
KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Hashing-Based-Estimators for
Kernel Density in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling for
Kernel Density in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling for
Kernel Density in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling for
Approximating Structured Sums

in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling for
Approximating Structured Sums

in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimation

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Kernel Density Estimate

Kσ(x , y) = exp
(
−‖x−y‖2

σ2

)

σ1 = 1
2 · std σ2 = 3

4 · std σ3 = std

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Applications of KDE

KDEw
P (x) :=

∑
y∈P

wy · Kσ(x, y)

Numerous applications in Machine Learning and Statistics:

1 Mode Estimation

2 Outlier Detection

3 Local Regression

4 Density based Clustering/Classification

5 Kernel Methods: k-PCA,k-ridge regression, RKHS

6 Topological Data analysis.

How fast can we approximate KDEP(x)?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Applications of KDE

KDEw
P (x) :=

∑
y∈P

wy · Kσ(x, y)

Numerous applications in Machine Learning and Statistics:

1 Mode Estimation

2 Outlier Detection

3 Local Regression

4 Density based Clustering/Classification

5 Kernel Methods: k-PCA,k-ridge regression, RKHS

6 Topological Data analysis.

How fast can we approximate KDEP(x)?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

(µ, ε, δ)-KDE Problem

Given P ⊂ Rd and a level µ ∈ [τ , 1], design a data-structure that
for any query x∈ Rd answers correctly w.p at least 1− δ whether

KDEP(x) ≤ (1− ε) · µ or KDEP(x) ≥ (1 + ε) · µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Low Dimensions

Fast Multipole Methods [Barnes-Hut’1985][Greengard-Röglin’87]

Credit: InSiDE ScaFaCoS

Hierarchical Space Partitions

WSPD [Callaghan, Kosaraju’95]

Series Expansions of Kernels

Fast Gauss Transform

O(log d(n))− time

Core-sets [Phillips’11,+’17]

Curse of Dimensionality d = Ω(log n
log log n)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Low Dimensions

Fast Multipole Methods [Barnes-Hut’1985][Greengard-Röglin’87]

Credit: InSiDE ScaFaCoS

Hierarchical Space Partitions

WSPD [Callaghan, Kosaraju’95]

Series Expansions of Kernels

Fast Gauss Transform

O(log d(n))− time

Core-sets [Phillips’11,+’17]

Curse of Dimensionality d = Ω(log n
log log n)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Low Dimensions

Fast Multipole Methods [Barnes-Hut’1985][Greengard-Röglin’87]

Credit: InSiDE ScaFaCoS

Hierarchical Space Partitions

WSPD [Callaghan, Kosaraju’95]

Series Expansions of Kernels

Fast Gauss Transform

O(log d(n))− time

Core-sets [Phillips’11,+’17]

Curse of Dimensionality d = Ω(log n
log log n)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Low Dimensions

Fast Multipole Methods [Barnes-Hut’1985][Greengard-Röglin’87]

Credit: InSiDE ScaFaCoS

Hierarchical Space Partitions

WSPD [Callaghan, Kosaraju’95]

Series Expansions of Kernels

Fast Gauss Transform

O(log d(n))− time

Core-sets [Phillips’11,+’17]

Curse of Dimensionality d = Ω(log n
log log n)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O(1
µ

1
ε2

log(1δ)).

Proof: Variance calculation

E[Z 2
RS] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Lower bounds (µ, ε, δ)-KDE Problem

Theorem 1 [Charikar, S’17]

Any data structure in the cell probe model with m cells, wordsize
w ≤ 1

µ , that is correct with probability > 1
2 using a single probe

satisfies: m · w = Ω(1
µ).

Lower bound against adaptive coresets → f (S , x)

For 1-probe random sampling is optimal.

Holds only for the Gaussian kernel.

Reduce hard instances for c-ANN with c = O(log(1/µ)log(1/ε)) and

d = Ω(log3(n)).

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Main Result

Theorem 2 [Charikar, S.’17]

There exists a data-structure based on hashing that requires space
ÕR(n 1√

τ
1
ε2

) that solves the (ε, µ, δ)-KDE Problem for any µ ∈ [τ , 1]

using ÕR(1√
µ

1
ε2

) time, where R = diam(P ∪ {x})

Gaussian Exponential Generalized t-Student

e−‖x−y‖
2

e−‖x−y‖ 1
1+‖x−y‖t

√
µ-improvement over Random Sampling.

Adaptively estimate µ.

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Main Result

Theorem 2 [Charikar, S.’17]

There exists a data-structure based on hashing that requires space
ÕR(n 1√

τ
1
ε2

) that solves the (ε, µ, δ)-KDE Problem for any µ ∈ [τ , 1]

using ÕR(1√
µ

1
ε2

) time, where R = diam(P ∪ {x})

Gaussian Exponential Generalized t-Student

e−‖x−y‖
2

e−‖x−y‖ 1
1+‖x−y‖t

√
µ-improvement over Random Sampling.

Adaptively estimate µ.

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Main Result

Theorem 2 [Charikar, S.’17]

There exists a data-structure based on hashing that requires space
ÕR(n 1√

τ
1
ε2

) that solves the (ε, µ, δ)-KDE Problem for any µ ∈ [τ , 1]

using ÕR(1√
µ

1
ε2

) time, where R = diam(P ∪ {x})

Gaussian Exponential Generalized t-Student

e−‖x−y‖
2

e−‖x−y‖ 1
1+‖x−y‖t

√
µ-improvement over Random Sampling.

Adaptively estimate µ.

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Main Result

Theorem 2 [Charikar, S.’17]

There exists a data-structure based on hashing that requires space
ÕR(n 1√

τ
1
ε2

) that solves the (ε, µ, δ)-KDE Problem for any µ ∈ [τ , 1]

using ÕR(1√
µ

1
ε2

) time, where R = diam(P ∪ {x})

Gaussian Exponential Generalized t-Student

e−‖x−y‖
2

e−‖x−y‖ 1
1+‖x−y‖t

√
µ-improvement over Random Sampling.

Adaptively estimate µ.

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Upper bound

1 Unbiased Estimator ⇒ Importance sampling

2 Assuming µ is known ⇒ Bound variance (Hölder-type ineq.)

3 Take enough samples to lower variance ⇒ Median-of-means

4 Deal with µ unknown ⇒ Adaptive mean relaxation (general)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Upper bound

1 Unbiased Estimator ⇒ Importance sampling

2 Assuming µ is known ⇒ Bound variance (Hölder-type ineq.)

3 Take enough samples to lower variance ⇒ Median-of-means

4 Deal with µ unknown ⇒ Adaptive mean relaxation (general)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Upper bound

1 Unbiased Estimator ⇒ Importance sampling

2 Assuming µ is known ⇒ Bound variance (Hölder-type ineq.)

3 Take enough samples to lower variance ⇒ Median-of-means

4 Deal with µ unknown ⇒ Adaptive mean relaxation (general)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Upper bound

1 Unbiased Estimator ⇒ Importance sampling

2 Assuming µ is known ⇒ Bound variance (Hölder-type ineq.)

3 Take enough samples to lower variance ⇒ Median-of-means

4 Deal with µ unknown ⇒ Adaptive mean relaxation (general)

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Simplified view

For each xi ∈ P and query x let wi := K (x, xi).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Simplified view

For each xi ∈ P and query x let wi := K (x, xi).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Simplified view

For each xi ∈ P and query x let wi := K (x, xi).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Simplified view

For each xi ∈ P and query x let wi := K (x, xi).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Simplified view

For each xi ∈ P and query x let wi := K (x, xi).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling (IS)

Black box Q returns index i with probability qi .

Unbiased estimator

ZI =
wI

qI
, I ∼ Q

Variance
∑n

i=1
w2
i

qi
minimized for qi ∝ wi = Kσ(x, xi).

How to efficiently get such sampling probabilities q(x, y)
for every query x∈ Rd?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling (IS)

Black box Q returns index i with probability qi .

Unbiased estimator

ZI =
wI

qI
, I ∼ Q

Variance
∑n

i=1
w2
i

qi
minimized for qi ∝ wi = Kσ(x, xi).

How to efficiently get such sampling probabilities q(x, y)
for every query x∈ Rd?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling (IS)

Black box Q returns index i with probability qi .

Unbiased estimator

ZI =
wI

qI
, I ∼ Q

Variance
∑n

i=1
w2
i

qi
minimized for qi ∝ wi = Kσ(x, xi).

How to efficiently get such sampling probabilities q(x, y)
for every query x∈ Rd?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling (IS)

Black box Q returns index i with probability qi .

Unbiased estimator

ZI =
wI

qI
, I ∼ Q

Variance
∑n

i=1
w2
i

qi
minimized for qi ∝ wi = Kσ(x, xi).

How to efficiently get such sampling probabilities q(x, y)
for every query x∈ Rd?

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Adaptive Sampling Probabilities

Locality Sensitive Hashing [IM’98][DIIM’04][AI’06]!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Adaptive Sampling Probabilities

Locality Sensitive Hashing [IM’98][DIIM’04][AI’06]!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Adaptive Sampling Probabilities

Locality Sensitive Hashing [IM’98][DIIM’04][AI’06]!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Adaptive Sampling Probabilities

Locality Sensitive Hashing [IM’98][DIIM’04][AI’06]!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Hashing-Based-Estimators

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling through Hashing

Preprocessing

Hash functions H with c.p. p(x, y) = Ph∼H[h(x) = h(y)].

Evaluate h1, . . . , hm ∼ H on P.

Querying

Conditioning: let H1(x) := {y ∈ P : h1(y) = h1(x)}.
Random Sampling: pick a random index I from H1(x)

Unbiased Estimator

Zh1(x) =
K (x, xI)
p(x,xI)
|H1(x)|

Main technical contribution - bounding the variance!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling through Hashing

Preprocessing

Hash functions H with c.p. p(x, y) = Ph∼H[h(x) = h(y)].

Evaluate h1, . . . , hm ∼ H on P.

Querying

Conditioning: let H1(x) := {y ∈ P : h1(y) = h1(x)}.
Random Sampling: pick a random index I from H1(x)

Unbiased Estimator

Zh1(x) =
K (x, xI)
p(x,xI)
|H1(x)|

Main technical contribution - bounding the variance!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling through Hashing

Preprocessing

Hash functions H with c.p. p(x, y) = Ph∼H[h(x) = h(y)].

Evaluate h1, . . . , hm ∼ H on P.

Querying

Conditioning: let H1(x) := {y ∈ P : h1(y) = h1(x)}.
Random Sampling: pick a random index I from H1(x)

Unbiased Estimator

Zh1(x) =
K (x, xI)
p(x,xI)
|H1(x)|

Main technical contribution - bounding the variance!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Importance Sampling through Hashing

Preprocessing

Hash functions H with c.p. p(x, y) = Ph∼H[h(x) = h(y)].

Evaluate h1, . . . , hm ∼ H on P.

Querying

Conditioning: let H1(x) := {y ∈ P : h1(y) = h1(x)}.
Random Sampling: pick a random index I from H1(x)

Unbiased Estimator

Zh1(x) =
K (x, xI)
p(x,xI)
|H1(x)|

Main technical contribution - bounding the variance!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Variance of HBE

E[Z 2
h] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators

We then study (β,M) scale-free estimators

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 4 [Charikar, S’17]

For any β ∈ [12 , 1] the variance of scale-free estimators is ≤ µ2(M3

µ1−β)

Var ≤ µ2O(
1

µβ
+

1

µ1−β
)⇒ β∗ =

1

2

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators

We then study (β,M) scale-free estimators

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 4 [Charikar, S’17]

For any β ∈ [12 , 1] the variance of scale-free estimators is ≤ µ2(M3

µ1−β)

Var ≤ µ2O(
1

µβ
+

1

µ1−β
)⇒ β∗ =

1

2

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators

We then study (β,M) scale-free estimators

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 4 [Charikar, S’17]

For any β ∈ [12 , 1] the variance of scale-free estimators is ≤ µ2(M3

µ1−β)

Var ≤ µ2O(
1

µβ
+

1

µ1−β
)⇒ β∗ =

1

2

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators

We then study (β,M) scale-free estimators

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 4 [Charikar, S’17]

For any β ∈ [12 , 1] the variance of scale-free estimators is ≤ µ2(M3

µ1−β)

Var ≤ µ2O(
1

µβ
+

1

µ1−β
)⇒ β∗ =

1

2

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators through LSH

Theorem 5 [Charikar, S.’17]

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Scale-free Estimators through LSH

Theorem 5 [Charikar, S.’17]

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Future work

Partition function approximation with M. Charikar [upcoming]

General polynomial kernels using different techniques
with A. Backurs, M. Charikar, P. Indyk [upcoming]

Data-dependent hashing [in progress]

KDE Problem Importance Sampling Hashing-Based-Estimators Conclusion

Open problems

Open: Statistical or Offline setting

Open: Importance sampling for RFF? [AKMMVZ, ICML’17]

Open: Lower bounds!

Thank You!
psimin@stanford.edu

	KDE Problem
	Importance Sampling
	Hashing-Based-Estimators
	Conclusion

