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Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric
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Kernel Density Estimation

Basic idea:

Assign high value to “dense” regions of the space
Assign low value to “sparse” regions

Kernel function K : Rd × Rd → [0, 1], bandwidth σ > 0

Gaussian
kσ(x , y) = exp(−‖x − y‖2/σ2)

Exponential
kσ(x , y) = exp(−‖x − y‖2/σ)

Generalized t-student
kσ(x , y) = 1

1+‖x−y‖t/σt
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Kernel Density Estimate

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)
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Kernel Density Estimate

σ1 = 1
2 · std σ2 = 3

4 · std σ3 = std
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Kernel Density Estimation

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1] query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

Statistical problem: (P, smoothness D)⇒ Kσ

Computational problem: (P, Kσ, query x) ⇒ KDEP(x)

Problem 1: approximate KDEP(x) for any query!
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Applications of KDE

KDEw
P (x) :=

∑
y∈P

wy · Kσ(x, y)

Numerous applications in Machine Learning and Statistics:

1 Mode Estimation

2 Outlier Detection

3 Local Regression

4 Density based Clustering/Classification

5 Kernel Methods: k-PCA,k-ridge regression, RKHS

6 Topological Data analysis.
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Parition Function

Log-linear models: Ω ⊂ Rd , φ : Rd → Rd ′
(feature), w ∈ Rd ′

pw (x) =
1

Z (w)
e〈w , φ(x)〉

Normalizing constant is called the Partition function

Z (w) =

∫
Ω
e〈w ,φ(x)〉dx

Discrete approx: Q = {y1, . . . , ym}, let PFQ(w) =
∑m

i=1 e
〈w ,yi 〉

Problem 2: fast approximation to PFQ(w)!
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Applications of PFE

Hypothesis testing: w1,w2 ∈ Rd , dataset P, which one to
chose?

log

(
pw1(P)

pw2(P)

)
=

〈
w1 − w2,

n∑
i=1

φ(xi )

〉
− log

(
Z (w1)

Z (w2)

)
≥ t

Bayesian statistics: prior π, hyperparameter tuning
(Metropolis-Hastings MCMC), similar ratio.

Maximum Likelihood: L(w) = log(pw (P)), gradient

∇wL(w) ≈
∑
x∈P

φ(x)− 1

Z (w)

∑
y∈Q

φ(y)e〈w ,φ(y)〉
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Empirical Risk Minimization

Logistic Regression features x1, . . . , xn ∈ Rd , labels
y1, . . . , yn ∈ {−1,+1} , find w ∈ Rd :

min L(w) =
n∑

i=1

log
(

1 + e−yi 〈w ,xi 〉
)

Empirical Risk Minimization loss function `(〈w , yixi 〉) , find w :

min L(w) =
n∑

i=1

`(〈w , yixi 〉)
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Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!
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Three Problems: Structured Sums

Given dataset P = {x1, . . . , xn} and query w ∈ Rd :

Problem 1: Kernel Density Estimation

KDEP(w) =
1

n

n∑
i=1

K (w , xi )

Problem 2: Partition Function Estimation

PFP(w) =
1

n

n∑
i=1

e〈w ,xi 〉

Problem 3: Variance reduction in Stochastic Gradient

∇wL(w) =
n∑

i=1

{yixi`
′
(ri )}
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Unbiased estimators and Median-of-means

Let µ be the quantity we wish to approximate.

Unbiased estimator: random variable Z with E[Z ] = µ

Variance bound: let V > 0 such that E[Z 2] ≤ V · E[Z ]2

Median-of-means

Means of 6
ε2V independent realizations Z (i)

Median of 9 log( 1
δ ) such means

P[|Ẑ − µ| ≤ εµ] ≥ 1− δ

Goal: design unbiased estimators with small variance!
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Reducing the Variance

All of these problems have a common characteristic:

KDE: points closer to w have larger contribution!

PFE: points aligned with w have larger contribution

SG: points where `
′
(ri ) is larger have high norm gradients.

Importance sampling: sample proportional to the importance!

General technique to implement such schemes!
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Primer on Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = uI
qI

E[ZQ ] =
n∑

i=1

qi
ui
qi

=
n∑

i=1

ui

Variance: controlled by the quantity

E[Z 2
Q ] =

n∑
i=1

u2
i

qi
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Ideal Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Scheme that minimizes the variance satisfies:

qi ∝ ui ⇒ qi =
ui∑n
j=1 uj

Three caveats:

Each ui = k(w , xi ) is query dependent!

probabilities can vary dramatically with the query!

Importance sampling through hashing!
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Part 2:

Hashing-Based-Estimators
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Motivation: Locality Sensitive Hashing (LSH)

Colission probability: family H, distrib. ν on H,sample h ∼ ν

p(w , x) = P[h(w) = h(x)]

Locality Sensitive Hashing: used to solve ANN with hash func.

Collision probability is decreasing with distance!

Main contribution:

Use LSH to get IS scheme with provable guarantees!
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Example: Euclidean LSH

Basic principle:

close points when projected on a random line, remain close!

Euclidean LSH [Datar et al.’04]

Pick a Gaussian random vector g ∈ Rd .

Project 〈g , x〉
Add a random shift: b ∼ [0, 1]

Pick a nominal scale r > 0

hg ,b,r (x) =
⌈〈g , x〉

r
+ b
⌉

Simple and intuitive hash function. Cost O(d · n)
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Colission Probability of E2LSH

Let c = ‖x−y‖
r , using analytical arguments (isotropy, random

shift)
P[h(x) = h(y)] = f1(c)

Exponential decay: c � 1, f1(c) � 1−
√

2
π c � e

−
√

2
π
c

Polynomial decay: c ≥ 2, f1(c) � 1√
2π

1
c
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LSH as Randomized Space Partition

Close points more likely to be found in the same bucket.

Hash bucket of query ⇒ biased sample!
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Challenges

KDE problem: implement this idea we need to answer:

Given a kernel, which hashing scheme should we pick?

How should we use the information in the hash buckets?

How should we tune the parameters?

How many samples required?

Additional structure in data?

Answer: Framework of Hashing-Based-Estimators.
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Hashing-Based-Estimators

P ⊂ Rd , H, measure ν, collision probability p(x , y), kernel K

Preprocessing

Sample a number m of i.i.d. hash functions h1, . . . , hm ∼ ν.

create m hash tables H1, . . . ,Hm where Hi = hi (P)

Unbiased estimator: query w ∈ Rd we may form

let Hj(w) be the hash bucket where w maps to.

let x(j) be a uniform random point from Hj(w),

Return: Zj =
K(w ,x(j))
p(w,x(j))

|Hj (w)|

The estimator is unbiased for all w and all j = 1, . . . ,m.
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Remarks

Reservoir Sampling for each hash bucket

Sample compression: store a single point and size for all
non-empty hash buckets!

Scalability: the above operations are completely decoupled for
different j

But what can we say at this level of generality?
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Variance of HBE

query w , ui = k(w , xi ), set pi = p(w , xi ), µ = KDEP(w)

E[Z 2] =
n∑

i=1

u2
i

pi
E[|H(x)||i ∈ H(x)] ≤

n∑
i=1

n∑
j=1

u2
i

pi
min{pi , pj}

Theorem 1 [Charikar, S., FOCS’17]

Worst case datasets for HBE have support on two points.

Worsts case variance ⇒ solution to an optimization problem!

Quantifies Compatibility between {ui}, {pi} at level µ

Under no assumptions on k , p problem might be intractable

In certain cases, computing variance reduces to case analysis!
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Gaussian Kernel using Euclidean LSH

Theorem 2 [Charikar, S., FOCS’17]

There exists a HBE for the KDE under Gaussian Kernel using Eu-
clidean LSH that has variance bounded by O( 1

µ3/4 · µ2)

uniform random sampling has variance bounded by O( 1
µ · µ

2).

1
µ1/4 improvement (µ is small, e.g. µ = n−α )

Intuition: exponential decay of the E2LSH to simulate
Gaussian kernel by concatenating many hash functions!

Better estimator? Simple design principle?
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Scale-free Estimators

We introduce (β,M) scale-free property of a HBE

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 3 [Charikar, S., FOCS’17]

For any β ∈ [ 1
2 , 1] the variance of scale-free estimators is ≤ µ2(M

3

µβ
)

Var ≤ µ2O(
1

µβ
+

1

µ1−β )⇒ β∗ =
1

2
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Scale-free Estimators through LSH

Theorem 4 [Charikar, S., FOCS’17]

There exist scale-free estimators for the following kernels.

Table: Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators through LSH

Theorem 4 [Charikar, S., FOCS’17]

There exist scale-free estimators for the following kernels.

Table: Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!
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Extensions

The scale-free property quite strong and hard to achieve!

Is there any other way?

Method very sensitive to specific kernel/bandwidth:

Single data-structure for different kernels in a family?

What structural information can we exploit?
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Multi-resolution HBE

design a HBE that is scale-free for a kernel only locally
construct many such HBE to approximate scale-free property.
Sample points from each such estimator and weigh them
appropriately.

K (w , x) = e〈w ,x〉−1
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Polynomial Kernels

Constants L ≥ 1, t ≥ 0, a kernel K is (L, t)-nice if ∀w , y , x ∈ Rd :

max

{
K (w , y)

K (w , x)
,
K (w , x)

K (w , y)

}
≤ L ·max

{
‖w − y‖
‖w − x‖

,

}t

Theorem [Backurs, Charikar, Indyk, S.’17]

There exist a data structure that that can answer queries for all
(L, t)-nice kernels in time 2O(t)L log n

ε2 .

Uses Projected quadtrees on dimension O(t)!

Trade-off between computational amenability and rate of
decay.
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Localized Queries

Dataset and query Contribution to density
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KDE through ANN

Hashing-based-estimators through LSH.

Given arbitrary ANN algorithm, can we use it for KDE?

Theorem 5 [Backurs, Charikar, Indyk, S.’17]

Every c-ANN algorithm can be used to solve KDE problems for
(L, t)-radial kernels using O( 1

ε5 c
5t log2(n)) calls to ANN.
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KDE through ANN

Hashing-based-estimators through LSH.

Given arbitrary ANN algorithm, can we use it for KDE?

Theorem 5 [Backurs, Charikar, Indyk, S.’17]

Every c-ANN algorithm can be used to solve KDE problems for
(L, t)-radial kernels using O( 1

ε5 c
5t log2(n)) calls to ANN.

Spherical Inegration



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Summary

Machine learning primitives: computing query dependent
sums.

Importance sampling through Hashing-Based-Estimators.

Method of Scale-free estimators.

Polynomial kernels: simple and practical data-structure,
trade-offs between cost and resolution!
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Future work

Implementations, Applications, Benchmarks!

Analogs of Fast Multipole Methods using Doubling Dimension.

Training of Neural Networks and Random Fourier Features.
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Thank You!
psimin@stanford.edu
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