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Kernel Density Estimate

Kσ(x , y) = exp
(
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Applications of KDE

KDEw
P (x) :=

∑
y∈P

wy · Kσ(x, y)

Numerous applications in Machine Learning and Statistics:

1 Mode Estimation

2 Outlier Detection

3 Local Regression

4 Density based Clustering/Classification

5 Kernel Methods: k-PCA,k-ridge regression, RKHS

6 Topological Data analysis.

How fast can we approximate KDEP(x)?
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(µ, ε, δ)-KDE Problem

Given P ⊂ Rd and a level µ ∈ [τ , 1], design a data-structure that
for any query x∈ Rd answers correctly w.p at least 1− δ whether

KDEP(x) ≤ (1− ε) · µ or KDEP(x) ≥ (1 + ε) · µ
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Credit: InSiDE ScaFaCoS
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WSPD [Callaghan, Kosaraju’95]

Series Expansions of Kernels

Fast Gauss Transform

O(log d(n))− time

Core-sets [Phillips’11,+’17]

Curse of Dimensionality d = Ω( log n
log log n )
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High Dimensions

µ = KDEP(x) =
1

|P|
∑
y∈P

K (x, y)

Proposition

Random Sampling solves (µ, ε, δ)-KDE problem in O( 1
µ

1
ε2

log(1δ )).

Proof: Variance calculation

E[Z 2
RS ] =

1

|P|
∑
y∈P

K 2(x , y) ≤ 1

|P|
∑
y∈P

K (x , y) = (E[ZRS ])2
1

µ

Median-of-Means technique finishes the proof �

Random Sampling was state of the art!
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Lower bounds (µ, ε, δ)-KDE Problem

Theorem 1 [Charikar, S’17]

Any data structure in the cell probe model with m cells, wordsize
w ≤ 1

µ , that is correct with probability > 1
2 using a single probe

satisfies: m · w = Ω( 1
µ).

Lower bound against adaptive coresets → f (S , x)

For 1-probe random sampling is optimal.

Holds only for the Gaussian kernel.

Reduce hard instances for c-ANN with c = O( log(1/µ)log(1/ε) ) and

d = Ω(log3(n)).
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Main Result

Theorem 2 [Charikar, S.’17]

There exists a data-structure based on hashing that requires space
ÕR(n 1√

τ
1
ε2

) that solves the (ε, µ, δ)-KDE Problem for any µ ∈ [τ , 1]

using ÕR( 1√
µ

1
ε2

) time, where R = diam(P ∪ {x})

Gaussian Exponential Generalized t-Student

e−‖x−y‖
2

e−‖x−y‖ 1
1+‖x−y‖t

√
µ-improvement over Random Sampling.

Adaptively estimate µ.
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2 Assuming µ is known ⇒ Bound variance (Hölder-type ineq.)

3 Take enough samples to lower variance ⇒ Median-of-means

4 Deal with µ unknown ⇒ Adaptive mean relaxation (general)
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Simplified view

For each xi ∈ P and query x let wi := K (x, xi ).

Approximate KDEP(x)⇔ Approximate
∑n

i=1 wi

Random sampling samples each point with prob. 1
|P|

Issue: if small number of weights have large contribution.

Build a better sampler!
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Importance Sampling (IS)

Black box Q returns index i with probability qi .

Unbiased estimator

ZI =
wI

qI
, I ∼ Q

Variance
∑n

i=1
w2
i

qi
minimized for qi ∝ wi = Kσ(x, xi ).

How to efficiently get such sampling probabilities q(x, y)
for every query x∈ Rd?
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Locality Sensitive Hashing

Hash family H, e.g. hω,u(x) = dω>x+u
w e

Distribution ν, e.g. ω ∼ N(0, Id), u ∼ [0,w ]

Collision probability

p(x, y) = Ph∼H[h(x) = h(y)]

Monotone function f such

p(x, y) = f (‖x − y‖)

LSH as Importance Sampling!
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Hashing-Based-Estimators
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Importance Sampling through Hashing

Preprocessing

Hash functions H with c.p. p(x, y) = Ph∼H[h(x) = h(y)].

Evaluate h1, . . . , hm ∼ H on P.

Querying

Conditioning: let H1(x) := {y ∈ P : h1(y) = h1(x)}.
Random Sampling: pick a random index I from H1(x)

Unbiased Estimator

Zh1(x) =
K (x, xI )
p(x,xI )
|H1(x)|

Main technical contribution - bounding the variance!
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Variance of HBE

E[Z 2
h ] =

n∑
i=1

w2
i

pi
E[|H(x)||i ∈ H(x)]

Theorem 3 [Charikar, S.’17]

Worst case datasets for HBE have support on two points.

Linearity of expectation: E[|H(x)||i ∈ H(x)] =
∑

j
P(i ,j∈H(x))

pi
Monotonicity: P(i , j ∈ H(x)) ≤ min{pi , pj}

E[Z 2
h ] ≤ sup

{
f >Af

∣∣∣ ‖f ‖1 ≤ 1, ‖f ‖w ,1 ≤ µ
}

≤ 4 · ‖Ã(µ, {pi}, {wi})‖1,∞

Quantifies Compatibility between {wi}, {pi} at level µ
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Scale-free Estimators

We then study (β,M) scale-free estimators

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 4 [Charikar, S’17]

For any β ∈ [12 , 1] the variance of scale-free estimators is ≤ µ2( M3

µ1−β )

Var ≤ µ2O(
1

µβ
+

1

µ1−β
)⇒ β∗ =

1

2
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Scale-free Estimators through LSH

Theorem 5 [Charikar, S.’17]

There exist scale-free estimators for the following kernels.

Table : Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!
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Future work

Partition function approximation with M. Charikar [upcoming]

General polynomial kernels using different techniques
with A. Backurs, M. Charikar, P. Indyk [upcoming]

Data-dependent hashing [in progress]
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Open problems

Open: Statistical or Offline setting

Open: Importance sampling for RFF? [AKMMVZ, ICML’17]

Open: Lower bounds!

Thank You!
psimin@stanford.edu
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