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Chapter 1

Advances in Metric Embedding
Theory

Definitions, Results and Applications

A finite metric space is given by a collection of points 𝒳 and a collection of numbers (dis-
tances) 𝑑 : 𝒳 × 𝒳 that satisfy the triangle inequality. The business of metric embeddings
mainly concern of using the fact that the distances satisfy the triangle inequality to obtain a
compressed “approximate” representation of the metric space. In generality, we need dimen-
sion 𝑛− 1 to embed in 𝐿∞ isometrically (in total (𝑛− 1) ·𝑛 numbers), so the approximation
will have to distort some distances if we are to obtain a more compact representation.

Definition 1.1.1 (Distortion): An embedding 𝑓 : 𝒳 → 𝒴 has distortion 𝑄 > 1 if there
exists a constant 𝑐 > 0 such that ∀𝑢, 𝑣 ∈ 𝒳

𝑐 · 𝑑𝒳 (𝑢, 𝑣) ≤ 𝑑𝒴(𝑓(𝑢), 𝑓(𝑣)) ≤ 𝑐𝑄 · 𝑑𝒳 (𝑢, 𝑣) (1.1)

Compactly, we have dist(𝑓) = sup𝑢,𝑣∈𝒳 dist𝑓 (𝑢, 𝑣), where dist𝑓 (𝑢, 𝑣) :=
𝑑𝒴 (𝑓(𝑢),𝑓(𝑣))

𝑑𝒳 (𝑢,𝑣)
.

In particular, the spaces 𝒴 that we are mostly interested in are the ℓ𝐷𝑝 spaces of some
(small) dimension 𝐷, where we have an explicit representation of the points in terms of
coordinates, and Ultrametrics, that have important algorithmic applications. Research in
this area asks about what is the feasible (or best) combination of (𝑄,𝐷, 𝑝) for different
classes of metric spaces.

The above notion of distortion is worst case, however, in most cases we are interested
that the distortion be small on average or that we get have better bounds for most pairs of
points. We start by formalizing the average case.

Definition 1.1.2 (ℓ𝑞-distortion): Given a distribution Π over
Ä𝒳
2

ä
define for 1 ≤ 𝑞 ≤ ∞ the

ℓ𝑞-distortion of 𝑓 with respect to Π as:

dist(Π)
𝑞 (𝑓) = ‖dist𝑓 (𝑢, 𝑣)‖(Π)

𝑞 = EΠ [dist𝑓 (𝑢, 𝑣)
𝑞]1/𝑞 (1.2)
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Some special cases are when :

∙ Average distortion: for 𝑞 = 1 and 𝒰 the uniform distribution over all the pairs we have

avgdist(𝑓) := dist𝒰1 (𝑓) =
1Ä
𝑛
2

ä ∑
�̸�=𝑣∈𝒳

dist𝑓 (𝑢, 𝑣) (1.3)

∙ Distortion: for 𝑞 = ∞ and 𝒰 the uniform distribution over all the pairs we define

dist(𝑓) := dist𝒰∞(𝑓) = sup
�̸�=𝑣∈𝒳

dist𝑓 (𝑢, 𝑣) (1.4)

In this talk, we are going to present techniques that allow us to get refined quantitative
bounds on the distortion. To achieve this we first introduce a relaxed notion of embedding
that will be useful in formalizing the improved guarantees that we get.

Definition 1.1.3 (Partial Embedding): Given two metric spaces (𝒳 , 𝑑𝒳 ) and (𝒴 , 𝑑𝒴), a
partial embedding (PE) is a pair (𝑓,𝐺), where 𝑓 is an embedding of 𝒳 into 𝒴 and 𝐺 ⊆

Ä𝒳
2

ä
.

The distortion is dist(𝑓,𝐺) := sup{𝑢,𝑣}∈𝐺 dist𝑓 (𝑢, 𝑣).

A partial embedding thus gives guarantees only for a subset of the distances specified by
𝐺. Some important special cases are:

∙ (1− 𝜖)- partial embeddings : are PE (𝑓,𝐺) for which |𝐺| ≥ (1− 𝜖)
Ä
𝑛
2

ä
.

∙ Coarsely (1− 𝜖)- partial embeddings : are PE where

�̂�(𝜖) :=

{
{𝑢, 𝑣} ∈

(
𝒳
2

)∣∣∣∣∣min{|𝐵(𝑥, 𝑑𝑥𝑦)|, |𝐵(𝑦, 𝑑𝑥𝑦)|} ≥ 𝜖𝑛/2

}
(1.5)

The last definition aims to capture the fact that we expect to be able to estimate the distances
better1 for pair of points that involve coarse features of the space (the corresponding balls
contain a significant fraction of points of the space). For us, the interesting case will be when
a single embedding is simultaenously a coarsely-PE for all scales 𝜖 ∈ (0, 1) with controlled
distortion.

Definition 1.1.4 (Scaling Distortion): Given two metric spaces (𝒳 , 𝑑𝒳 ), (𝒴 , 𝑑𝒴), and a
function 𝛼 : (0, 1) → R+, we say that an embedding has scaling distortion 𝛼, if for any
𝜖 ∈ (0, 1), there is some set 𝐺(𝜖) such that (𝑓,𝐺(𝜖)) is a (1− 𝜖)-PE with distortion at most
𝛼(𝜖). We say that 𝑓 has coarsely scaling distortion if for every 𝜖 ∈ (0, 1), 𝐺(𝜖) can be taken
to be equal to �̂�(𝜖).

The main technical component of the talk will be to show how we can obtain embeddings
with coarse and scaling distortion. The main results are:

1We will see a bit later why this is true.
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Theorem 1.1.5 (Coarsely Scaling Distortion). Let 1 ≤ 𝑝 ≤ ∞. For any 𝑛-point metric space
(𝑋, 𝑑) there exists an embedding 𝑓 : 𝒳 → ℓ𝑝 with coarsely scaling distortion 𝑂(⌈(log 2

𝜖
)/𝑝⌉)

and dimension 𝑒𝑂(𝑝) log 𝑛.

∙ Matousek’s theorem: worst case distrotion 𝑂(⌈log 𝑛/𝑝⌉) with dimension 𝑒𝑂(𝑝) log2 𝑛.

Theorem 1.1.6. For any 1 ≤ 𝑝 ≤ ∞, any finite metric space (𝒳 , 𝑑) on 𝑛 points and
𝜃 ≥ 12/ log log 𝑛 there is an embedding 𝑓 : 𝒳 → ℓ𝐷𝑝 with coarse scaling distortion 𝑂(log(2/𝜖) ·
log𝜃 𝑛) where the dimension 𝐷 = 𝑂( log𝑛

𝜃 log log𝑛
).

∙ Bourgain’s theorem: 𝜃 = Θ(1/ log log 𝑛) then 𝐷 = 𝑂(log 𝑛) and worst case distortion
𝑂(log(𝑛)) improving dimension in Bourgain’s theorem from 𝑂(log2 𝑛). In general,
𝑂(𝑛1/𝐷 log 𝑛) distortion is achievable for dimension 𝑂(𝐷).

Applications

Before, going into the proofs of the main results let us mention some of the applications of
metric embeddings with scaling distortion.

Definition 1.1.7: The aspect ratio of a non-degenerate distribution Π over
Ä𝒳
2

ä
with prob-

ability function 𝜋 ×𝒳 × 𝒳 → [0, 1] is given by

Φ(Π) =
max�̸�=𝑣∈𝒳 𝜋(𝑢, 𝑣)

min�̸�=𝑣∈𝒳 𝜋(𝑢, 𝑣)
(1.6)

For an arbitrary distribution Π, we define its effective aspect ratio as Φ̂(Π) := 2min{Φ(Π),
Ä
𝑛
2

ä
}.

Lemma 1.1.8 (ℓ𝑞-distortion from Scaling distortion). Let (𝒳 , 𝑑𝒳 ) and (𝒴 , 𝑑𝒴) be metric
spaces. If there exists an embedding 𝑓 : 𝒳 → 𝒴 with scaling distortion 𝛼 then for any
distribution Π over

Ä𝒳
2

ä
:

dist(Π)
𝑞 (𝑓) ≤

á
2

1∫
1
2(

𝑛
2)

−1
Φ̂(Π)

𝛼(𝑥Φ̂(Π)−1)𝑞𝑑𝑥

ë1/𝑞

+ 𝛼(Φ̂(Π)−1) (1.7)

Proof Sketch. We may assume w.l.o.g that Φ(Π) <
Ä
𝑛
2

ä
. Let 𝐺(𝜖) be the (1 − 𝜖) fraction of

pairs with the smallest distortion. By definition of scaling distortion we have that (𝑓,𝐺(𝜖))
is a (1− 𝜖)-PE with distortion 𝛼(𝜖), and therefore dist𝑓 (𝑢, 𝑣) ≤ 𝛼(𝜖) for every (𝑢, 𝑣) ∈ 𝐺(𝜖).

1. Define 𝜖𝑖 := 2−𝑖Φ̂(Π)−1 for 𝑖 = 1, . . . , ⌊log
ÄÄ

𝑛
2

ä
Φ̂(Π)−1

ä
⌋. Note that 𝜖𝑖 ≥ 𝜖𝑖+1 and hence

that 𝐺(𝜖𝑖) ⊇ 𝐺(𝜖𝑖+1) by definition of the set 𝐺(𝜖).

2. Break up the pairs of edges in groups depending on the distortion 𝑓 incurs. In partic-
ular, let 𝐺𝑖 := 𝐺(𝜖𝑖) ∖𝐺(𝜖𝑖−1)
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3. Finally, using the facts that

∙ |𝐺𝑖| = |𝐺(𝜖𝑖)| − |𝐺(𝜖𝑖−1)| = [(1− 𝜖𝑖)− (1− 𝜖𝑖−1)]
Ä
𝑛
2

ä
= 𝜖𝑖

Ä
𝑛
2

ä
.

∙ max�̸�=𝑣 𝜋(𝑢, 𝑣) = Φ̂(Π) ·min�̸�= 𝜋(𝑢, 𝑣)

∙ min�̸�=𝑣 𝜋(𝑢, 𝑣) ≤ 1

(𝑛2)
∑

�̸�=𝑣 𝜋(𝑢, 𝑣)

∙ 𝛼 is monotonically increasing

we get the desired inequality.

In essence what this inequality says is that the ℓ𝑞 distortion is𝑂
Ä
𝑎(Φ̂(Π)−1)

ä
= 𝑂

Ä
log(Φ̂(Π))

ä
.

When the aspect ratio is small this allows us to get constant average distortion and 𝑂(log 𝑛)
worst case distortion. The following theorem summarizes the algorithmic applications of
scaling distortion.

Theorem 1.1.9. Let 𝒳 be a metric space and 𝑐 :
Ä𝒳
2

ä
→ R+ be a weight function, then:

1. There exists an embedding 𝑓 : 𝑋 → ℓ𝑝 such that for any weight function c:∑
�̸�=𝑣

𝑐(𝑢, 𝑣)‖𝑓(𝑢)− 𝑓(𝑣)‖𝑝 ≤ 𝑂
Ä
log(Φ̂(Π))

ä
·
∑
�̸�=𝑣

𝑐(𝑢, 𝑣)𝑑𝒳 (𝑢, 𝑣) (1.8)

2. There is a distribution over ultrametrics and corresponding probabilistic embeddings ℱ
such that for any weight function 𝑐.

E
𝑓∼ℱ

∑
�̸�=𝑣

𝑐(𝑢, 𝑣)𝑑(𝑓(𝑢), 𝑓(𝑣))

 ≤ 𝑂
Ä
log(Φ̂(Π))

ä
·
∑
�̸�=𝑣

𝑐(𝑢, 𝑣)𝑑𝒳 (𝑢, 𝑣) (1.9)

3. For any fixed weight function 𝑐, there exists an ultrametric (𝒴 , 𝑑𝒴) and an embedding
𝑓 : 𝒳 → 𝒴 such that:∑

�̸�=𝑣

𝑐(𝑢, 𝑣)𝑑𝒴(𝑓(𝑢), 𝑓(𝑣)) ≤ 𝑂
Ä
log(Φ̂(Π))

ä
·
∑
�̸�=𝑣

𝑐(𝑢, 𝑣)𝑑𝒳 (𝑢, 𝑣) (1.10)

This gives us approximation algorithms for Sparsest Cut, Multicut, Minimum Linear
arrangement, Multiple Sequence Alignment, Metric Labeling and Min-sum 𝑘-clustering. The
way to obtain such approximations is:

1. Find a metric relaxation of the optimization problem that provides us with a metric
space (𝒳 , 𝑑𝒳 ) for which

∑
�̸�=𝑣 𝑐(𝑢, 𝑣)𝑑𝒳 (𝑢, 𝑣) is a lower bound to the optimal value of

the objective.

2. Find an embedding 𝑓 either in ℓ1 (or Ultrametric) and use a constant factor approxi-
mation algorithm for ℓ1 (or ultrametrics).

3. Use the above theorem to bound the final approximation ratio!

The rest of this talk will focus on proving the main results.
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A general strategy of obtaining embeddings

For the rest of the talk we assume that 𝒳 = [𝑛] and that 𝑑 := 𝑑𝒳 is an arbitrary metric. For
simplicity assume we would like to obtain an embedding of the1 metric space (𝒳 , 𝑑) in ℓ1 of
dimension 𝐷. That means, we need to produce 𝐷 coordinates for every point 𝑥 ∈ 𝒳 such
that:

∙ Expansion: ‖𝑓(𝑥)− 𝑓(𝑦)‖ =
∑

𝑖 |𝑓𝑖(𝑥)− 𝑓𝑖(𝑦)| ≤ 𝑐𝑄 · 𝑑(𝑥, 𝑦).

∙ Contraction: ‖𝑓(𝑥)− 𝑓(𝑦)‖ ≥ 𝑐 · 𝑑(𝑥, 𝑦).

Attempt #1 Observe, that we can trivially achieve this with 𝐷 = 𝑄 = 𝑛 and 𝑐 = 1
if 𝑓𝑖(𝑥) := 𝑑(𝑥, 𝑖). This makes sure that there is always a coordinate 𝑗 ∈ [𝐷] such that
|𝑓𝑗(𝑥)− 𝑓𝑗(𝑦)| ≥ 𝑑(𝑥, 𝑦) and further that for any other coordinate |𝑓𝑗′ (𝑥)− 𝑓𝑗′ (𝑦)| ≤ 𝑑(𝑥, 𝑦)
by the triangle inequality. However, this method leads to increased dimension and therefore
increased distortion2 as well!.

Question: Can we combine some coordinates together such that we still get the lower bound
but with decreased dimension?

Frechet Embeddings

One idea to combine coordinates while still having control is instead of a coordinate to
indicate distance to a single point, to indicate distance to a set! Given a sequence of sets
𝑊1, . . . ,𝑊𝐷 we define the embedding:

𝑓(𝑥) := (𝑓1(𝑥), . . . , 𝑓𝐷(𝑥)) = (𝑑(𝑥,𝑊1), . . . , 𝑑(𝑥,𝑊𝐷)) (1.11)

For each coordinate, we still have by triangle inequality (Exercise!) that |𝑓𝑖(𝑥) − 𝑓𝑗(𝑥)| =
|𝑑(𝑥,𝑊𝑖) − 𝑑(𝑦,𝑊𝑖)| ≤ 𝑑(𝑥, 𝑦). Thus, we see that we get immediately the following upper
bound on the expansion: ‖𝑓(𝑥)− 𝑓(𝑦)‖ ≤ 𝐷 · 𝑑(𝑥, 𝑦).
Question: can we construct sets 𝑊1, . . . ,𝑊𝐷 such that for every pair 𝑥, 𝑦 there is a set 𝑊𝑗

such that |𝑑(𝑥,𝑊𝑗)− 𝑑(𝑦,𝑊𝑗)| ≥ 𝑐 · 𝑑(𝑥, 𝑦)?

Witnessing distances

In order for |𝑑(𝑥,𝑊 )− 𝑑(𝑦,𝑊 )| ≥ 𝑐 · 𝑑(𝑥, 𝑦) to happen for a set 𝑊 , we roughly need that:

∙ 𝑑(𝑥,𝑊 ) ≤ 𝑟𝑥𝑦 := 𝑎 · 𝑑(𝑥, 𝑦) ⇒ 𝐵(𝑥, 𝑟) ∩𝑊 = ∅.

∙ 𝑑(𝑦,𝑊 ) ≥ 𝑅𝑥𝑦 := 𝐴 · 𝑑(𝑥, 𝑦) ⇒ 𝐵(𝑦,𝑅) ∩𝑊 ̸= ∅.

for constants 𝐴 ≥ 𝑎 such that (𝐴− 𝑎) ≥ 𝑐. Thus, we need to produce sets 𝑊1, . . . ,𝑊𝐷 such
that the above event happens for at least one set for all pairs!

2Observe that in ℓ∞ this would give us an isometry!
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General recipe

A common theme in all the different ways to construct embeddings is the following:

1. First obtain a partition 𝒫 = {𝑃𝑘}𝑘∈𝐼 of the
Ä
𝑛
2

ä
distances (numbers). We will consider

a different coordinate in the embedding for each part.

2. For each part 𝑃𝑘 ∈ 𝒫 construct a distribution 𝒮𝑘 over sets 𝑊𝑘 ∼ 𝒮𝑘 such that for any
pair (𝑢, 𝑣) ∈ 𝑃𝑘 with constant probability the following event happens

|𝑑(𝑥,𝑊𝑘)− 𝑑(𝑦,𝑊𝑘)| ≥ 𝑐 · 𝑑(𝑥, 𝑦)

Depending on how we partition distances, and how we construct the functions {𝑊𝑘}𝑘∈𝐼 we
get different embeddings.

Entropic Approach - Bourgain’s Theorem

Bourgain’s approach is to roughly:

1. partition pairs of points depending on the minimum size of the sets |𝐵(𝑥, 𝑟𝑥𝑦)|, |𝐵(𝑦, 𝑟𝑥𝑦)|,
in particular,

𝑃𝑘 ≈
{
{𝑥, 𝑦} ∈

(
𝒳
2

)∣∣∣∣∣min{|𝐵(𝑥, 𝑟𝑥𝑦)|, |𝐵(𝑦, 𝑟𝑥𝑦)|} ≈ 2𝑘
}

2. the (distribution over) sets 𝑊𝑘 is constructed by sampling each point uniformly at
random with probability 𝑝𝑘 = 2−𝑘.

Dimension: since |𝐼| ≈ log 𝑛 we need 𝑂(log 𝑛) dimensions to approximate distances in
expectation. If we want guarantees with high probability, we need to sample from each
distribution

10
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Spatial Approach - Padded Decomposition

A different approach inspired by the works of Bartal, CKR and FRT is to:

1. partition pairs of points depending on the scale of the distance

𝑃𝑘 ≈
{
{𝑥, 𝑦} ∈

(
𝒳
2

)∣∣∣∣∣ 2𝑘+1 < 𝑑(𝑥, 𝑦) ≤ 2𝑘+2

}

2. obtain a distribution over set 𝑊𝑘 by doing the following:

∙ We first obtain a coarsening of the metric space at scale 𝑘 by partitioning the
space into clusters 𝒞 = {𝐶1, . . . , 𝐶𝑠} compactly given by a function 𝐶 : 𝒳 → 𝒞
such that

– Boundedness: the diameter of clusters is bounded by 2𝑘+1.

– Padding property: with constant probability 𝐵(𝑥, 𝜂 · 2𝑘) ⊆ 𝐶(𝑥) for a
padding parameter 𝜂 : 𝒳 → (0, 1).

∙ The final set 𝑊𝑘 is constructed by including each cluster 𝐶1, . . . , 𝐶𝑠 with proba-
bility 1/2.

Since, the points belong in different clusters then with constant probability exactly one
of them will not belong to 𝑊𝑘 in which case we have that:

|𝑑(𝑥,𝑊𝑘)− 𝑑(𝑦,𝑊𝑘)| ≥ 𝑑(𝑥,𝒳 ∖ 𝐶(𝑥)) ≥ 𝜂 ·𝑅 ≈ 𝜂 · 𝑑(𝑥, 𝑦)

Dimension: let Δ be the aspect ratio3 of the space. Based on this approach we need
𝑂(logΔ) dimensions to approximate all distances in expectation. If we need guarantees
with high probability, then the dimension becomes 𝑂(logΔ log 𝑛).

3Maximum over minimum distance between distinct points in 𝒳 .

11



Reading Group 2016 Algorithms, Geometry, and Learning

A hybrid approach: Measured descent

The last approach although more sophisticated than Bourgain’s approach results in worse
guarantees whenever Δ ≫ 𝑛. The reason being, that if there are many different scales in the
metric space, we will be adding coordinates that are not useful for most pairs of points. In
other words, although there are logΔ spatial scales there can be only log 𝑛 entropic scales
as in Bourgain’s approach. Krauthgamer, Lee, Mendel and Naor proposed the following
approach:

1. Partition the distances again according to the entropic scale 𝑡 of the distance.

2. For each point 𝑥 ∈ 𝒳 and entropic scale 𝑡 ∈ log 𝑛 we consider the spatial scale 𝐾(𝑥, 𝑡)
for which the entropic scale is achieved, i.e., 𝐾(𝑥, 𝑡) is such that |𝐵(𝑥, 2𝐾(𝑥,𝑡))| ≈ 2𝑡.
To construct the set 𝑊𝑡 we:

∙ Let �̃�1, . . . , �̃�logΔ be sets generated using the padded decomposition from the
previous section.

∙ For each 𝑡 ∈ [log2 𝑛] we define the set 𝑊𝑡 := {𝑥 ∈ 𝒳 : 𝑥 ∈ �̃�𝐾(𝑥,𝑡)}.

That, is locally we use different scales for a specific entropy scale. This works because of
the locality property of the padded decomposition and smoothness property of 𝐾(𝑥, 𝑡)
(cannot change too much locally).

To make the connection with Bourgain’s approach, here we roughly partition the space into
𝑛/2𝑡 “local” clusters of cardinality 2𝑡 and then pick each one with probability 1/2. So, we
perform an entropic coarsening of the metric space and then sample uniformly at random.

Dimension: using the entropy scale to partition the distances allows us to approximate
distances in expectation using dimension 𝑂(log 𝑛) and 𝑂(log2 𝑛 if we require with high
probability. The importance of this method compared to Bourgain’s is that for different
metric spaces we can get improved distortion by using the geometry in a non-trivial way as
captured by the existence of a padding decomposition with

Beyond Frechet Embeddings

The previous considerations illustrate three important points:

∙ Expansion: depends mostly on the dimension and for ℓ1 is typically proportional to
the dimension! Roughly this means that if we can reduce the amount of irrelevant
information per pair of points we can improve our expansion/dimension.

Question: can we reduce the dimension? Besides, in the analysis we always end up
adding the different components together, so perhaps a one dimensional embedding
might be possible!

Consider a one dimensional embedding of the form 𝜑(𝑥) =
∑

𝑘∈Z 𝜑𝑘(𝑥).

12
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– By triangle inequality we have the same upper bound as when we had separate
dimensions |𝜑(𝑥)− 𝜑(𝑦)| ≤ ∑

𝑘∈Z |𝜑𝑘(𝑥)− 𝜑𝑘(𝑦)|

∙ Contraction: depends on the padding parameter 𝜂 : 𝒳 → (0, 1) of the padded de-
composition. In fact to show the lower bound, we use the fact that with constant
probability 𝑑(𝑥,𝒳 ∖ 𝐶(𝑥)) ≥ 𝜂 · 𝑑(𝑥, 𝑦) instead of directly bounding 𝑑(𝑥,𝑊 ).

Question: Perhaps it is easier to work with 𝑑(𝑥,𝑊𝑘(𝑥)), where 𝑊𝑘(𝑥) := 𝒳 ∖ 𝐶(𝑥)
instead of having a specific set 𝑊𝑘(𝑥) := 𝑊𝑘 for all 𝑥 ∈ 𝒳? How can we get upper
bounds of the same kind?

Consider functions 𝜑𝑘(𝑥) = 𝜎𝑘(𝑥) · min{𝑑(𝑥,𝑊𝑘(𝑥)), 𝑅𝑘} where 𝜎𝑘(𝑥) := 𝜎𝑘(𝐶(𝑥))
where {𝜎𝑘(𝐶𝑖)}𝑖≤𝑠 are i.i.d Bernouli(1/2) random variables.

– The random variables 𝜎 are used to simulate the effect that cluster sampling had
in the construction of sets 𝑊𝑘. In particular, we get as before that with constant
probability |𝜑𝑘(𝑥)− 𝜑𝑘(𝑦)| ≥ 𝜂 · 𝑑(𝑥, 𝑦) for at least one 𝑘 ∈ Z.

– if 𝐶(𝑥) ̸= 𝐶(𝑦) then |𝜑𝑘(𝑥)− 𝜑𝑘(𝑦)| ≤ 𝑅𝑘 (irrelevant scales).

– if 𝐶(𝑥) = 𝐶(𝑦) then 𝑊𝑘(𝑥) = 𝑊𝑘(𝑦) and |𝑑(𝑥,𝑊𝑘(𝑥))− 𝑑(𝑦,𝑊𝑘(𝑦))| ≤ 𝑑(𝑥, 𝑦).

∙ Entropic scale: since for each point we need to somehow encode the distances to
other 𝑛− 1 points, we have seen that the right way to look at the problem is based on
entropy. To bound the distortion given that we have witness “coordinates” (terms in
the sum) for every scale, we need to make sure that we do not increase the sum too
much.

Question: How can we make sure that we only add terms that carry additional new
information about some pair of vertices?

13
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Assume that 𝑑(𝑥, 𝑦) ≈ 2𝑘+2 (𝑘-spatial scale), i.e. that 𝑘 is the first integer for which
𝐶𝑘(𝑥) ̸= 𝐶𝑘(𝑦). Then, let ℛ be the set of scales ≥ 𝑘 for which, 𝑥, 𝑦 are in the same
cluster and 𝜑𝑘(𝑥) ̸= 𝜑𝑘(𝑦). We have:

|𝜑(𝑥)− 𝜑(𝑦)| ≤
∑
ℓ<𝑘

|𝜑ℓ(𝑥)− 𝜑ℓ(𝑦)|+
∑
ℓ≥𝑘

|𝜑ℓ(𝑥)− 𝜑ℓ(𝑦)| (1.12)

≤
∑
𝑘<ℓ

(|𝜑ℓ(𝑥)|+ |𝜑ℓ(𝑦)|) +
∑
ℓ≥𝑘

1 · 𝑑(𝑥, 𝑦) (1.13)

≤ 2
∑
𝑘<ℓ

𝑅ℓ + |ℛ| · 𝑑(𝑥, 𝑦) (1.14)

– Geometric decay: if we set 𝑅ℓ = 𝛾2ℓ+2 then the first term is ≈ 𝑐 · 𝑑(𝑥, 𝑦) for some
small constant 𝑐.

– Thus, if we can reduce |ℛ| for most pairs of distances we can obtain better dis-
tortion. In other words, we need to include coordinates only when (locally) a
significant number of pairs are separated.

– To be able to have a lower bound on this entropic gain: (a) We keep track of
the minimum gain per cluster that provides a lower bound on all points in the
cluster. (b) Only add coordinates when this lower bound is large enough.

The final form of the embedding is given by:

𝜑𝑘(𝑥) = 𝜎𝑘(𝑥) ·min {𝑤𝑘(𝑥) · 𝑑(𝑥,𝒳 ), 𝑅𝑘}

∙ Contraction: with constant probabbility ∃𝑘, |𝜑𝑘(𝑥)− 𝜑𝑘(𝑦)| ≥ 𝜂𝑘(𝑥)𝑤𝑘(𝑥)𝑑(𝑥, 𝑦).

∙ Expansion: the first term of irrelevant scales does not change. However, we need to
take some care for the upper bound:∑

ℓ≥𝑘

|𝜑ℓ(𝑥)− 𝜑ℓ(𝑦)|

– Uniformity: we assume that 𝑤𝑘(𝑥) is constant for all 𝑥 ∈ 𝐶𝑘(𝑥).

∑
ℓ≥𝑘

|𝜑ℓ(𝑥)− 𝜑ℓ(𝑦)| ≤

∑
𝑘≥ℓ

𝑤𝑘(𝑥)

 𝑑(𝑥, 𝑦)
To bound the distortion we have:

𝑑𝑖𝑠𝑡𝜑(𝑥, 𝑦) = 𝑂

Ç∑
ℓ≥𝑘 𝑤𝑘(𝑥)

𝑤𝑘(𝑥)𝜂𝑘(𝑥)

å
There are two final ideas:

∙ Telescoping: to control the numerator we define weights such that we have some sort
of telescoping.

14
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∙ Padding: We need to pick a padding parameter such that the “padding” event happens
with constant probability.

These, constraints are met with the choice of weights:

𝑤𝑘(𝑥) = I{Local Expansion of C(x) is large} · 𝜂𝑘(𝑥)−1

𝜂𝑘(𝑥) ≈ ln

Ç |𝐵(𝑥, 𝛾1Δ𝑘)|
|𝐵(𝑥, 𝛾2Δ𝑘)|

å
Thus, to complete the analysis outlined above we need to construct a probabilistic par-

tition such that:

∙ Lower bound on the growth ratio for each point in each cluster.

∙ Uniformity of the weights in the embedding, i.e. use a single point to define the local
growth ratio.

∙ Local padding is given in terms of the logarithm of the growth ratio, i.e., there must
be a constant probability of success, when we shrink the ball by that much.

Uniformly Padded Probabilistic Partitions

Definition 1.3.1 (Local growth rate): The local growth rate of 𝑥 ∈ 𝒳 at radius 𝑟 for given
scales 𝛾1, 𝛾2 > 0 is defined as

𝜌(𝑥, 𝑟, 𝛾1, 𝛾2) :=
|𝐵(𝑥, 𝑟𝛾1)|
|𝐵(𝑥, 𝑟𝛾2)|

(1.15)

Given 𝑍 ⊆ 𝒳 we define 𝜌(𝑍, 𝑟, 𝛾1, 𝛾2) as min𝑥∈𝑍 𝜌(𝑥, 𝑟, 𝛾1, 𝛾2). The minimum local growth
rate of 𝑥 at radius 𝑟 and scales 𝛾1, 𝛾2 is defined as 𝜌(𝑥, 𝑟, 𝛾1, 𝛾2) := 𝜌(𝐵(𝑥, 𝑟), 𝑟, 𝛾1, 𝛾2).

Definition 1.3.2 (Uniformity): Given a partition 𝒞 of a metric space, a function 𝑓 is called
uniform with respect to 𝒞 if for any 𝑥, 𝑦 such that 𝐶(𝑥) = 𝐶(𝑦) we have 𝑓(𝑥) = 𝑓(𝑦)4.

Definition 1.3.3 (Uniformly padded Local PP): Given Δ > 0 and 0 < 𝛿 ≤ 1, let 𝒫 be a
Δ-bounded probabilistic partition of (𝒳 , 𝑑). Given a collection of functions 𝜂 = {𝜂𝐶 : 𝒳|𝐶 ∈
𝒫}, we say that 𝒫 is locally (𝜂, 𝛿)-locally padded if the event 𝐵(𝑥, 𝜂(𝑥)Δ) ⊆ 𝐶(𝑥) occurs
with probability at least 𝛿 regardless of the structure of the partition outside 𝐵(𝑥, 2Δ). We
say that 𝒫 is strongly (𝜂, 𝛿)-locally padded if for any 𝛿 ≤ 𝛿 ≤ 1, 𝒫 is (𝜂 ln(1/𝛿), 𝛿)-padded.
We say that 𝑃 is (𝜂, 𝛿)-uniformly locally padded if 𝜂 is uniform with respect to 𝒫 .

Our goal is to construct Uniformly Padded Probabilistic Partitions where 𝜂 provides a
uniform lower bound on the growth ratio of the points in each cluster. To achieve this, we
first define a procedure that given a specific center, gives us the local padding property.

4The same definition extends to probabilistic partitions if it holds for every partition in its support.

15
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The basic partitioning

Definition 1.3.4: Given sets 𝐴,𝐵,𝐶 ⊂ 𝒳 we denote by 𝐴 1 (𝐵,𝐶) the property that
𝐴 ∩𝐵 ̸= ∅ and 𝐴 ∩ 𝐶 ̸= ∅.

Using this definition we may express the event that padding doesn’t happen at 𝑥 as
𝐵(𝑥, 𝜂Δ) 1 (𝑆, 𝑆). We consider that the decomposition failed when the ball 𝐵(𝑥, 𝜂Δ) is
partially cut by the decomposition.

Lemma 1.3.5. For any metric space (𝑍, 𝑑) point 𝑣 ∈ 𝑍, real parameters 𝜒 ≥ 2, Δ > 0, let 𝑟
be a random variable sampled from a truncated exponential density function with parameter
𝜅 = 8 ln(𝜒)/Δ

𝑓(𝑟) =

{
𝜒2

1−𝜒−2𝜅𝑒
−𝜅𝑟, 𝑟 ∈ [Δ/4,Δ/2]

0, otherwise

If 𝑆 = 𝐵(𝑣, 𝑟) and 𝑆 = 𝑍 ∖ 𝑆 then for any 𝜃 ∈ [𝜒−1, 1) and any 𝑥 ∈ 𝑍:

Pr
î
𝐵(𝑥, 𝜂 ·Δ) 1 (𝑆, 𝑆)

ó
≤ (1− 𝜃)

Ç
Pr[𝐵(𝑥, 𝜂 ·Δ) ( 𝑆] +

2𝜃

𝜒

å
where 𝜂 = 2−4 ln(1/𝜃)/ ln(𝜒).

The proof of this lemma is a simple exercise in calculus.

The Probabilistic Decomposition

Let (𝑋, 𝑑) be a metric space. To generate the probabilistic decomposition we invoke the
basic partitioning iteratively on a carefully selected sequence of centers that guarantees the
desired lower bounds on the growth ratio. First we deterministically assign centers 𝑣1, . . . , 𝑣𝑠
and parameters 𝜒1, . . . , 𝜒𝑠 to be determined shortly. Let 𝑍1 = 𝑋 and 𝑗 = 1. Conduct the
following iterative process

1. Let 𝑣𝑗 ∈ 𝑍𝑗 be the point minimizing �̂�𝑗 = 𝜌(𝑥, 2Δ, 𝛾1, 𝛾2) over all 𝑥 ∈ 𝑍𝑗 (Lower bound
growth rate).

2. Set 𝜒𝑗 = max{2/𝛿1/2, �̂�𝑗}.

3. 𝑍𝑗+1 = 𝑍𝑗 ∖𝐵(𝑣𝑗,Δ/4).

4. Set 𝑗 = 𝑗 + 1. If 𝑍𝑗 ̸= ∅ return to step 1.

The above process determines the centers and the local parameters of the partition. We
know show how to obtain the probabilistic partition and uniform weights for the embedding.
Let 𝑍1 = 𝑋. For 𝑗 = 1, . . . , 𝑠:

1. Let (𝑆𝑣𝑗 , 𝑆𝑣𝑗) be the partition created by 𝑆𝑣𝑗 = 𝐵𝑍𝑗
(𝑣𝑗, 𝑟) and 𝑆𝑣𝑗 = 𝑍𝑗 ∖ 𝑆𝑣𝑗 where 𝑟

is distributed as before with parameter 𝜅 = 8 ln(𝜒𝑗)/Δ.
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2. Set 𝐶𝑗 = 𝑆𝑣𝑗 and 𝑍𝑗+1 = 𝑆𝑣𝑗 .

3. For all 𝑥 ∈ 𝐶𝑗 let 𝜂𝐶(𝑥) = 2−6/max{ln �̂�𝑗, ln(1/𝛿)}.

4. If �̂�𝑗 ≥ 1/𝛿 then 𝜉𝐶(𝑥) = 1 otherwise 𝜉𝐶(𝑥) = 0.

Where 𝜃 = 𝛿1/2 for some fixed 𝛿 ≥ 𝛿. We have the following lemma.

Lemma 1.3.6. Let 0 < Δ ≤ diam(𝑍). Let 𝛿 ∈ (0, 1/2], 𝛾1 ≥ 2, 𝛾2 ≤ 2−4. There exists
a Δ-bounded probabilistic partition 𝒫 of (𝑍, 𝑑) and a collection of uniform functions {𝜉𝐶 :
𝑍 → {0, 1}|𝐶 ∈ 𝒫} and {𝜂𝐶 : 𝑍 → (0, 1]|𝐶 ∈ 𝒫} such that the probabilistic partition is a
strong (𝜂, 𝛿)-uniformly locally padded PP and the following conditions hold for any 𝐶 ∈ 𝒫
and any 𝑥 ∈ 𝑍:

∙ If 𝜉𝐶(𝑥) = 1 then: 2−6

ln 𝜌(𝑥,2Δ,𝛾1,𝛾2)
≤ 𝜂𝐶(𝑥) ≤ 2−6

ln(1/𝛿)
.

∙ If 𝜉𝐶(𝑥) = 0 then: 𝜂𝐶(𝑥) =
2−6

ln(1/𝛿)
and 𝜌(𝑥, 2Δ, 𝛾1, 𝛾2) < 1/𝛿.

Main Embedding

∙ Δ0 := diam(𝑋) and Δ𝑖 =
Ä
𝜁
8

ä𝑖
Δ0 for 𝑖 ∈ N

∙ For all 𝑖 ∈ N let 𝐶𝑖 be a strong (𝜂𝑖, 𝛿)- uniformly locally padded PP with parameters
𝛾1 = 8/𝜁, 𝛾2 = 1/16, 𝛿 = 1/2, Δ = Δ𝑖 and 𝑍 = 𝑋 as given by the previous lemma.

∙ Let 𝜎𝑖(𝑥), 𝜉𝑖(𝑥), 𝜂𝑖(𝑥) be uniform functions with respect to 𝐶𝑖

Lemma 1.4.1. Let (X,d) be a finite metric space on 𝑛 points and 0 < 𝜁 ≤ 1/8, then there
exists a distribution 𝒟 over functions 𝑓 : 𝑋 → R such that for al 𝑢, 𝑣 ∈ 𝑋:

1. For all 𝑓 ∈ supp(𝒟),

|𝑓(𝑢)− 𝑓(𝑣)| ≤ 𝐶

¢
ln

Ç
𝑛

|𝐵(𝑢, 𝑑(𝑢, 𝑣))|

å•
· 𝑑(𝑢, 𝑣)

2. Pr𝑓∼𝒟[|𝑓(𝑢)− 𝑓(𝑣)| ≥ 𝜁3 · 𝑑(𝑢, 𝑣)/𝐶] ≥ 1− 𝜁,

where 𝐶 > 0 is a universal constant.

Using this lemma and Chernoff bounds we can prove our main result.
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Extensions

Theorem 1.5.1 (Scaling Distortion for Doubling Spaces). For an doubling metric space
(𝒳 , 𝑑) there exists an embedding 𝑓 : 𝑋 → ℓ𝐷𝑝 with coarse scaling distortion 𝑂(log26(1/𝜖))
where 𝐷 = 𝑂(dim(𝒳 ) log dim(𝑋)).

Theorem 1.5.2 (Scaling Distortion for Decomposable Metrics). Let 1 ≤ 𝑝 ≤ ∞. For any
𝑛 point 𝜏 -decomposable metric space (𝒳 , 𝑑) there exists an embedding with coarse scaling
distortion 𝑂

Ä
min

¶
(1/𝜏)1−1/𝑝 log(2/𝜖)1/𝑝, log(2𝜖)

©ä
.

Theorem 1.5.3 (Ultrametrics). For any 𝑛-point metric space (𝒳 , 𝑑) there exists an embed-
ding into a distribution over ultrametrics with coarse scaling distortion 𝑂(log(2/𝜖)).
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