Hashing-Based-Estimators for
Kernel Density in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 © Berkeley, CA

Oct 17, 2017

Importance Sampling for
Kernel Density in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 © Berkeley, CA

Oct 17, 2017

Importance Sampling for
in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 © Berkeley, CA

Oct 17, 2017

Importance Sampling for

in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

Importance Sampling for

in High Dimensions

Moses Charikar Paris Siminelakis

Stanford University

FOCS 2017 @ Berkeley, CA

Oct 17, 2017

Density Estimation

Given P = {x3,

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

.., Xn} CRY

Density Estimation

Given P = {x1,...,%X,} C R? sampled from D,

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Density Estimation

Given P = {x3,.

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

.., Xn} C RY sampled from D, what is the
probability of a point x € R9?

Density Estimation

Given P = {x3,.

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

.., Xn} C RY sampled from D, what is the
probability of a point x € R9?

KDE Problem

Kernel Density Estimation

KDE Problem

Kernel Density Estimate

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

dataset P C RY,

KDE Problem

Kernel Density Estimate

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

*
g

dataset P C R?, kernel K, : RY x R? — [0, 1],

KDE Problem

Kernel Density Estimate

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

dataset P C R?, kernel K, : RY x RY — [0, 1], query x

KDE Problem

Kernel Density Estimate

0.14

= 0.14
012 012
010 0.10
0.08 0.08
0.06 o) 0.06
0.04 a 0.04
0.02 0.02
0.00

0.00

dataset P C R?, kernel K, : RY x RY — [0, 1], query x

KDEp(x Z K, (x,y)
yeP

KDE Problem

Kernel Density Estimate

0.14

= 0.14
012 012
010 0.10
0.08 0.08
0.06 7) 0.06
0.04 & 0.04
0.02 0.02
0.00

dataset P C R?, kernel K, : RY x RY — [0, 1], query x

KDEp(x Z K, (x,y)
yeP

KDE Problem

Kernel Density Estimate

o3 = std
dataset P C R?, kernel K, : RY x RY — [0, 1], query x

KDEp(x Z K, (x,y)
yeP

KDE Problem

Applications of KDE

KDEg(x Z wy - Ko (x,y)
yeP

Numerous applications in Machine Learning and Statistics:
Mode Estimation
Outlier Detection
Local Regression
Density based Clustering/Classification
Kernel Methods: k-PCA k-ridge regression, RKHS
@ Topological Data analysis.

KDE Problem

Applications of KDE

KDEg(x Z wy - Ko (x,y)
yeP

Numerous applications in Machine Learning and Statistics:
Mode Estimation
Outlier Detection
Local Regression
Density based Clustering/Classification
Kernel Methods: k-PCA k-ridge regression, RKHS
@ Topological Data analysis.

How fast can we approximate KDEp(x)?

KDE Problem

()1, ,8)-KDE Problem

Given P C R? and a level /1 € [7, 1], design a data-structure that
for any query x€ R? answers correctly w.p at least 1 — & whether

KDEp(x) < (1 —¢€) - u or KDEp(x) > (14¢€) - i

KDE Problem

Low Dimensions

Fast Multipole Methods [Barnes-Hut'1985][Greengard-Roglin'87]

m Hierarchical Space Partitions
m WSPD [Callaghan, Kosaraju'95]

m Series Expansions of Kernels

Credit: InSiDE ScaFaCoS

KDE Problem

Low Dimensions

Fast Multipole Methods [Barnes-Hut'1985][Greengard-Roglin'87]

m Hierarchical Space Partitions
m WSPD [Callaghan, Kosaraju'95]
m Series Expansions of Kernels

m Fast Gauss Transform

O(log “(n)) — time

Credit: InSiDE ScaFaCoS

KDE Problem

Low Dimensions

Fast Multipole Methods [Barnes-Hut'1985][Greengard-Roglin'87]

Credit: InSiDE ScaFaCoS

m Hierarchical Space Partitions
m WSPD [Callaghan, Kosaraju'95]
m Series Expansions of Kernels

m Fast Gauss Transform
O(log “(n)) — time

m Core-sets [Phillips'11,+'17]

KDE Problem

Low Dimensions

Fast Multipole Methods [Barnes-Hut'1985][Greengard-Roglin'87]

m Hierarchical Space Partitions
m WSPD [Callaghan, Kosaraju'95]
m Series Expansions of Kernels

m Fast Gauss Transform

O(log “(n)) — time

m Core-sets [Phillips'11,+'17]

Credit: InSiDE ScaFaCoS

log n)

Curse of Dimensionality d = Q(log log 1

KDE Problem
High Dimensions

1
1 = KDEp(x) = o > K(x,y)
yerP

KDE Problem
High Dimensions

1
1 = KDEp(x) = o > K(xy)
yerP

Random Sampling solves (., ¢,)-KDE problem in O(%}2 Iog(%)).

KDE Problem
High Dimensions

1
1 = KDEp(x) = o > K(xy)
yerP

Random Sampling solves (., ¢,)-KDE problem in O(%}2 Iog(%)).

Proof: Variance calculation

1
E[Zgs] = 2] > K(x,y)
yer

KDE Problem
High Dimensions

1 = KDEp(x PZny
‘ ’yGP

Random Sampling solves (., ¢,)-KDE problem in O(%}2 Iog(%)).

Proof: Variance calculation

E[ZRS] ‘P’ZK2X}/ ‘P’ZKXy
yeP yerP

KDE Problem
High Dimensions

1 = KDEp(x PZny
‘ ’yGP

Random Sampling solves (., ¢,)-KDE problem in O(%}2 Iog(%)).

Proof: Variance calculation

51
E[Zks] = 2] Z K2(x,y) \P] Z K(x,y) (E[ZRS])
yeP yerP

KDE Problem
High Dimensions

1 = KDEp(x PZny
‘ ’yGP

Random Sampling solves (., ¢,)-KDE problem in O(%}2 Iog(%)).
Proof: Variance calculation
51
E[Zks] = 2] Z K2(x,y) \P] Z K(x,y) (E[ZRS])
yeP yerP

Median-of-Means technique finishes the proof [

KDE Problem
High Dimensions

1
1t = KDEp(x) = o > K(xy)
yerP

Random Sampling solves (/¢, ¢, d)-KDE problem in O(%}2 Iog(%)).

Random Sampling was state of the art!

KDE Problem

Lower bounds (/, ,d)-KDE Problem

Any data structure in the cell probe model with m cells, wordsize

w < % that is correct with probability > % using a single probe

satisfies: m-w = Q(%)
m Lower bound against adaptive coresets — (S, x)
m For 1-probe random sampling is optimal.
m Holds only for the Gaussian kernel.
: : — O los(1/n)
m Reduce hard instances for c-ANN with ¢ = O(I‘;gg(l/é)) and
d = Q(log>(n)).

KDE Problem

Main Result

There exists a data-structure based on hashing that requires space

OR(n—T) that solves the (e, /1, §)-KDE Problem for any 1 € [7,1]
?2) time, where R = diam(P U {x})

using OR(\ m

KDE Problem

Main Result

There exists a data-structure based on hashing that requires space

OR(n—T) that solves the (e, /1, §)-KDE Problem for any 1 € [7,1]
7/?2) time, where R = diam(P U {x})

using OR(\

Gaussian Exponential Generalized t-Student

—|Ix—y]? —|lx— 1
e lx—yI2 amlx—yll 1
IHx—yl*

KDE Problem

Main Result

There exists a data-structure based on hashing that requires space

OR(n—T) that solves the (e, /1, §)-KDE Problem for any 1 € [7,1]
7/?2) time, where R = diam(P U {x})

using OR(\

Gaussian Exponential Generalized t-Student

—|Ix—y]? —|lx— 1
e lx—yI2 amlx—yll 1
IHx—yl*

m //-improvement over Random Sampling.

KDE Problem

Main Result

There exists a data-structure based on hashing that requires space

OR(n—T) that solves the (e, /1, §)-KDE Problem for any 1 € [7,1]
using OR(%T) time, where R = diam(P U {x})

Gaussian Exponential Generalized t-Student

—|Ix—y]? —|lx— 1
e lx—yI2 amlx—yll 1
IHx—yl*

m //-improvement over Random Sampling.

m Adaptively estimate /.

KDE Problem

Upper bound

Unbiased Estimator = Importance sampling

KDE Problem

Upper bound

Unbiased Estimator = Importance sampling

Assuming p is known = Bound variance (Holder-type ineq.)

KDE Problem

Upper bound

Unbiased Estimator = Importance sampling
Assuming p is known = Bound variance (Holder-type ineq.)

Take enough samples to lower variance = Median-of-means

KDE Problem

Upper bound

Unbiased Estimator = Importance sampling
Assuming p is known = Bound variance (Holder-type ineq.)
Take enough samples to lower variance = Median-of-means

Deal with 1 unknown = Adaptive mean relaxation (general)

Importance Sampling

Importance Sampling

Simplified view

For each x; € P and query x let w; := K(x, x;).

Importance Sampling

Simplified view

For each x; € P and query x let w; := K(x, x;).

Approximate KDEp(x) < Approximate > " | w;

Importance Sampling

Simplified view

For each x; € P and query x let w; := K(x, x;).
Approximate KDEp(x) < Approximate > " | w;

m Random sampling samples each point with prob. ﬁ

Importance Sampling

Simplified view

For each x; € P and query x let w; := K(x, x;).
Approximate KDEp(x) < Approximate > " | w;
1

P
m Issue: if small number of weights have large contribution.

m Random sampling samples each point with prob.

Importance Sampling

Simplified view

For each x; € P and query x let w; := K(x, x;).
Approximate KDEp(x) < Approximate > " | w;
1

P
m Issue: if small number of weights have large contribution.

m Random sampling samples each point with prob.

Build a better sampler!

Importance Sampling

Importance Sampling (IS)

m Black box @ returns index i with probability g;.

Importance Sampling

Importance Sampling (IS)

m Black box @ returns index i with probability g;.
m Unbiased estimator
Zl = Ma I ~Q
qi

Importance Sampling

Importance Sampling (IS)

m Black box @ returns index i with probability g;.
m Unbiased estimator
Zl = Ma I ~Q
qi

2
. w: . .
m Variance Y7, o minimized for g; o< w; = K,(x, X;).
1

Importance Sampling

Importance Sampling (IS)

m Black box @ returns index i with probability g;.
m Unbiased estimator
Zl = Ma I ~Q
qi

2
. w: . .
m Variance Y7, o minimized for g; o< w; = K,(x, X;).
1

How to efficiently get such sampling probabilities g(x, y)
for every query xe R9?

Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

+40.28

40.12

0.08

0.04

0.00

Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

0.28

0.24

0.20

0.16

0.12

Importance Sampling

Adaptive Sampling Probabilities

0.36

0.32

~40.28

10.24

40.20

—10.16

~40.12

0.08

0.04

0.00

Importance Sampling
Adaptive Sampling Probabilities

-4 -2 0 2 4
X

Locality Sensitive Hashing [IM'98][DIIM’04][AI'06]!

Hashing-Based-Estimators

Locality Sensitive Hashing

Hashing-Based-Estimators

Locality Sensitive Hashing

m Hash family 7, e.g. h, (x) = [< 25

w

m Distribution v, e.g. w ~ N(0,/y),u ~ [0, w|

Hashing-Based-Estimators

Locality Sensitive Hashing

m Collision probability

p(x,y) = Php[h(x) = h(y)]

Hashing-Based-Estimators

Locality Sensitive Hashing

m Collision probability

p(x,y) = Php[h(x) = h(y)]

m Monotone function f such

p(x,y) = f(llx —yll)

Hashing-Based-Estimators

Locality Sensitive Hashing

m Hash family H, e.g. hy,u(x) = [<2HY]
iy m Collision probability
. p(x,y) = Phop[h(x) = h(y)]
o m Monotone function f such
) p(x,y) = f(llx —yll)

Hashing-Based-Estimators

Locality Sensitive Hashing

m Hash family H, e.g. hy,u(x) = [<2HY]
Bner m Collision probability

Lower
Upper

p(x,y) = Ppon[h(x) = h(y)]

m Monotone function f such

p(x,y) = F(llx = ylI)

LSH as Importance Sampling!

Hashing-Based-Estimators

Hashing-Based-Estimators
Importance Sampling through Hashing

Preprocessing
m Hash functions H with c.p. p(x,y) = Proy[h(x) = h(y)].
m Evaluate hy,..., hy ~ H on P.

Hashing-Based-Estimators
Importance Sampling through Hashing

Preprocessing
m Hash functions H with c.p. p(x,y) = Proy[h(x) = h(y)].
m Evaluate hy,..., hy ~ H on P.
Querying
m Conditioning: let Hi(x) :={y € P : hi(y) = hi(x)}.
m Random Sampling: pick a random index | from Hi(x)

Hashing-Based-Estimators
Importance Sampling through Hashing

Preprocessing
m Hash functions H with c.p. p(x,y) = Proy[h(x) = h(y)].
m Evaluate hy,..., hy ~ H on P.
Querying
m Conditioning: let Hi(x) :={y € P : hi(y) = hi(x)}.
m Random Sampling: pick a random index | from Hi(x)
Unbiased Estimator

Zhl (X) =

Hashing-Based-Estimators
Importance Sampling through Hashing

Preprocessing
m Hash functions H with c.p. p(x,y) = Proy[h(x) = h(y)].
m Evaluate hy,..., hy ~ H on P.
Querying
m Conditioning: let Hi(x) :={y € P : hi(y) = hi(x)}.
m Random Sampling: pick a random index | from Hi(x)
Unbiased Estimator

Zhl (X) =

Main technical contribution - bounding the variance!

Hashing-Based-Estimators
Variance of HBE

n W-2
E[Z7] =) jE[\H(X)Hi € H(x)]
i=1 ™

Hashing-Based-Estimators

Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

Hashing-Based-Estimators
Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

m Linearity of expectation: E[|H(x)[|i € H(x)] = _; w

Hashing-Based-Estimators
Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

m Linearity of expectation: E[|H(x)[|i € H(x)] = _; w
m Monotonicity: P(i,j € H(x)) < min{p;, p;}

E[Z2] < sup { £ AF| |Fls < 1,7

< 4-[|A({pi}s {wi}) 1,00

w,1 < N}

Hashing-Based-Estimators
Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

E[Z2] < sup { £ AF| |Fl < 1, 7]

< 4-[|A({pi}s AwiD) 1,00

w,1 < N}

Hashing-Based-Estimators
Variance of HBE

E[z7] =Y %E[\H(xmf € H(x)]
=1 ™!

Worst case datasets for HBE have support on two points.

E[Z2] < sup { £ AF| |Fl < 1, 7]

< 4-[|A({pi}s AwiD) 1,00

w,1 < N}

Quantifies Compatibility between {w;}, {p;} at level ;

Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

o o 0 8}
For any 3 € [%, 1] the variance of scale-free estimators is < ;ﬂ(/,’}”_g)

Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

I\/I3)

Forany g € [77 1] the variance of scale-free estimators is < p (

d=0 d=vlog(1/u)

Ny points n points

Hashing-Based-Estimators

Scale-free Estimators

We then study (3, M) scale-free estimators
M~ k(x,y)” < p(x,y) < M- k(x,y)’

I\/I3)

Forany g € [77 1] the variance of scale-free estimators is < p (

d=0 d=vlog(1/u)

Ny points n points

1
2 * _ =
Var < p O(MB+M1_B):>B =

Hashing-Based-Estimators

Scale-free Estimators through LSH

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

4
e~Ix=yI* gO(R3loglogn) Ba|| Carving [AI'06]
eIyl (/e Euclidean [Datar et al'04]

1 2) ,
T+x—y[B 3p/ Euclidean [Datar et al'04]

Hashing-Based-Estimators

Scale-free Estimators through LSH

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

4
e~Ix=yI* gO(R3loglogn) Ba|| Carving [AI'06]
eIyl (/e Euclidean [Datar et al'04]
e 3P/2 Euclidean [Datar et al'04]
1+([x—y|l3

General framework that applies to other problems!

Conclusion

Future work

m Partition function approximation with M. Charikar [upcoming]

m General polynomial kernels using different techniques
with A. Backurs, M. Charikar, P. Indyk [upcoming]

m Data-dependent hashing [in progress]

Conclusion
Open problems

m Open: Statistical or Offline setting
m Open: Importance sampling for RFF? [AKMMVZ, ICML'17]

m Open: Lower bounds!

Thank Youl

psimin@stanford.edu

	KDE Problem
	Importance Sampling
	Hashing-Based-Estimators
	Conclusion

