
Algorithms, Geometry and Learning

Reading group
Paris Syminelakis

October 11, 2016



Reading Group 2016 Algorithms, Geometry, and Learning

2



Contents

1 Local Dimensionality Reduction 5
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Definitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Frechet Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Bounding the Contraction . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Global and Local Dimensionality Reduction . . . . . . . . . . . . . . 11
4.3 A different tensorization scheme: Lovasz Local Lemma . . . . . . . . 12

5 Non-Frechet Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Distributional lemma based on Probabilistic Partitions . . . . . . . . 14

6 Beyond Bourgains approach: Randomized Nash Device . . . . . . . . . . . . 15

3



Reading Group 2016 Algorithms, Geometry, and Learning

4



Chapter 1

Local Dimensionality Reduction

Introduction

Many algorithms operate on data (inputs) that are explicitly (e.g. R𝑑) or implicitly (e.g.
weighted graph) embedded in a metric space. The curse of dimensionality refers to the
phenomenon that many problems or algorithms require exponential amount of resources
(time, space, samples) in the “dimension” of the input. Researchers aiming to go beyond
this barrier either make assumptions about the “intrinsic dimension” of the data (impose
some further structural restriction) or settle for relaxing the guarantees that the algorithms
enjoy.

In the context of problems defined on metric spaces, researchers search for either embed-
dings into simpler metric spaces with more structure (ℓ𝑝 spaces, ultrametrics etc.) and/or
reduced dimension while preserving distances to some extent. This is formalizing by the
notion of distortion.

Definition 1.1.1 (Distortion): An embedding 𝑓 : 𝒳 → 𝒴 has distortion 𝑄 > 1 if there
exists a constant 𝑐 > 0 such that ∀𝑢, 𝑣 ∈ 𝒳

𝑐 · 𝑑𝒳 (𝑢, 𝑣) ≤ 𝑑𝒴(𝑓(𝑢), 𝑓(𝑣)) ≤ 𝑐𝑄 · 𝑑𝒳 (𝑢, 𝑣) (1.1)

Compactly, we have dist(𝑓) =
sup𝑢,𝑣∈𝒳 dist𝑓 (𝑢,𝑣)

inf𝑢,𝑣∈𝒳 dist𝑓 (𝑢,𝑣)
, where dist𝑓 (𝑢, 𝑣) :=

𝑑𝒴 (𝑓(𝑢),𝑓(𝑣))
𝑑𝒳 (𝑢,𝑣)

.

Having formalized, the notion of distortion we are ready to formalize the problem of
dimensionality reduction.

Given a metric space (𝑉, 𝑑) find a mapping 𝜑 : 𝑉 → ℓ𝑑𝑝 with “small” distortion and
“low” dimension

.

There is a great body of work that deals with the exact trade-offs between distortion and
dimension, depending also on the structure of the metric space with applications in optimiza-
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tion (approximation algorithms), networking (distance oracles), machine learning (feature
extraction, kernel approximation) and indexing (approximate nearest neighbor search).

Euclidean Space - The JL lemma The simplest metric space is arguable the Euclidean
space R𝑑 with the ‖ · ‖2 metric. Its simplicity arises from the vector space and inner product
structures along with resulting rotational invariance. For this metric space we now have a
complete picture of what is possible and the exact (up to) multiplicative constant tradeoff
between distortion and dimension.

Theorem 1.1.2. For any 𝑛-point euclidean space (𝑉, ‖ · ‖2) and any 𝜖 > 0:

∙ there exists a map 𝑓 : R𝑑 → R𝐷 with 𝐷 = 𝑂(𝜖−2 log 𝑛) such that ∀𝑥, 𝑦 ∈ 𝑉

(1− 𝜖)2‖𝑥‖22 ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖22 ≤ (1 + 𝜖)2‖𝑥‖22 (1.2)

∙ For any 𝑑, 𝑛 ≥ 2 and 1/min{𝑛, 𝑑}0.4999 < 𝜖 < 1 , there exists a subset 𝑉𝐿𝑁 of
R𝑑 such that for any map 𝑓 : 𝑉𝐿𝑁 → R𝐷

2 satisfying (1.2), it must be true that

𝐷 = Ω(𝜖−2 log 𝑛)

Distributional JL-Lemma Interestingly, there exist many ways to achieve the guarantees
given by the above theorem. However, the simplest one is to generate a random gaussian
matrix of appropriate dimensions and define 𝑓 to be the resulting linear map. One can easily
prove the first part of the theorem if one has a so called Distributional JL-Lemma.

Lemma 1.1.3. For any integer 𝑛 ≥ 2 and 𝜖, 𝛿 ∈ (0, 1) there exists a distribution 𝒟𝜖,𝛿 on
linear maps 𝑓 : R𝑑 → R𝐷 with 𝐷 = 𝑂(𝜖−2 log(1/𝛿)) such that for any two 𝑥, 𝑦 ∈ R𝑑,

P
𝒟𝜖,𝛿

Ä
(1− 𝜖)2‖𝑥− 𝑦‖22 ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖22 ≤ (1 + 𝜖)2‖𝑥− 𝑦‖22

ä
≥ 1− 𝛿 (1.3)

In fact most attempts of dimensionality reduction in Euclidean space have focused ex-
clusively on linear maps and seeking characterizations of what kind of distributions work is
an object of recent intensive theoretical investigation.

General metric spaces Similar investigations have been carried out for general metric
spaces and have culminated in a very precise quantitative understanding.

Theorem 1.1.4 (Abraham, Bartal, Neiman’11). For any 1 ≤ 𝑝 ≤ ∞, and any 𝜃 > 0 every
𝑛-point metric space:

∙ embeds in ℓ𝑝 with distortion 𝑂(log1+𝜃 𝑛) in dimension 𝑂( log𝑛
𝜃 log log𝑛

).
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∙ for the metric of a 3-regular expander any map that has distortion at most 𝑂(log1+𝜃 𝑛)
needs Ω( 𝜃 log𝑛

log log𝑛
) dimensions.

Similar results exist that present a distortion dimension-tradeoff, where the dimension
of the embedding depends on a notion of “intrinsic” dimension of the metric space (either
through different notions of “decomposability” or through the doubling dimension). As we
will see shortly these embedding results hinge on two facts:

(i) the existence of a distributional lemma, i.e., a randomized map that “suc-
ceeds” with good probability.

(ii) a tensorization scheme that composes many such maps to achieve guarantees
with high probability.

Outlook These results show that in a very general sense we have a pretty good under-
standing of the quantitative trade-offs involved in obtaining low dimensional representations
of metric spaces. Still extensions of the above ideas are constantly looked for.

1. Relaxed guarantees: last quarter we saw the notion of scaling distortion that is
actually used to prove Theorem 1.1.4. This notion can be also used to provide results
about average, or ℓ𝑞-notions of distortion and not worst-case. Scaling distortion es-
sentially implies (perhaps counter-intuitively) that the map has smaller distortion for
points that are “relatively far apart”, in the sense that there are many other points
that are included in any ball around 𝑥 or 𝑦 of diameter equal to the distance 𝑑(𝑥, 𝑦).

2. Prioritized Embeddings: another line of work assigns an ordering/priority to ver-
tices and seeks to obtain distortion guarantees for a pair (𝑥, 𝑦) depending only on the
highest priority of the pair.

3. Local embeddings: finally we may seek embeddings that approximate distances
between close pairs well and we may not care at all for farther points. This will be the
topic of this talk.
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Definitions and Results

We first formalize the notion of locality we are going to use. A natural way to do so, is to
consider for each point 𝑥 the distance that includes its 𝑘-nearest neighbors.

Definition 1.2.1: Given 𝑥 ∈ 𝑉 the 𝑘-nearest neighbor set and radius are define as

𝑁𝑘(𝑥) := {𝑘 nearest neighbors of 𝑥} (1.4)

𝑟𝑘(𝑥) := min{𝑟 > 0|𝐵(𝑥, 𝑟) ⊆ 𝑁𝑘(𝑥)} (1.5)

Definition 1.2.2: An embedding has 𝑘-local distortion 𝛼 if for all 𝑥, 𝑦 ∈ 𝑉 such that
𝑦 ∈ 𝑁𝑘(𝑥),

1

𝛼
𝑑(𝑥, 𝑦) ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖𝑝 ≤ 𝑑(𝑥, 𝑦) (1.6)

Theorem 1.2.3. For any 𝑛-point metric space (𝑋, 𝑑) a parameter 𝑘 ≤ 𝑛 and an
integer 𝑝 satisfying 𝑝 ≤ ln 𝑘/2 there exist an embedding into ℓ𝑝 with 𝑘-local distortion
𝑂(log 𝑘/𝑝) and dimension 𝑂(𝑒𝑝 log2 𝑘).

Local Metric Embedding for Euclidean space In the case of euclidean metrics, we
will be able to de better at least in a core neighborhood of 𝑁𝑘(𝑥). Let 𝑟*𝑘(𝑥) =

𝑐1𝜖𝑟𝑘(𝑥)
log 𝑘

and

𝑟*𝑘(𝑥, 𝑦) = max{𝑟*𝑘(𝑥), 𝑟*𝑘(𝑦)}.

Theorem 1.2.4. Let 𝑘 ∈ N, given a discrete subset 𝑉 of R𝑑, for any 𝜖 > 0 there
exists an embedding Φ : 𝑉 → R𝐷, where 𝐷 = 𝑂(𝜖−2 log 𝑘) such that:

‖Φ(𝑥)− Φ(𝑦)‖2 ≤ (1 + 𝜖)‖𝑥− 𝑦‖,∀𝑥, 𝑦 ∈ 𝑉 (1.7)

‖Φ(𝑥)− Φ(𝑦)‖2 ≥
1

1 + 𝜖
‖𝑥− 𝑦‖, if ‖𝑥− 𝑦‖ ≤

√
𝜖 · 𝑟*𝑘(𝑥, 𝑦) (1.8)

Definition 1.2.5: Let 𝑥 ∼ 𝑦 denote that 𝑑(𝑥, 𝑦) ≤ 𝑡. An embedding has 𝑡-proximity
distortion 𝛼 if for any 𝑥, 𝑦 ∈ 𝑉 such that 𝑥 ∼ 𝑦,

1

𝛼
𝑑(𝑥, 𝑦) ≤ ‖𝑓(𝑥)− 𝑓(𝑦)‖𝑝 ≤ 𝑑(𝑥, 𝑦) (1.9)
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General Approach

Fix any pair of vertices, 𝑥, 𝑦 ∈ 𝑉 we are looking for a sequence of possibly randomized maps
𝑓1, . . . , 𝑓𝑇 : 𝑉 → R such that:

∙ Expansion: each map|𝑓𝑡(𝑥) − 𝑓𝑡(𝑦)|𝑝 ≤ 𝐴𝑝
𝑡𝑑(𝑥, 𝑦)

𝑝 doesn’t “expand” distances by
much. Typically 𝐴𝑡 = 𝑂(1) or even 𝐴𝑡 = 1 (non-expanding embedding). As we will
see this step is the easiest to achieve, because of triangle inequality. The main fact
used is that for any 𝑟 > 0 and 𝐴 ⊆ 𝑉 :

|min{𝑑(𝑥,𝐴), 𝑟} −min{𝑑(𝑦, 𝐴), 𝑟}| ≤ min{𝑑(𝑥, 𝑦), 𝑟} (1.10)

∙ Contraction: each map |𝑓𝑡(𝑥) − 𝑓𝑡(𝑦)|𝑝 ≥ ℓ𝑡(𝑥, 𝑦) · 𝑑(𝑥, 𝑦) “witnesses” the distance
between 𝑥, 𝑦 within some accuracy 𝜌𝑡(𝑥, 𝑦).

How do we produce a sequence of maps that witness all “local” distances?

1. Distributional lemma: typically we construct a probability distribution over maps
such that we have a lower bound on the contraction with constant probability.The way
we usually go about constructing these maps, is:

∙ Random Sampling: construct a map for which we can lower bound its contri-
bution for all pairs of points by some easy to use quantity.

∙ Probabilistic Partitions: produce maps for which we get non-trivial guarantees
for a specific set of distances. That entails, grouping distances together and
producing a map that has constant probability of witnessing any distance from
the group.

2. Tensorization Scheme: then we add many such maps together to boost the proba-
bility of success. Typically, the number of maps we add contribute to increasing the
expansion. So, we want to keep the number of such maps (dimensions) as low as
possible. Here there are two approaches:

∙ use Chernoff bounds and Union Bound to argue that for each pair many such
maps “succeed” with high probability.

∙ use Lovasz Local Lemma to show that there is a choice of randomness such
that by adding a few maps all distances are “witnessed”. Typically, at this step
we use some additional structure (growth condition) to control dependencies.

9



Reading Group 2016 Algorithms, Geometry, and Learning

Frechet Embeddings

Given a sequence of numbers {𝑤𝑡}1≤𝑡≤𝑇 and a sequence of sets {𝑊𝑡}1≤𝑡≤𝑇 , we define Frechet
embeddings as the map:

𝐹 (𝑥) := (𝑓1(𝑥), . . . , 𝑓𝑇 (𝑥)) = (𝑤1𝑑(𝑥,𝑊1), . . . , 𝑤|𝑇 |𝑑(𝑥,𝑊𝑇 )) (1.11)

Expansion For any such Frechét embedding we can bound the contraction for any pair
𝑥, 𝑦 ∈ 𝑉 as ‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑝𝑝 ≤ ‖𝑤‖𝑝𝑝𝑑(𝑥, 𝑦)𝑝 as for each coordinate:

|𝑓𝑡(𝑥)− 𝑓𝑡(𝑦)| = |𝑤𝑡||𝑑(𝑥,𝑊𝑡)− 𝑑(𝑦,𝑊𝑡)| ≤ |𝑤𝑡|𝑑(𝑥, 𝑦)

Bounding the Contraction

We follow the general strategy and come up with a distributional lemma and a tensorization
scheme.

Lemma 1.4.1 (Distributional Lemma). Let 𝑠 = 2𝑝 and 𝑇 = {1, . . . , log𝑠 𝑛}. Fix any 𝑥, 𝑦 ∈
𝑉 and set 𝜌0 = 0 and 𝜌𝑡 := max{𝑟𝑠𝑡(𝑥), 𝑟𝑠𝑡(𝑦)}. For all 𝑡 ∈ 𝑇 there exists a distribution 𝒟𝑡,𝑠

over sets 𝑊𝑡 ⊂ 𝑉 such that:

P(|𝑑(𝑥,𝑊𝑡)− 𝑑(𝑦,𝑊𝑡)| > 𝜌𝑡 − 𝜌𝑡−1) ≥
1

12𝑠
(1.12)

When the above event happens for a set 𝑊𝑡 ∼ 𝒟𝑡,𝑠 we say succeds.

Lemma 1.4.2 (Tensorization Lemma). Given 𝑅 = 𝑐 ·𝑠 log 𝑛 for 𝑐 > 0 a large constant, with
probability at least 1 − 1/𝑛 for all pairs 𝑥, 𝑦 ∈ 𝑉 and scales 𝑡 ∈ 𝑇 we have that at least 𝑅

24𝑠

sets succeed.

The embedding Let {𝑓 (𝑖)
𝑡 }𝑡,𝑖≤𝑅 be functions as defined above where the superscript

denotes independent samples of the sets 𝑊𝑡 ∼ 𝒟𝑡,𝑠. Our embedding will be:

𝐹 (𝑥) :=
𝑇⊕
𝑡=1

𝑅⊕
𝑖=1

𝑤𝑡𝑓
(𝑖)
𝑡 (𝑥) (1.13)

Here, the dimension of the embedding is 𝑅 · ‖𝑤‖0, as we may zero out any scales 𝑡 that
we do not care about.
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Contraction For a pair 𝑥, 𝑦 ∈ 𝑉 , let𝑚(𝐿) ∈ 𝑇 be the minimal index such that 𝜌𝑚+𝜌𝑚−1 ≥
𝐿/4. Assuming a non-increasing sequence of weights {𝑤𝑡}𝑡∈𝑇 we have:

‖𝐹 (𝑥)− 𝐹 (𝑦)‖𝑝𝑝 =
𝑇∑
𝑡=1

𝑅∑
𝑖=1

𝑤𝑝
𝑡 |𝑓

(𝑖)
𝑡 (𝑥)− 𝑓

(𝑖)
𝑡 (𝑦)|𝑝 (1.14)

≥
𝑇∑
𝑡=1

𝑤𝑝
𝑡

𝑅

24𝑠
|𝜌𝑡 − 𝜌𝑡−1|𝑝 (1.15)

≥ 𝑅

24𝑠

𝑚∑
𝑡=1

𝑤𝑝
𝑡 |𝜌𝑡 − 𝜌𝑡−1|𝑝 (1.16)

≥ 𝑅𝑤𝑝
𝑚

24𝑠

𝑚

𝑚

𝑚∑
𝑡=1

|𝜌𝑡 − 𝜌𝑡−1|𝑝 (1.17)

≥ 𝑅𝑤𝑝
𝑚

24𝑠𝑚𝑝−1
𝜌𝑝𝑚 (1.18)

Global and Local Dimensionality Reduction

Application 1: Bourgain’s Theorem Take 𝐿 = 𝑑(𝑥, 𝑦)/2, 𝑚(𝐿) = log𝑠 𝑛 and 𝑤𝑡 = 1.
We get that the distortion is:Ç

“expansion”

“contraction”

å1/𝑝

=

Ç
𝑅 log𝑠 𝑛 · 24𝑠8𝑝

𝑅
log𝑝−1

𝑠 (𝑛)

å1/𝑝

= 𝑂(𝑐 log𝑠(𝑛))

Application 2: Local Embedding with dimension Ω(log 𝑛) Define 𝐿 = min{𝑑(𝑢, 𝑣), 𝑟𝑘(𝑢)},
𝑤𝑡 = 𝜗−1/𝑝(𝑡), we know that 𝑚 ≤ 1 + log𝑠 𝑘 where 𝜗(𝑡) positive non-decreasing and∑∞

𝑡=1
1

𝜗(𝑡)
= 1. Then, we get that local distortion:Ç

“expansion”

“contraction”

å1/𝑝

=

(
𝑅 · 1 · 26𝑠8𝑝 log𝑝−1

𝑠 (𝑘)

𝑅
𝜗(log 𝑘)

)1/𝑝

= 𝑂

(Ç
log 𝑘

𝑝

å1−1/𝑝 Ç
𝜗

Ç
log 𝑘

𝑝

åå1/𝑝
)

Fix any 𝜖 > 0 an explicit function that achieves this is 𝜃(𝑘) = 𝑐𝑘 log1+𝜖 𝑘, for some constant
𝑐 selected so that the infinite summation is 1.

Dimension The dimension here is 𝑂(2𝑝 log 𝑛 log 𝑛) for all values of 𝑘 simultaneously. The
same proof technique can give distortion 𝑂(log 𝑘/𝑝) and dimension 𝑂(2𝑝 log 𝑛 log𝐾) if we
care for 𝑘 up to a fixed value 𝐾. We observe that the main bottleneck in the dimension is
the tensorization scheme that requires 𝑂(log(𝑛)) dimensions for each value 𝑡 ∈ [log𝑠 𝑘] of
interest.

How can we control dependencies so that to avoid the 𝑂(log 𝑛) bottleneck?
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A different tensorization scheme: Lovasz Local Lemma

Looking back, we observe that if we insist on independent copies of the basic maps 𝑓𝑡 given
by the distributional lemma, then a dimension of Ω(log 𝑛) is unavoidable. Thus, we need
to depart from the assumption of independence and focus on being more careful with our
construction. Fortunately, there is a light handed way to achieve this using a tool call the
Lovasz Local Lemma (LLL).

Theorem 1.4.3. Let 𝒜1, . . . , 𝐴𝑛 be events in some probability space. Let 𝐺(𝑉,𝐸) be
a graph on 𝑛 vertices with degree at most 𝑑, with each vertex 𝑖 corresponding to an
event 𝒜𝑖. Assume that for any 𝑖 = 1, . . . , 𝑛:

P[𝒜𝑖|
∧
𝑗∈𝑄

¬𝒜𝑗] ≤ 𝑝 (1.19)

for all 𝑄 ⊆ {𝑗 : (𝐴𝑖, 𝐴𝑗) /∈ 𝐸(𝐺)}. Then,

𝑝 ≤ 1

𝑒(𝑑+ 1)
⇒ P[

𝑛∧
𝑖=1

¬𝒜𝑖] > 0 (1.20)

The lemma shows only the existence of random choices such that the probability of
the joint event is greater than zero, but doesn’t give a guide of how to find such choices.
Fortunately, there are algorithmic versions of the Lovasz Local Lemma that can achieve this
and they are actually an object of recent intensive theoretical investigation. To carry this
approach forward we need:

1. Impose structure: so that we can bound the degree of the dependency graph of the
events of interest.

2. Tensorization: make sure that the probability is large enough so that the condition
of the LLL are satisfied.

Controlling Dependences First, let us define the event of interests. Let 𝒜𝑡(𝑢, 𝑣) be the
event that the Distribution lemma succeeds succeeds at scale 𝑡 for the pair 𝑢, 𝑣 ∈ 𝑉 , i.e,
there are at least Θ(𝑅) coordinates 𝑖 ≤ 𝑅 that the lower bound on distance of (𝑢, 𝑣) is true,
and 𝒜(𝑢, 𝑣) =

∧𝑚
𝑡=1 𝒜𝑡(𝑢, 𝑣) be the event that it succeeds for all 𝑡 ∈ [𝑚]. The event of interest

is that 𝒜 =
∧

𝑢,𝑣∈𝑉 𝒜(𝑢, 𝑣).

∙ Dependency radius: A natural idea is to use the fact that we are looking only to preserve
distances “around” 𝑘-neighborhoods. In particular, observe that the event 𝒜(𝑢, 𝑣)
depend on the inclusion of points in 𝐵(𝑢, 𝑑(𝑢, 𝑣))∪𝐵(𝑣, 𝑑(𝑢, 𝑣)) ⊆ 𝐵(𝑢, 2𝑑(𝑢, 𝑣)). Thus
if two events 𝒜(𝑢, 𝑣), 𝒜(𝑥, 𝑦) are independent if 𝐵(𝑢, 2𝑑(𝑢, 𝑣)) ∩𝐵(𝑥, 2𝑑(𝑥, 𝑦)) = ∅.
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∙ Structure: in order to make these balls disjoint between most pairs (𝑢, 𝑣), (𝑥, 𝑦) and
the resulting events independent, we will only be concern with pairs that are far away
from the boundary of the 𝑘-neigborhoods, i.e.,

∀𝑢, 𝑣 ∈ 𝑉, 𝑑(𝑢, 𝑣) ≤ 𝑟𝑘(𝑢)/8 (1.21)

Lemma 1.4.4. Let 𝐺 be the graph with nodes 𝑈 = {(𝑢, 𝑣)|𝑑(𝑢, 𝑣) ≤ 𝑟𝑘(𝑢)/8} and edges
𝐸 = {{(𝑢, 𝑣), (𝑥, 𝑦)}|𝑢 ∈ 𝑁̄𝑘(𝑥)} (both belong in the 𝑘-neigborhood). The degree of this graph
is bounded by 𝑘2 and all events not connected by an edge are independent.

Proof. Since there are at most 𝑘 points 𝑢 ∈ 𝑁̄𝑘(𝑥) and each 𝑢 has at most 𝑘 points 𝑣 such
that 𝑑(𝑢, 𝑣) ≤ 𝑟𝑘(𝑢), any event 𝒜(𝑢, 𝑣) is connected to at most 𝑘2 other events. To show
that the events are independent it is sufficient to show that the balls are disjoint.

∙ Assume that 𝑟𝑘(𝑥) ≤ 2𝑑(𝑥, 𝑢) and𝑟𝑘(𝑢) ≤ 2𝑑(𝑢, 𝑥).

2(𝑑(𝑢, 𝑣) + 𝑑(𝑥, 𝑦)) ≤ 1

4
(𝑟𝑘(𝑢) + 𝑟𝑘(𝑥)) ≤

1

2
(𝑑(𝑢, 𝑥) + 𝑑(𝑢, 𝑥)) = 𝑑(𝑢, 𝑥)

∙ The assumption is true (Proof by contradiction).

Bounding the probability of an individual event Using Chernoff bounds we can prove
that using 𝑐/12 log 𝑘 independent maps, each event 𝐴𝑡(𝑢, 𝑣) is not satisified with probability
at most 𝑘−4. Taking a union bound among the 𝑚 ≤ 𝑘 values we get that 𝑝 ≤ 𝑘−3 and hence
we have satisfied the conditions of the LLL.

How can we handle larger distances 𝑟𝑘/8 < 𝑑(𝑢, 𝑣) ≤ 𝑟𝑘?

Non-Frechet Embedding

The main impediment in handling all distance of interest is that beyond that we do not
control the dependencies that our distributional lemma imposes to the events of interest.
Thus, we need to search for a distributional lemma that:

∙ Needs to handle only pairs with 𝑟𝑘(𝑢)
8

< 𝑑(𝑢, 𝑣) ≤ 𝑟𝑘(𝑢).

∙ The resulting dependency graph has degree 𝑂(𝑘2), so that we still get dimension log2(𝑘)

The fact that we have the lower bound on the distance allows us to focus on producing
partitions that are informed by this distance.

13
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Distributional lemma based on Probabilistic Partitions

∙ We first obtain a coarsening of the metric space at scale 𝑘 by partitioning the space
into clusters 𝒞 = {𝐶1, . . . , 𝐶𝑠} with centers 𝑢1, . . . , 𝑢𝑠 compactly given by a function
𝐶 : 𝒳 → 𝒞 such that

– Boundedness: the diameter of clusters is bounded by Δ𝑢𝑖
.

– Padding property: with constant probability 𝐵(𝑥, 𝜂𝑖Δ𝑢𝑖
) ⊆ 𝐶(𝑥) for a padding

parameter 𝜂 : 𝒳 → (0, 1).

∙ Coloring: the final set 𝑊𝑘 is constructed by including each cluster 𝐶1, . . . , 𝐶𝑠 with
probability 1/2.

Since, the points belong in different clusters then with constant probability exactly one of
them will not belong to 𝑊𝑘 in which case we have that:

|𝑑(𝑥,𝑊𝑘)− 𝑑(𝑦,𝑊𝑘)| ≥ 𝑑(𝑥,𝒳 ∖ 𝐶(𝑥)) ≥ 𝜂 ·𝑅 ≈ 𝜂 · 𝑑(𝑥, 𝑦)

Definition 1.5.1 (Uniformly padded Local PP): Given Δ > 0 and 0 < 𝛿 ≤ 1, let 𝒫 be a
Δ-bounded probabilistic partition of (𝒳 , 𝑑). Given a collection of functions 𝜂 = {𝜂𝐶 : 𝒳|𝐶 ∈
𝒫}, we say that 𝒫 is locally (𝜂, 𝛿)-locally padded if the event 𝐵(𝑥, 𝜂(𝑥)Δ) ⊆ 𝐶(𝑥) occurs
with probability at least 𝛿 regardless of the structure of the partition outside 𝐵(𝑥, 2Δ). We
say that 𝒫 is strongly (𝜂, 𝛿)-locally padded if for any 𝛿 ≤ 𝛿 ≤ 1, 𝒫 is (𝜂 ln(1/𝛿), 𝛿)-padded.
We say that 𝑃 is (𝜂, 𝛿)-uniformly locally padded if 𝜂 is uniform with respect to 𝒫 .

We apply a modification of the uniformly local padded decomposition on a specific se-
quence of centers carefully selected. We get a sequence of cluster 𝐶1, . . . , 𝐶𝑠. Using those
clusters we define the embedding as a summation of the functions.

𝑔𝑡(𝑥) = 𝐷̄−1/𝑝𝑑(𝑢, 𝑉 ∖ 𝐶(𝑡)(𝑥)) · 𝜎(𝐶(𝑡)(𝑥)) (1.22)

14
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Dependency Graph One of the main novelties of [ABN’15] is to bypass the random color-
ing procedure (and the concomittant dependencies that it introduces) by using an equivalent
deterministic coloring procedure.

Lemma 1.5.2 (Coloring lemma). For any integer 𝐷̄ > 1 and 𝛿 ∈ (Ω(1/𝐷̄), 1/2] there exists
a set 𝑆 ⊆ {−1,+1}𝐷̄, |𝑆| ≥ 2𝐷̄(1−𝐻(𝛿))/2 (entropy), such that for any 𝑢 ̸= 𝑣 ∈ 𝑆 the hamming
distance is at least 𝛿𝐷̄.

Beyond Bourgains approach: Randomized Nash Device

For any 𝑥, 𝜔 ∈ R𝑑 and 𝜎 > 0 let 𝜑(𝑥, 𝜎, 𝜔) := 1
𝜎

ñ
cos(𝜎𝜔⊤𝑥)
sin(𝜎𝜔⊤𝑥)

ô
be a two dimensional map, that

has the following two properties:

|𝜑(𝑥, 𝜎, 𝜔)− 𝜑(𝑦, 𝜎, 𝜔)|2 = 2𝜎−2(1− cos(𝜎𝜔⊤(𝑥− 𝑦))) (1.23)

E[|𝜑(𝑥, 𝜎, 𝜔)− 𝜑(𝑦, 𝜎, 𝜔)|2] = 2𝜎−2

Ç
1− exp

Ç
−1

2
𝜎2‖𝑥− 𝑦‖2

åå
(1.24)

Randomized Nash Device Let 𝜎1, . . . , 𝜎𝐷 ∈ (0, 𝜎𝑚) and 𝜔1, . . . , 𝜔𝐷 be samples
from a 𝑑-dimensional gaussian 𝑁(0, 𝐼𝑑). Define the map:

Θ(𝑥) =
1√
𝐷

𝐷⊕
𝑡=1

𝜑(𝑥, 𝜎𝑡, 𝜔𝑡) (1.25)

Lemma 1.6.1. Let 𝜖 ∈ (0, 1/2) and 𝑥, 𝑦 ∈ R𝑑:

∙ ‖Θ(𝑥)−Θ(𝑦)‖2 ≤ (1 + 𝜖)‖𝑥− 𝑦‖2 with probability greater than 1− exp(−𝐷
2
( 𝜖

2

2
− 𝜖3

3
))

∙ if ‖𝑥 − 𝑦‖ ≤
√
𝜖

𝜎𝑚
, ‖Θ(𝑥) − Θ(𝑦)‖2 ≥ (1 − 𝜖)‖𝑥 − 𝑦‖2 with probability greater than

1− exp(−3𝐷𝜖2

128
).

∙ if ‖𝑥− 𝑦‖ ≥ 1√
2𝜎𝑚

, ‖Θ(𝑥)−Θ(𝑦)‖2 ≥ 1
4𝜎2

𝑚
with probability greater than 1− exp(− 𝐷

128
).
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