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Applications of KDE

KDEg(x Z wy - Ko (x,y)
yeP

Numerous applications in Machine Learning and Statistics:
Mode Estimation
Outlier Detection
Local Regression
Density based Clustering/Classification
Kernel Methods: k-PCA k-ridge regression, RKHS
@ Topological Data analysis.
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Applications of KDE
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Numerous applications in Machine Learning and Statistics:
Mode Estimation
Outlier Detection
Local Regression
Density based Clustering/Classification
Kernel Methods: k-PCA k-ridge regression, RKHS
@ Topological Data analysis.

How fast can we approximate KDEp(x)?



KDE Problem

()1, ,8)-KDE Problem

Given P C R? and a level /1 € [7, 1], design a data-structure that
for any query x€ R? answers correctly w.p at least 1 — & whether

KDEp(x) < (1 —¢€) - u or KDEp(x) > (14¢€) - i
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Low Dimensions
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m Hierarchical Space Partitions
m WSPD [Callaghan, Kosaraju'95]
m Series Expansions of Kernels

m Fast Gauss Transform

O(log “(n)) — time

m Core-sets [Phillips'11,+'17]

Credit: InSiDE ScaFaCoS

log n )

Curse of Dimensionality d = Q(log log 1
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High Dimensions

1 = KDEp(x PZny
‘ ’yGP

Random Sampling solves (., ¢, )-KDE problem in O(%}2 Iog(%)).
Proof: Variance calculation
51
E[Zks] = 2] Z K2(x,y) \P] Z K(x,y) (E[ZRS])
yeP yerP

Median-of-Means technique finishes the proof [



KDE Problem
High Dimensions

1
1t = KDEp(x) = o > K(xy)
yerP

Random Sampling solves (/¢, ¢, d)-KDE problem in O(%}2 Iog(%)).

Random Sampling was state of the art!



KDE Problem

Lower bounds (/, ,d)-KDE Problem

Any data structure in the cell probe model with m cells, wordsize

w < % that is correct with probability > % using a single probe

satisfies: m-w = Q(%)
m Lower bound against adaptive coresets — (S, x)
m For 1-probe random sampling is optimal.
m Holds only for the Gaussian kernel.
: : — O los(1/n)
m Reduce hard instances for c-ANN with ¢ = O( I‘;gg(l/é)) and
d = Q(log>(n)).
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KDE Problem

Main Result

There exists a data-structure based on hashing that requires space

OR(n—T) that solves the (e, /1, §)-KDE Problem for any 1 € [7,1]
using OR(%T) time, where R = diam(P U {x})

Gaussian  Exponential  Generalized t-Student

—|Ix—y]? —|lx— 1
e lx—yI2 amlx—yll 1
IHx—yl*

m //-improvement over Random Sampling.

m Adaptively estimate /.
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KDE Problem

Upper bound

Unbiased Estimator = Importance sampling
Assuming p is known = Bound variance (Holder-type ineq.)
Take enough samples to lower variance = Median-of-means

Deal with 1 unknown = Adaptive mean relaxation (general)
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Simplified view

For each x; € P and query x let w; := K(x, x;).
Approximate KDEp(x) < Approximate > " | w;
1

P
m Issue: if small number of weights have large contribution.

m Random sampling samples each point with prob.

Build a better sampler!
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Importance Sampling

Importance Sampling (IS)

m Black box @ returns index i with probability g;.
m Unbiased estimator
Zl = Ma I ~Q
qi

2
. w: . .
m Variance Y7, o minimized for g; o< w; = K,(x, X;).
1

How to efficiently get such sampling probabilities g(x, y)
for every query xe R9?



Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

+40.28

40.12

0.08

0.04

0.00




Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

0.28

0.24

0.20

0.16

0.12



Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

~40.28

10.24

40.20

—10.16

~40.12

0.08

0.04

0.00




Importance Sampling
Adaptive Sampling Probabilities

-4 -2 0 2 4
X

Locality Sensitive Hashing [IM'98][DIIM’04][AI'06]!
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Locality Sensitive Hashing

m Hash family 7, e.g. h, (x) = [< 25

w

m Distribution v, e.g. w ~ N(0,/y),u ~ [0, w|
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Hashing-Based-Estimators

Locality Sensitive Hashing

m Hash family H, e.g. hy,u(x) = [<2HY]
Bner m Collision probability

Lower
Upper

p(x,y) = Ppon[h(x) = h(y)]

m Monotone function f such

p(x,y) = F(llx = ylI)

LSH as Importance Sampling!
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Hashing-Based-Estimators
Importance Sampling through Hashing

Preprocessing
m Hash functions H with c.p. p(x,y) = Proy[h(x) = h(y)].
m Evaluate hy,..., hy ~ H on P.
Querying
m Conditioning: let Hi(x) :={y € P : hi(y) = hi(x)}.
m Random Sampling: pick a random index | from Hi(x)
Unbiased Estimator

Zhl (X) =

Main technical contribution - bounding the variance!
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Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

E[Z2] < sup { £ AF| |Fl < 1, 7]

< 4-[|A( {pi}s AwiD) 1,00

w,1 < N}

Quantifies Compatibility between {w;}, {p;} at level ;
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o o 0 8}
For any 3 € [%, 1] the variance of scale-free estimators is < ;ﬂ(/,’}”_g)




Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

I\/I3)

Forany g € [77 1] the variance of scale-free estimators is < p (

d=0 d=vlog(1/u)

Ny points n points



Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

I\/I3)

Forany g € [77 1] the variance of scale-free estimators is < p (

d=0 d=vlog(1/u)

Ny points n points

1
2 * _ =
Var < p O(MB+M1_B):>B =
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Scale-free Estimators through LSH

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH
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e~Ix=yI*  gO(R3loglogn)  Ba|| Carving [AI'06]
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Scale-free Estimators through LSH

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

4
e~Ix=yI*  gO(R3loglogn)  Ba|| Carving [AI'06]
eIyl (/e Euclidean [Datar et al'04]
e 3P/2 Euclidean [Datar et al'04]
1+([x—y|l3

General framework that applies to other problems!



Conclusion

Future work

m Partition function approximation with M. Charikar [upcoming]

m General polynomial kernels using different techniques
with A. Backurs, M. Charikar, P. Indyk [upcoming]

m Data-dependent hashing [in progress]



Conclusion
Open problems

m Open: Statistical or Offline setting
m Open: Importance sampling for RFF? [AKMMVZ, ICML'17]

m Open: Lower bounds!

Thank Youl

psimin@stanford.edu
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