(x , y) = Θ(
√
K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O(1√
µ).

Ẑ (y) =
1

n

K (X , y)

p(X , y)
|H(y)|, X ∼ H(y)

Scale-free Property is hard to attain.

Problem Results Algorithm Proof

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS’17]:

Collision probability p(x , y) = Θ(
√
K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O(1√
µ).

Ẑ (y) =
1

n

K (X , y)

p(X , y)
|H(y)|, X ∼ H(y)

Scale-free Property is hard to attain.

Problem Results Algorithm Proof

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS’17]:

Collision probability p(x , y) = Θ(
√
K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O(1√
µ).

Ẑ (y) =
1

n

K (X , y)

p(X , y)
|H(y)|, X ∼ H(y)

Scale-free Property is hard to attain.

Problem Results Algorithm Proof

Algorithmic Framework

Hashing-based-Estimators [Charikar, S.,FOCS’17]:

Collision probability p(x , y) = Θ(
√
K (x , y)) then one can get

an estimator Ẑ (y) with relative variance O(1√
µ).

Ẑ (y) =
1

n

K (X , y)

p(X , y)
|H(y)|, X ∼ H(y)

Scale-free Property is hard to attain.

Problem Results Algorithm Proof

Limitations of HBE

Scale-free Property is hard to attain:

p(x , y) = Θ(
√
K (x , y))

Gaussian, Exponential and “polynomial” using LSH.

Collision prob. that near 0 or � 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Machine Learning and Optimization we care more about
Inner Products rather than distance.

Problem Results Algorithm Proof

Limitations of HBE

Scale-free Property is hard to attain:

p(x , y) = Θ(
√
K (x , y))

Gaussian, Exponential and “polynomial” using LSH.

Collision prob. that near 0 or � 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Machine Learning and Optimization we care more about
Inner Products rather than distance.

Problem Results Algorithm Proof

Limitations of HBE

Scale-free Property is hard to attain:

p(x , y) = Θ(
√
K (x , y))

Gaussian, Exponential and “polynomial” using LSH.

Collision prob. that near 0 or � 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Machine Learning and Optimization we care more about
Inner Products rather than distance.

Problem Results Algorithm Proof

Limitations of HBE

Scale-free Property is hard to attain:

p(x , y) = Θ(
√
K (x , y))

Gaussian, Exponential and “polynomial” using LSH.

Collision prob. that near 0 or � 1 exhibited the desired
(exponential, gaussian or polynomial) decay with distance.

Machine Learning and Optimization we care more about
Inner Products rather than distance.

Problem Results Algorithm Proof

Main contributions

Generalize results on HBE to Multi-resolution HBE .

Distance Sensitive Hashing on the Sphere instead of LSH.

Approximation Theory for Log-convex functions on Sphere.

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate∫ 1

−1
w0(ρ)dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

w∗t (ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

w∗t (ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

w∗t (ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

wt(ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

wt(ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

wt(ρ)

 dρ

Problem Results Algorithm Proof

Intuition

Given a function w0 : [−1, 1]→ R want to approximate

∫ 1

−1
w0(ρ)dρ =

∫ 1

−1

∑
t∈[T]

wt(ρ)

 dρ

Problem Results Algorithm Proof

Intuition

w0(ρ) =
∑
t∈[T]

wt(ρ)

Find appropriate hashing probabilities {pt}t∈[T].

Design a HBE for each wt (Multi-resolution HBE)

Bound the variance of resulting estimators.

Problem Results Algorithm Proof

Intuition

w0(ρ) =
∑
t∈[T]

wt(ρ)

Find appropriate hashing probabilities {pt}t∈[T].

Design a HBE for each wt (Multi-resolution HBE)

Bound the variance of resulting estimators.

Problem Results Algorithm Proof

Intuition

w0(ρ) =
∑
t∈[T]

wt(ρ)

Find appropriate hashing probabilities {pt}t∈[T].

Design a HBE for each wt (Multi-resolution HBE)

Bound the variance of resulting estimators.

Problem Results Algorithm Proof

Intuition

w0(ρ) =
∑
t∈[T]

wt(ρ)

Find appropriate hashing probabilities {pt}t∈[T].

Design a HBE for each wt (Multi-resolution HBE)

Bound the variance of resulting estimators.

Problem Results Algorithm Proof

Distance Sensitive Hashing [Aumuller et al. 2017]

g+, g− ∼ N (0, Id), {〈x , g+〉 ≥ τ ∧ 〈x , g−〉 ≤ −γτ}, eO(τ2) times

log(pγ,τ (ρ)) = Θ

(
−
(

1− ρ
1 + ρ

+ γ2
1 + ρ

1− ρ

)
τ2

2

)

Problem Results Algorithm Proof

Distance Sensitive Hashing [Aumuller et al. 2017]

g+, g− ∼ N (0, Id), {〈x , g+〉 ≥ τ ∧ 〈x , g−〉 ≤ −γτ}, eO(τ2) times

log(pγ,τ (ρ)) = Θ

(
−
(

1− ρ
1 + ρ

+ γ2
1 + ρ

1− ρ

)
τ2

2

)

Problem Results Algorithm Proof

Multi-resolution HBE

hashing schemes {Ht}, coll. prob. {pt}, and weight func. {wt}.

ZT (y) =
1

n

∑
t∈[T]

wt(Xt , y)

pt(Xt , y)
|Ht(y)|, Xt ∼ Ht(y) for t ∈ [T]

Technique to bound variance from [Charikar, S., FOCS’17].

Problem Results Algorithm Proof

Multi-resolution HBE

hashing schemes {Ht}, coll. prob. {pt}, and weight func. {wt}.

ZT (y) =
1

n

∑
t∈[T]

wt(Xt , y)

pt(Xt , y)
|Ht(y)|, Xt ∼ Ht(y) for t ∈ [T]

Technique to bound variance from [Charikar, S., FOCS’17].

Problem Results Algorithm Proof

Multi-resolution HBE

hashing schemes {Ht}, coll. prob. {pt}, and weight func. {wt}.

ZT (y) =
1

n

∑
t∈[T]

wt(Xt , y)

pt(Xt , y)
|Ht(y)|, Xt ∼ Ht(y) for t ∈ [T]

Technique to bound variance from [Charikar, S., FOCS’17].

Problem Results Algorithm Proof

p2-weighting scheme

Key design principle wt(x , y) = p2t (x ,y)∑
t′ p

2
t′ (x ,y)

· w0(x , y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p∗(x , y) = maxt∈[T]{pt(x , y)}”

Goal: hashing scheme p∗(x , y) = Θ(
√
w0(x , y)) = Θ(e

1
2
φ(x ,y)).

Fortunately, 1
2φ(x , y) remains convex and lipschitz.

Problem Results Algorithm Proof

p2-weighting scheme

Key design principle wt(x , y) = p2t (x ,y)∑
t′ p

2
t′ (x ,y)

· w0(x , y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p∗(x , y) = maxt∈[T]{pt(x , y)}”

Goal: hashing scheme p∗(x , y) = Θ(
√
w0(x , y)) = Θ(e

1
2
φ(x ,y)).

Fortunately, 1
2φ(x , y) remains convex and lipschitz.

Problem Results Algorithm Proof

p2-weighting scheme

Key design principle wt(x , y) = p2t (x ,y)∑
t′ p

2
t′ (x ,y)

· w0(x , y) results in

“Variance of Multi-resolution HBE is bounded by Variance of
HBE with collision probability p∗(x , y) = maxt∈[T]{pt(x , y)}”

Goal: hashing scheme p∗(x , y) = Θ(
√
w0(x , y)) = Θ(e

1
2
φ(x ,y)).

Fortunately, 1
2φ(x , y) remains convex and lipschitz.

Problem Results Algorithm Proof

Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.

Problem Results Algorithm Proof

Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.

Problem Results Algorithm Proof

Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.

Problem Results Algorithm Proof

Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.

Problem Results Algorithm Proof

Approximation of Convex Functions I

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

Approximation Theory of Convex Functions:

Approximate Convex Func. by O(
√
L(φ)) Piecewise Linear

(Sandwich Algorithm [Rote’92])

Approximate Linear func. using O(log(L(φ))) hash functions.

Trade-off evaluation time with approximation, apply result to
φ̃ = φ/{L(φ) log(L(φ))}1/3 and tensorize.

Problem Results Algorithm Proof

Approximation of Convex Functions II

Goal, pick a set of parameters {(γt , τt)}t∈T such that:∣∣∣∣sup
t∈T
{log(pγt ,τt (ρ))} − 1

2
φ(ρ)

∣∣∣∣ = O(1)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
angle x, y

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g(

p t
(r)

)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
angle x, y

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g(

p t
(r)

)

Problem Results Algorithm Proof

Recap

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
angle x, y

1.2

1.0

0.8

0.6

0.4

0.2

0.0

lo
g(

p t
(r)

)

Partition Function Estimation via Distance Sensitive Hashing.

Improve upon state of the art by
√
n factor.

Multi-resolution HBE and Log-Convex Functions.

Problem Results Algorithm Proof

Future Work

Design and implement more practical Hashing Schemes.

Applications in Optimization and Learning.

Problem Results Algorithm Proof

Thank You!
psimin@stanford.edu

	Problem
	Results
	Algorithm
	Proof

