
ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Hashing-Based-Estimators for Accelerating
Machine Learning Primitives

Paris Siminelakis

Stanford University

Dawn Seminar @ Stanford, CA

Dec 13, 2017



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Outline of the talk

Part 1

1 Machine Learning Primitives:

Kernel Density Estimation
Partition Function Estimation
Stochastic Gradient

2 Importance sampling

Part 2

1 Hashing-Based-Estimators (HBE)

2 Extensions



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Outline of the talk

Part 1

1 Machine Learning Primitives:

Kernel Density Estimation
Partition Function Estimation
Stochastic Gradient

2 Importance sampling

Part 2

1 Hashing-Based-Estimators (HBE)

2 Extensions



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Outline of the talk

Part 1

1 Machine Learning Primitives:

Kernel Density Estimation
Partition Function Estimation
Stochastic Gradient

2 Importance sampling

Part 2

1 Hashing-Based-Estimators (HBE)

2 Extensions



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Outline of the talk

Part 1

1 Machine Learning Primitives:

Kernel Density Estimation
Partition Function Estimation
Stochastic Gradient

2 Importance sampling

Part 2

1 Hashing-Based-Estimators (HBE)

2 Extensions



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Outline of the talk

Part 1

1 Machine Learning Primitives:

Kernel Density Estimation
Partition Function Estimation
Stochastic Gradient

2 Importance sampling

Part 2

1 Hashing-Based-Estimators (HBE)

2 Extensions



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Part 1:

Machine Learning Primitives



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Density Estimation

Given P = {x1, . . . , xn} ⊂ Rd sampled from D, what is the
probability of a point x ∈ Rd?

Non-parametric



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

Basic idea:

Assign high value to “dense” regions of the space
Assign low value to “sparse” regions

Kernel function K : Rd × Rd → [0, 1], bandwidth σ > 0

Gaussian
kσ(x , y) = exp(−‖x − y‖2/σ2)

Exponential
kσ(x , y) = exp(−‖x − y‖2/σ)

Generalized t-student
kσ(x , y) = 1

1+‖x−y‖t/σt



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

Basic idea:

Assign high value to “dense” regions of the space
Assign low value to “sparse” regions

Kernel function K : Rd × Rd → [0, 1], bandwidth σ > 0

Gaussian
kσ(x , y) = exp(−‖x − y‖2/σ2)

Exponential
kσ(x , y) = exp(−‖x − y‖2/σ)

Generalized t-student
kσ(x , y) = 1

1+‖x−y‖t/σt



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

Basic idea:

Assign high value to “dense” regions of the space
Assign low value to “sparse” regions

Kernel function K : Rd × Rd → [0, 1], bandwidth σ > 0

Gaussian
kσ(x , y) = exp(−‖x − y‖2/σ2)

Exponential
kσ(x , y) = exp(−‖x − y‖2/σ)

Generalized t-student
kσ(x , y) = 1

1+‖x−y‖t/σt



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimate

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimate

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimate

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimate

∗Kσ⇒

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimate

σ1 = 1
2 · std σ2 = 3

4 · std σ3 = std

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1], query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1] query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

Statistical problem: (P, smoothness D)⇒ Kσ

Computational problem: (P, Kσ, query x) ⇒ KDEP(x)

Problem 1: approximate KDEP(x) for any query!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1] query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

Statistical problem: (P, smoothness D)⇒ Kσ

Computational problem: (P, Kσ, query x) ⇒ KDEP(x)

Problem 1: approximate KDEP(x) for any query!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1] query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

Statistical problem: (P, smoothness D)⇒ Kσ

Computational problem: (P, Kσ, query x) ⇒ KDEP(x)

Problem 1: approximate KDEP(x) for any query!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Kernel Density Estimation

dataset P ⊂ Rd , kernel Kσ : Rd × Rd → [0, 1] query x

KDEP(x) :=
1

|P|
∑
y∈P

Kσ(x, y)

Statistical problem: (P, smoothness D)⇒ Kσ

Computational problem: (P, Kσ, query x) ⇒ KDEP(x)

Problem 1: approximate KDEP(x) for any query!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Applications of KDE

KDEw
P (x) :=

∑
y∈P

wy · Kσ(x, y)

Numerous applications in Machine Learning and Statistics:

1 Mode Estimation

2 Outlier Detection

3 Local Regression

4 Density based Clustering/Classification

5 Kernel Methods: k-PCA,k-ridge regression, RKHS

6 Topological Data analysis.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Parition Function

Log-linear models: Ω ⊂ Rd , φ : Rd → Rd ′
(feature), w ∈ Rd ′

pw (x) =
1

Z (w)
e〈w , φ(x)〉

Normalizing constant is called the Partition function

Z (w) =

∫
Ω
e〈w ,φ(x)〉dx

Discrete approx: Q = {y1, . . . , ym}, let PFQ(w) =
∑m

i=1 e
〈w ,yi 〉

Problem 2: fast approximation to PFQ(w)!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Parition Function

Log-linear models: Ω ⊂ Rd , φ : Rd → Rd ′
(feature), w ∈ Rd ′

pw (x) =
1

Z (w)
e〈w , φ(x)〉

Normalizing constant is called the Partition function

Z (w) =

∫
Ω
e〈w ,φ(x)〉dx

Discrete approx: Q = {y1, . . . , ym}, let PFQ(w) =
∑m

i=1 e
〈w ,yi 〉

Problem 2: fast approximation to PFQ(w)!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Parition Function

Log-linear models: Ω ⊂ Rd , φ : Rd → Rd ′
(feature), w ∈ Rd ′

pw (x) =
1

Z (w)
e〈w , φ(x)〉

Normalizing constant is called the Partition function

Z (w) =

∫
Ω
e〈w ,φ(x)〉dx

Discrete approx: Q = {y1, . . . , ym}, let PFQ(w) =
∑m

i=1 e
〈w ,yi 〉

Problem 2: fast approximation to PFQ(w)!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Parition Function

Log-linear models: Ω ⊂ Rd , φ : Rd → Rd ′
(feature), w ∈ Rd ′

pw (x) =
1

Z (w)
e〈w , φ(x)〉

Normalizing constant is called the Partition function

Z (w) =

∫
Ω
e〈w ,φ(x)〉dx

Discrete approx: Q = {y1, . . . , ym}, let PFQ(w) =
∑m

i=1 e
〈w ,yi 〉

Problem 2: fast approximation to PFQ(w)!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Applications of PFE

Hypothesis testing: w1,w2 ∈ Rd , dataset P, which one to
chose?

log

(
pw1(P)

pw2(P)

)
=

〈
w1 − w2,

n∑
i=1

φ(xi )

〉
− log

(
Z (w1)

Z (w2)

)
≥ t

Bayesian statistics: prior π, hyperparameter tuning
(Metropolis-Hastings MCMC), similar ratio.

Maximum Likelihood: L(w) = log(pw (P)), gradient

∇wL(w) ≈
∑
x∈P

φ(x)− 1

Z (w)

∑
y∈Q

φ(y)e〈w ,φ(y)〉



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Applications of PFE

Hypothesis testing: w1,w2 ∈ Rd , dataset P, which one to
chose?

log

(
pw1(P)

pw2(P)

)
=

〈
w1 − w2,

n∑
i=1

φ(xi )

〉
− log

(
Z (w1)

Z (w2)

)
≥ t

Bayesian statistics: prior π, hyperparameter tuning
(Metropolis-Hastings MCMC), similar ratio.

Maximum Likelihood: L(w) = log(pw (P)), gradient

∇wL(w) ≈
∑
x∈P

φ(x)− 1

Z (w)

∑
y∈Q

φ(y)e〈w ,φ(y)〉



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Applications of PFE

Hypothesis testing: w1,w2 ∈ Rd , dataset P, which one to
chose?

log

(
pw1(P)

pw2(P)

)
=

〈
w1 − w2,

n∑
i=1

φ(xi )

〉
− log

(
Z (w1)

Z (w2)

)
≥ t

Bayesian statistics: prior π, hyperparameter tuning
(Metropolis-Hastings MCMC), similar ratio.

Maximum Likelihood: L(w) = log(pw (P)), gradient

∇wL(w) ≈
∑
x∈P

φ(x)− 1

Z (w)

∑
y∈Q

φ(y)e〈w ,φ(y)〉



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Applications of PFE

Hypothesis testing: w1,w2 ∈ Rd , dataset P, which one to
chose?

log

(
pw1(P)

pw2(P)

)
=

〈
w1 − w2,

n∑
i=1

φ(xi )

〉
− log

(
Z (w1)

Z (w2)

)
≥ t

Bayesian statistics: prior π, hyperparameter tuning
(Metropolis-Hastings MCMC), similar ratio.

Maximum Likelihood: L(w) = log(pw (P)), gradient

∇wL(w) ≈
∑
x∈P

φ(x)− 1

Z (w)

∑
y∈Q

φ(y)e〈w ,φ(y)〉



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Empirical Risk Minimization

Logistic Regression features x1, . . . , xn ∈ Rd , labels
y1, . . . , yn ∈ {−1,+1} , find w ∈ Rd :

min L(w) =
n∑

i=1

log
(

1 + e−yi 〈w ,xi 〉
)

Empirical Risk Minimization loss function `(〈w , yixi 〉) , find w :

min L(w) =
n∑

i=1

`(〈w , yixi 〉)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Empirical Risk Minimization

Logistic Regression features x1, . . . , xn ∈ Rd , labels
y1, . . . , yn ∈ {−1,+1} , find w ∈ Rd :

min L(w) =
n∑

i=1

log
(

1 + e−yi 〈w ,xi 〉
)

Empirical Risk Minimization loss function `(〈w , yixi 〉) , find w :

min L(w) =
n∑

i=1

`(〈w , yixi 〉)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Stochastic Gradient

Let ri = 〈w , yixi 〉, then ∇L(w) =
∑n

i=1

{
yixi · `

′
(ri )
}

Gradient estimation: I ∼ [n], let ĝ = xI yI `
′
(rI )

E[ĝ ] =
1

n

n∑
i=1

xiyi`
′
(ri ) =

1

n
∇wL(w)

Variance: assuming ‖xi‖2 = const

E‖ĝ‖2 =
c2

n

n∑
i=1

(`
′
(ri ))2

Lower variance ⇒ faster convergence, better generaliz. [HRS’15]

Problem 3: Find estimator of gradient with Lower Variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Three Problems: Structured Sums

Given dataset P = {x1, . . . , xn} and query w ∈ Rd :

Problem 1: Kernel Density Estimation

KDEP(w) =
1

n

n∑
i=1

K (w , xi )

Problem 2: Partition Function Estimation

PFP(w) =
1

n

n∑
i=1

e〈w ,xi 〉

Problem 3: Variance reduction in Stochastic Gradient

∇wL(w) =
n∑

i=1

{yixi`
′
(ri )}



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Unbiased estimators and Median-of-means

Let µ be the quantity we wish to approximate.

Unbiased estimator: random variable Z with E[Z ] = µ

Variance bound: let V > 0 such that E[Z 2] ≤ V · E[Z ]2

Median-of-means

Means of 6
ε2V independent realizations Z (i)

Median of 9 log( 1
δ ) such means

P[|Ẑ − µ| ≤ εµ] ≥ 1− δ

Goal: design unbiased estimators with small variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Unbiased estimators and Median-of-means

Let µ be the quantity we wish to approximate.

Unbiased estimator: random variable Z with E[Z ] = µ

Variance bound: let V > 0 such that E[Z 2] ≤ V · E[Z ]2

Median-of-means

Means of 6
ε2V independent realizations Z (i)

Median of 9 log( 1
δ ) such means

P[|Ẑ − µ| ≤ εµ] ≥ 1− δ

Goal: design unbiased estimators with small variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Unbiased estimators and Median-of-means

Let µ be the quantity we wish to approximate.

Unbiased estimator: random variable Z with E[Z ] = µ

Variance bound: let V > 0 such that E[Z 2] ≤ V · E[Z ]2

Median-of-means

Means of 6
ε2V independent realizations Z (i)

Median of 9 log( 1
δ ) such means

P[|Ẑ − µ| ≤ εµ] ≥ 1− δ

Goal: design unbiased estimators with small variance!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Reducing the Variance

All of these problems have a common characteristic:

KDE: points closer to w have larger contribution!

PFE: points aligned with w have larger contribution

SG: points where `
′
(ri ) is larger have high norm gradients.

Importance sampling: sample proportional to the importance!

General technique to implement such schemes!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Reducing the Variance

All of these problems have a common characteristic:

KDE: points closer to w have larger contribution!

PFE: points aligned with w have larger contribution

SG: points where `
′
(ri ) is larger have high norm gradients.

Importance sampling: sample proportional to the importance!

General technique to implement such schemes!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Reducing the Variance

All of these problems have a common characteristic:

KDE: points closer to w have larger contribution!

PFE: points aligned with w have larger contribution

SG: points where `
′
(ri ) is larger have high norm gradients.

Importance sampling: sample proportional to the importance!

General technique to implement such schemes!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Primer on Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = uI
qI

E[ZQ ] =
n∑

i=1

qi
ui
qi

=
n∑

i=1

ui

Variance: controlled by the quantity

E[Z 2
Q ] =

n∑
i=1

u2
i

qi



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Primer on Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = uI
qI

E[ZQ ] =
n∑

i=1

qi
ui
qi

=
n∑

i=1

ui

Variance: controlled by the quantity

E[Z 2
Q ] =

n∑
i=1

u2
i

qi



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Primer on Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Black box Q, returns index i with probability qi .

Unbiased estimator: let I ∼ Q then ZQ = uI
qI

E[ZQ ] =
n∑

i=1

qi
ui
qi

=
n∑

i=1

ui

Variance: controlled by the quantity

E[Z 2
Q ] =

n∑
i=1

u2
i

qi



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Ideal Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Scheme that minimizes the variance satisfies:

qi ∝ ui ⇒ qi =
ui∑n
j=1 uj

Three caveats:

Each ui = k(w , xi ) is query dependent!

probabilities can vary dramatically with the query!

Importance sampling through hashing!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Ideal Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Scheme that minimizes the variance satisfies:

qi ∝ ui ⇒ qi =
ui∑n
j=1 uj

Three caveats:

Each ui = k(w , xi ) is query dependent!

probabilities can vary dramatically with the query!

Importance sampling through hashing!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Ideal Importance sampling

Setting: weights u1, . . . , un e.g. ui = K (w , xi ),
Goal: approximate µ =

∑n
i=1 ui

Importance Sampling
Scheme that minimizes the variance satisfies:

qi ∝ ui ⇒ qi =
ui∑n
j=1 uj

Three caveats:

Each ui = k(w , xi ) is query dependent!

probabilities can vary dramatically with the query!

Importance sampling through hashing!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Part 2:

Hashing-Based-Estimators



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Motivation: Locality Sensitive Hashing (LSH)

Colission probability: family H, distrib. ν on H,sample h ∼ ν

p(w , x) = P[h(w) = h(x)]

Locality Sensitive Hashing: used to solve ANN with hash func.

Collision probability is decreasing with distance!

Main contribution:

Use LSH to get IS scheme with provable guarantees!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Example: Euclidean LSH

Basic principle:

close points when projected on a random line, remain close!

Euclidean LSH [Datar et al.’04]

Pick a Gaussian random vector g ∈ Rd .

Project 〈g , x〉
Add a random shift: b ∼ [0, 1]

Pick a nominal scale r > 0

hg ,b,r (x) =
⌈〈g , x〉

r
+ b
⌉

Simple and intuitive hash function. Cost O(d · n)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Example: Euclidean LSH

Basic principle:

close points when projected on a random line, remain close!

Euclidean LSH [Datar et al.’04]

Pick a Gaussian random vector g ∈ Rd .

Project 〈g , x〉
Add a random shift: b ∼ [0, 1]

Pick a nominal scale r > 0

hg ,b,r (x) =
⌈〈g , x〉

r
+ b
⌉

Simple and intuitive hash function. Cost O(d · n)



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Colission Probability of E2LSH

Let c = ‖x−y‖
r , using analytical arguments (isotropy, random

shift)
P[h(x) = h(y)] = f1(c)

Exponential decay: c � 1, f1(c) � 1−
√

2
π c � e

−
√

2
π
c

Polynomial decay: c ≥ 2, f1(c) � 1√
2π

1
c



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

LSH as Randomized Space Partition

Close points more likely to be found in the same bucket.

Hash bucket of query ⇒ biased sample!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Challenges

KDE problem: implement this idea we need to answer:

Given a kernel, which hashing scheme should we pick?

How should we use the information in the hash buckets?

How should we tune the parameters?

How many samples required?

Additional structure in data?

Answer: Framework of Hashing-Based-Estimators.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Challenges

KDE problem: implement this idea we need to answer:

Given a kernel, which hashing scheme should we pick?

How should we use the information in the hash buckets?

How should we tune the parameters?

How many samples required?

Additional structure in data?

Answer: Framework of Hashing-Based-Estimators.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Hashing-Based-Estimators

P ⊂ Rd , H, measure ν, collision probability p(x , y), kernel K

Preprocessing

Sample a number m of i.i.d. hash functions h1, . . . , hm ∼ ν.

create m hash tables H1, . . . ,Hm where Hi = hi (P)

Unbiased estimator: query w ∈ Rd we may form

let Hj(w) be the hash bucket where w maps to.

let x(j) be a uniform random point from Hj(w),

Return: Zj =
K(w ,x(j))
p(w,x(j))

|Hj (w)|

The estimator is unbiased for all w and all j = 1, . . . ,m.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Hashing-Based-Estimators

P ⊂ Rd , H, measure ν, collision probability p(x , y), kernel K

Preprocessing

Sample a number m of i.i.d. hash functions h1, . . . , hm ∼ ν.

create m hash tables H1, . . . ,Hm where Hi = hi (P)

Unbiased estimator: query w ∈ Rd we may form

let Hj(w) be the hash bucket where w maps to.

let x(j) be a uniform random point from Hj(w),

Return: Zj =
K(w ,x(j))
p(w,x(j))

|Hj (w)|

The estimator is unbiased for all w and all j = 1, . . . ,m.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Hashing-Based-Estimators

P ⊂ Rd , H, measure ν, collision probability p(x , y), kernel K

Preprocessing

Sample a number m of i.i.d. hash functions h1, . . . , hm ∼ ν.

create m hash tables H1, . . . ,Hm where Hi = hi (P)

Unbiased estimator: query w ∈ Rd we may form

let Hj(w) be the hash bucket where w maps to.

let x(j) be a uniform random point from Hj(w),

Return: Zj =
K(w ,x(j))
p(w,x(j))

|Hj (w)|

The estimator is unbiased for all w and all j = 1, . . . ,m.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Remarks

Reservoir Sampling for each hash bucket

Sample compression: store a single point and size for all
non-empty hash buckets!

Scalability: the above operations are completely decoupled for
different j

But what can we say at this level of generality?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Remarks

Reservoir Sampling for each hash bucket

Sample compression: store a single point and size for all
non-empty hash buckets!

Scalability: the above operations are completely decoupled for
different j

But what can we say at this level of generality?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Variance of HBE

query w , ui = k(w , xi ), set pi = p(w , xi ), µ = KDEP(w)

E[Z 2] =
n∑

i=1

u2
i

pi
E[|H(x)||i ∈ H(x)] ≤

n∑
i=1

n∑
j=1

u2
i

pi
min{pi , pj}

Theorem 1 [Charikar, S., FOCS’17]

Worst case datasets for HBE have support on two points.

Worsts case variance ⇒ solution to an optimization problem!

Quantifies Compatibility between {ui}, {pi} at level µ

Under no assumptions on k , p problem might be intractable

In certain cases, computing variance reduces to case analysis!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Variance of HBE

query w , ui = k(w , xi ), set pi = p(w , xi ), µ = KDEP(w)

E[Z 2] =
n∑

i=1

u2
i

pi
E[|H(x)||i ∈ H(x)] ≤

n∑
i=1

n∑
j=1

u2
i

pi
min{pi , pj}

Theorem 1 [Charikar, S., FOCS’17]

Worst case datasets for HBE have support on two points.

Worsts case variance ⇒ solution to an optimization problem!

Quantifies Compatibility between {ui}, {pi} at level µ

Under no assumptions on k , p problem might be intractable

In certain cases, computing variance reduces to case analysis!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Variance of HBE

query w , ui = k(w , xi ), set pi = p(w , xi ), µ = KDEP(w)

E[Z 2] =
n∑

i=1

u2
i

pi
E[|H(x)||i ∈ H(x)] ≤

n∑
i=1

n∑
j=1

u2
i

pi
min{pi , pj}

Theorem 1 [Charikar, S., FOCS’17]

Worst case datasets for HBE have support on two points.

Worsts case variance ⇒ solution to an optimization problem!

Quantifies Compatibility between {ui}, {pi} at level µ

Under no assumptions on k , p problem might be intractable

In certain cases, computing variance reduces to case analysis!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Gaussian Kernel using Euclidean LSH

Theorem 2 [Charikar, S., FOCS’17]

There exists a HBE for the KDE under Gaussian Kernel using Eu-
clidean LSH that has variance bounded by O( 1

µ3/4 · µ2)

uniform random sampling has variance bounded by O( 1
µ · µ

2).

1
µ1/4 improvement (µ is small, e.g. µ = n−α )

Intuition: exponential decay of the E2LSH to simulate
Gaussian kernel by concatenating many hash functions!

Better estimator? Simple design principle?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators

We introduce (β,M) scale-free property of a HBE

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 3 [Charikar, S., FOCS’17]

For any β ∈ [ 1
2 , 1] the variance of scale-free estimators is ≤ µ2(M

3

µβ
)

Var ≤ µ2O(
1

µβ
+

1

µ1−β )⇒ β∗ =
1

2



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators

We introduce (β,M) scale-free property of a HBE

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 3 [Charikar, S., FOCS’17]

For any β ∈ [ 1
2 , 1] the variance of scale-free estimators is ≤ µ2(M

3

µβ
)

Var ≤ µ2O(
1

µβ
+

1

µ1−β )⇒ β∗ =
1

2



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators

We introduce (β,M) scale-free property of a HBE

M−1 · k(x , y)β ≤ p(x , y) ≤ M · k(x , y)β

Theorem 3 [Charikar, S., FOCS’17]

For any β ∈ [ 1
2 , 1] the variance of scale-free estimators is ≤ µ2(M

3

µβ
)

Var ≤ µ2O(
1

µβ
+

1

µ1−β )⇒ β∗ =
1

2



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators through LSH

Theorem 4 [Charikar, S., FOCS’17]

There exist scale-free estimators for the following kernels.

Table: Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Scale-free Estimators through LSH

Theorem 4 [Charikar, S., FOCS’17]

There exist scale-free estimators for the following kernels.

Table: Scale free estimators for KDE using LSH

Kernel M LSH

e−‖x−y‖
2

eO(R
4
3 log log n) Ball Carving [AI’06]

e−‖x−y‖
√
e Euclidean [Datar et al’04]

1
1+‖x−y‖p2

3p/2 Euclidean [Datar et al’04]

General framework that applies to other problems!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Method of Scale-free HBE

Given a kernel k(x , y) and a dataset P.

1 Construct hash function such that

M−1 ·
√
k(x , y) ≤ p(x , y) ≤ M ·

√
k(x , y)

2 Use Theorem to set V (µ) = 4M3 1√
µ in Median-of-means.

3 Adaptive procedure to estimate µ [Charikar, S., FOCS’17]

Efficient data structures that can answer queries!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Extensions

The scale-free property quite strong and hard to achieve!

Is there any other way?

Method very sensitive to specific kernel/bandwidth:

Single data-structure for different kernels in a family?

What structural information can we exploit?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Extensions

The scale-free property quite strong and hard to achieve!

Is there any other way?

Method very sensitive to specific kernel/bandwidth:

Single data-structure for different kernels in a family?

What structural information can we exploit?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Extensions

The scale-free property quite strong and hard to achieve!

Is there any other way?

Method very sensitive to specific kernel/bandwidth:

Single data-structure for different kernels in a family?

What structural information can we exploit?



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Multi-resolution HBE

design a HBE that is scale-free for a kernel only locally
construct many such HBE to approximate scale-free property.
Sample points from each such estimator and weigh them
appropriately.

K (w , x) = e〈w ,x〉−1



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Multi-resolution HBE

design a HBE that is scale-free for a kernel only locally
construct many such HBE to approximate scale-free property.
Sample points from each such estimator and weigh them
appropriately.

K (w , x) = e〈w ,x〉−1



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Multi-resolution HBE

design a HBE that is scale-free for a kernel only locally
construct many such HBE to approximate scale-free property.
Sample points from each such estimator and weigh them
appropriately.

K (w , x) = e〈w ,x〉−1



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Polynomial Kernels

Constants L ≥ 1, t ≥ 0, a kernel K is (L, t)-nice if ∀w , y , x ∈ Rd :

max

{
K (w , y)

K (w , x)
,
K (w , x)

K (w , y)

}
≤ L ·max

{
‖w − y‖
‖w − x‖

,

}t

Theorem [Backurs, Charikar, Indyk, S.’17]

There exist a data structure that that can answer queries for all
(L, t)-nice kernels in time 2O(t)L log n

ε2 .

Uses Projected quadtrees on dimension O(t)!

Trade-off between computational amenability and rate of
decay.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Polynomial Kernels

Constants L ≥ 1, t ≥ 0, a kernel K is (L, t)-nice if ∀w , y , x ∈ Rd :

max

{
K (w , y)

K (w , x)
,
K (w , x)

K (w , y)

}
≤ L ·max

{
‖w − y‖
‖w − x‖

,

}t

Theorem [Backurs, Charikar, Indyk, S.’17]

There exist a data structure that that can answer queries for all
(L, t)-nice kernels in time 2O(t)L log n

ε2 .

Uses Projected quadtrees on dimension O(t)!

Trade-off between computational amenability and rate of
decay.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Polynomial Kernels

Constants L ≥ 1, t ≥ 0, a kernel K is (L, t)-nice if ∀w , y , x ∈ Rd :

max

{
K (w , y)

K (w , x)
,
K (w , x)

K (w , y)

}
≤ L ·max

{
‖w − y‖
‖w − x‖

,

}t

Theorem [Backurs, Charikar, Indyk, S.’17]

There exist a data structure that that can answer queries for all
(L, t)-nice kernels in time 2O(t)L log n

ε2 .

Uses Projected quadtrees on dimension O(t)!

Trade-off between computational amenability and rate of
decay.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Localized Queries

Dataset and query Contribution to density



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

KDE through ANN

Hashing-based-estimators through LSH.

Given arbitrary ANN algorithm, can we use it for KDE?

Theorem 5 [Backurs, Charikar, Indyk, S.’17]

Every c-ANN algorithm can be used to solve KDE problems for
(L, t)-radial kernels using O( 1

ε5 c
5t log2(n)) calls to ANN.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

KDE through ANN

Hashing-based-estimators through LSH.

Given arbitrary ANN algorithm, can we use it for KDE?

Theorem 5 [Backurs, Charikar, Indyk, S.’17]

Every c-ANN algorithm can be used to solve KDE problems for
(L, t)-radial kernels using O( 1

ε5 c
5t log2(n)) calls to ANN.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

KDE through ANN

Hashing-based-estimators through LSH.

Given arbitrary ANN algorithm, can we use it for KDE?

Theorem 5 [Backurs, Charikar, Indyk, S.’17]

Every c-ANN algorithm can be used to solve KDE problems for
(L, t)-radial kernels using O( 1

ε5 c
5t log2(n)) calls to ANN.

Spherical Inegration



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Summary

Machine learning primitives: computing query dependent
sums.

Importance sampling through Hashing-Based-Estimators.

Method of Scale-free estimators.

Polynomial kernels: simple and practical data-structure,
trade-offs between cost and resolution!



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Acknowledgments

Arturs Backurs (MIT) Moses Charikar Piotr Indyk (MIT)

Peter Bailis



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Future work

Implementations, Applications, Benchmarks!

Analogs of Fast Multipole Methods using Doubling Dimension.

Training of Neural Networks and Random Fourier Features.



ML Primitives Importance Sampling Hashing-Based-Estimators Extensions

Thank You!
psimin@stanford.edu


	ML Primitives
	Importance Sampling
	Hashing-Based-Estimators
	Extensions

