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Abstract. We consider the marketing model of (Hartline, Mirrokni, Sundarara-
jan, WWW °08) for selling a digital product in a social network under positive
externalities. The seller seeks for a marketing strategy, namely an ordering in
which he approaches the buyers and the prices offered to them, that maximizes
her revenue. We restrict our attention to the Uniform Additive Model of exter-
nalities, and mostly focus on Influence-and-Exploit (IE) marketing strategies. We
show that in undirected social networks, revenue maximization is INP-hard not
only when we search for a general optimal marketing strategy, but also when
we search for the best IE strategy. Rather surprisingly, we observe that allow-
ing IE strategies to offer prices smaller than the myopic price in the exploit step
leads to a significant improvement on their performance. Thus, we show that the
best IE strategy approximates the maximum revenue within a factor of 0.911 for
undirected and of roughly 0.553 for directed networks. Utilizing a connection
between good IE strategies and large cuts in the underlying social network, we
obtain polynomial-time algorithms that approximate the revenue of the best IE
strategy within a factor of roughly 0.9. Hence, we significantly improve on the
best known approximation ratio for the maximum revenue to 0.8229 for undi-
rected and to 0.5011 for directed networks (from 2/3 and 1/3, respectively).

1 Introduction

Understanding the flow of information, influence, and epidemics through the social
fabric has become increasingly important due to the high interconnectedness brought
about by technological advances. The digitization of communications (e.g., cell phones,
emails, text messages) and of the social interaction (e.g., Facebook, Twitter) not only
has provided the researchers with a strong empirical footing upon which they can base
their theories and test their predictions, but also has opened the frontier of algorith-
mic applications related to social networks. Particularly, there has been a shift from
aggregate descriptive theories, in the spirit of Diffusion of Innovations, to models incor-
porating the structure of social networks, culminating with the algorithmic paradigm of
Influence Maximization.
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Firms operating in such a reticular environment, where information about products
and services diffuses rapidly between individuals, have acknowledged the importance
of revisiting their approach. The availability of information about users and the miti-
gated effectiveness of traditional forms of marketing occasion the need for intelligent
marketing strategies. Towards realizing this goal, there are three main challenges: min-
ing individual preferences, quantifying the influence that buyers exert upon each other,
and fusing these information along a marketing strategy. The ideal solution would be
an algorithm that intelligently adjusts its actions (e.g., prices, individuals to approach)
based on the current state of the network, and maximizes the seller’s revenue.

In this work, we are interested in the latter challenge of designing efficient market-
ing strategies that exploit the positive influence between buyers. We focus on the setting
where the utility of the product depends inherently on the scale of the product’s adop-
tion, e.g., the value of a social network depends on the fraction of the population using
it on a regular basis. In fact, for many products, their value to a buyer depends on the
set of her friends using them (e.g., cell phones, online gaming). In the presence of such
positive externalities between the potential buyers, the seller seeks for a marketing strat-
egy that guarantees a significant revenue through a wide adoption of the product, which
leads to an increased value, and consequently, to a profitable pricing of it.

Marketing Model. More formally, we adopt the model of Hartline, Mirrokni, and Sun-
dararajan [14], where a digital product is sold to a set of potential buyers under positive
externalities. We assume an unlimited supply of the product and that there is no pro-
duction cost for it. A (possibly directed) weighted social network G(V, E/, w) on the set
V" of potential buyers models how their value of the product is affected by other buyers
who already own the product. Specifically, an edge (j,4) € E denotes that the event
that 5 owns the product has a positive influence on ¢’s value of the product. The strength
of this influence is quantified by a non-negative weight w;; associated with edge (j, 7).
Also, buyer ¢ may have an intrinsic value of the product, quantified by a non-negative
weight w;;. The product’s value to each buyer ¢ is given by a non-decreasing function
v; 2 2N R, which depends on w;; and on the set S C N; of i’s neighbors who
already own the product, where N; = {j € V' \ {i} : (j, i) € E}. The exact values
v;(S) are unknown and are treated as random variables of which only the distributions
F; g are known to the seller. In particular, we assume that for each buyer ¢ and each set
S C N;, the seller only knows the probability distribution F; () = Pr[v;(S) < z]
that buyer ¢ rejects an offer of price x for the product.

Regarding the distribution of v;(.S)’s, the most interesting cases outlined in [14]
are: (i) the Concave Graph Model, where the weights w;; are random variables, and
the values v;(S) are determined by a concave function of the total influence M; s =
> jesufiy Wi perceived by buyer  from the set .S of her neighbors owning the product,
and (ii) the Uniform Additive Model, where the weights w;; are deterministic, and the
values v;(S) are uniformly distributed in [0, M; s]. In this work, we restrict our attention
to the Uniform Additive Model, which can be regarded as an extension of the widely
accepted Linear Threshold Model of social influence [15]]. Though technically simpler,
the Uniform Additive Model incorporates all the main features of the marketing model
of [14]. An important special case of the Uniform Additive Model is the undirected (or
the symmetric) case, where w;; = wj; for all edges {¢, j} of the social network.
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In this setting, the seller approaches each potential buyer once and makes an offer to
him. Thus, a marketing strategy (7, x) consists of a permutation 7 of the buyers and a
pricing vector = (z1,. .., xy), where 7 determines the order in which the buyers are
approached and « the prices offered to them. Given the set S of i’s neighbors who own
the product when the seller approaches her, buyer ¢ accepts the offer with probability
1— F; s(x;), in which case she pays the price z;, or rejects it, with probability F; s(z;),
in which case she pays nothing and never receives an offer again. The seller’s goal is to
compute a marketing strategy (7r, ) that maximizes her expected revenue, namely the
total amount paid by the buyers who accept the offer.

Previous Work. Using a transformation from Maximum Acyclic Subgraph, Hartline et
al. [14] proved that if we have complete knowledge of the buyers’ valuations, computing
a revenue-maximizing ordering is NP-hard for directed social networks. Combined
with the result of [12], this suggests an upper bound of 0.5 on the approximation ratio
of revenue maximization for directed networks and deterministic additive valuations.
On the positive side, they gave a polynomial-time dynamic programming algorithm for
a fully symmetric special case, where the order of the buyers is insignificant.

An interesting contribution of [14] is a class of elegant marketing strategies called
Influence-and-Exploit (IE). An IE strategy first offers the product for free to a selected
subset of buyers, aiming to increase the value of the product to the remaining buyers
(influence step). Then, in the exploit step, it approaches the remaining buyers, in a
random order, and offers them the product at the so-called myopic price. The myopic
price ignores the current buyer’s influence on the subsequent buyers and maximizes
the expected revenue extracted from her. In the Uniform Additive Model, each buyer
accepts the myopic price with probability 1/2. Hence, there is a notion of uniformity
in the prices offered in the exploit step, in the sense that the buyers accept them with a
fixed probability, and we can say that the IE strategy uses a pricing probability of 1/2.

As for the revenue extracted by IE strategies compared against the maximum rev-
enue extracted by general marketing strategies, Hartline et al. [14] proved that the best
IE strategy approximates the maximum revenue within a factor of 0.25 for the Concave
Graph Model, which improves to 4ei2 ~ 0.306 if the distributions F; g satisfy the
monotone hazard rate condition, and within a factor of 0.94 for the (polynomially solv-
able) fully symmetric case of the Uniform Additive Model. Combined with the recent
algorithm of [[L6] for unconstrained submodular maximization, which can be used to
approximate the revenue of the best IE strategy within a factor of 0.5, the results of [14]
imply an approximation ratio of 0.125 for the maximum revenue in the Concave Graph
Model, which improves to 0.153 if the distributions F; g satisfy the monotone hazard
rate condition. As for the Uniform Additive Model, Hartline et al. [[14] proved that if
each buyer is selected in the influence set randomly, with an appropriate probability,
the expected revenue of IE is at least 2/3 (resp. 1/3) times the maximum revenue of
undirected (resp. directed) networks. Since [14]], the Influence-and-Exploit paradigm
has been applied to a few other settings where one seeks to maximize revenue in the
presence of positive externalities (see e.g. [445013]]).

Contribution and Techniques. Although IE strategies are simple, elegant, and promis-
ing in terms of efficiency, their performance against the maximum revenue and their
approximability are not well understood. Moreover, the absence of any strong bounds
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on the fraction of the maximum revenue extracted by the best IE strategy and the poor
approximation ratios for the maximum revenue in the Concave Graph Model suggest
looking into simpler cases of the model. This is also suggested by previous work on
Influence Maximization, where focusing on simpler cases provides insights, which, in
turn, can enhance our understanding of more general settings. In this work, we focus
on the important case of the Uniform Additive Model, and obtain a comprehensive col-
lection of results on the efficiency and the approximability of IE strategies. Our results
also imply a significant improvement on the best known approximation ratio for revenue
maximization in the Uniform Additive Model.

We first show that in the Uniform Additive Model, revenue maximization is NP-
hard for undirected networks!| not only when we search for a general optimal marketing
strategy, but also when we search for the best IE strategy. Next, we embark on a system-
atic study of the algorithmic properties of IE strategies (Section[3)). In [14], IE strategies
are restricted, by definition, to the myopic pricing probability, which for the Uniform
Additive Model is 1/2. Rather surprisingly, we observe that we can achieve a significant
improvement on the efficiency of IE strategies if we use smaller prices (equivalently, a
larger pricing probability) in the exploit step. Thus, we let IE strategies use a carefully
selected pricing probability p € [1/2,1).

We prove the existence of an IE strategy with pricing probability 0.586 (resp. 2/3)
which approximates the maximum revenue, extracted by an unrestricted marketing
strategy, within a factor of 0.911 for undirected (resp. 0.55289 for directed) networks.
The proof assumes a revenue-maximizing pricing probability vector p and constructs
an IE strategy with the desired expected revenue by applying randomized rounding to
p. An interesting consequence is that the upper bound of 0.5 on the approximation ratio
of the maximum revenue for directed networks does not apply to the Uniform Additive
Model. In Section 3l we discuss the technical reasons behind this and show a pair of
upper bounds on the approximation ratio achievable for directed networks. Specifically,
assuming the Unique Games conjecture, we show that it is NP-hard to approximate the
maximum revenue within a factor greater than 27/32, if we use any marketing strategy,
and greater than 3 /4, if we are restricted to IE strategies with pricing probability 2/3.

The technical intuition behind most of our results comes from the apparent connec-
tion between good IE strategies and large cuts in the underlying social network. Follow-
ing this intuition, we optimize the parameters of the random-partitioning IE strategy of
[[14] and slightly improve the approximation ratio to 0.686 (resp. 0.343) for undirected
(resp. directed) networks. Building on the idea of generating revenue from large cuts
in the network, we discuss, in Section[4] a natural generalization of IE strategies that
use more than two pricing classes. We show that a simple random partitioning of the
buyers in six pricing classes further improves the approximation ratio for the maximum
revenue to 0.7032 for undirected networks and to 0.3516 for directed social networks.

The main hurdle in obtaining better approximation guarantess for the maximum rev-
enue problem is the lack of any strong upper bounds on it. In Section 3 we introduce
a strong Semidefinite Programming (SDP) relaxation for the problem of computing the

! If the seller has complete knowledge of the buyers’ valuations, finding a revenue-maximizing
ordering for undirected networks is polynomially solvable (Lemma [I). Therefore, the reduc-
tion of [14] does not imply that revenue maximization for undirected networks is INP-hard.
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best IE strategy with any given pricing probability. Our approach exploits the resem-
blance between computing the best IE strategy and the problems of MAX-CUT and
MAX-DICUT, and builds on the elegant approach of Goemans and Williamson [11]] and
Feige and Goemans [8]]. Solving the SDP relaxation and using randomized rounding,
we obtain a 0.9032 (resp. 0.9064) approximation for the best IE strategy with a pricing
probability of 0.586 for undirected networks (resp. of 2/3 for directed networks). Com-
bining these results with the bounds on the fraction of the maximum revenue extracted
by the best IE strategy, we significantly improve on the best known approximation ratio
for revenue maximization to 0.8229 for undirected networks and 0.5011 for directed
networks (from 2/3 and 1/3, respectively, in [[14]). To the best of our knowledge, this
is the first time an (approximate) SDP relaxation for a pricing model under positive
externalities is suggested and exploited to improve the approximation ratio for the cor-
responding revenue (or welfare) maximization problem. Actually, we believe that our
SDP-based approach may find applications to other pricing models under externalities.

Other Related Work. Our work lies in the area of pricing and revenue maximization
under positive externalities, and more generally, in the area of social contagion and
influence maximization (see e.g., [ZU15]). Recent research has studied the impact of
externalities in a variety of settings (see e.g. [14U44113U6I5I1319]). Hartline et al. [14]
were the first to consider social influence in the framework of revenue maximization.
Since then, relevant research has focused either on posted price strategies, where there
is no price discrimination, or on game theoretic considerations, where the buyers act
strategically according to their value of the product. To the best of our knowledge,
our work is the first that considers the approximability of the revenue extracted by an
optimal strategy and by the best IE strategy, which were the central problems in [[14]].

Regarding posted pricing, Arthur et al. [4] considered a model where recommenda-
tions about the product cascade through the network from early adopters, and presented
an IE-based O(1)-approximation algorithm for the maximum revenue. Akhlaghpour
et al. [1]] considered iterative posted pricing, where all interested buyers can buy the
product at the same price at a given time. They studied revenue maximization under
two different repricing models allowing for at most k prices. They proved that if fre-
quent repricing is allowed, revenue maximization is NP-hard to approximate, while
if the repricing rate is limited, there is an FPTAS. Anari et al. [3] considered a posted
price setting with historical externalities. Given a fixed price trajectory, the buyers de-
cide when to buy the product. In this setting, they studied existence and uniqueness of
equilibria, and presented an FPTAS for special cases of revenue maximization.

In a complementary direction, Chen et al. [6] investigated the (Bayesian-)Nash equi-
libria when each buyer’s value of the product depends on the set of buyers who own the
product. They focused on two classes of equilibria, pessimistic and optimistic ones, and
showed how to compute these equilibria and how to find revenue-maximizing prices.
Candogan et al. [3]] investigated a scenario where a monopolist sells a divisible good to
buyers under positive externalities. They considered a two-stage game where the seller
first sets an individual price for each buyer, and then the buyers decide on their con-
sumption level. They proved that the optimal price for each buyer is proportional to
her Bonacich centrality, and that if the buyers are partitioned into two pricing classes
(which is conceptually similar to IE), the problem is reducible to MAX-CUT.
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2 The Model and Preliminaries

The Influence Model. The social network is a (possibly directed) weighted network
G(V, E,w) on the set V' of potential buyers. There is a positive weight w;; associated
with each edge (4, j) € E (we assume that w;; = 01if (¢, ) € E). A social network is
undirected (or symmetric) if w;; = wj; for all ¢, j € V, and directed otherwise. There
may exist a non-negative weight w;; associated with each buyer iB. Bach buyer ¢ has a
value v; : 2Ni — R of the product, which depends on w;; and on the set S C N; of
i’s neighbors who already own the product, where N; = {j € V' \ {i} : (4,i) € E}.
However, the exact values v;(.S) are unknown to the seller, who, for each buyer ¢ and
each set S C N,, only knows the probability distribution F; s(x) = Pr[v;(S) < z]
that buyer ¢ rejects an offer of price x for the product.

In the Uniform Additive Model [14, Section 2.1], the values v;(S) are drawn from

the uniform distribution in [0, M;,s], where M s = > c 5 ,(;3 Wy is the total influence
perceived by ¢ by the set .S of her neighbors owning the product. Then, the probability
that buyer ¢ rejects an offer of price z is F; s(x) = 2/M; g.
Myopic Pricing. The myopic price disregards any externalities imposed by ¢ on her
neighbors, and simply maximizes the expected revenue extracted from buyer ¢, given
that S is the current set of 4’s neighbors who own the product. For the Uniform Additive
Model, the myopic price is M; g/2, the probability that buyer ¢ accepts it is 1/2, and
the expected revenue extracted from her with the myopic price is M; s/4, which is the
maximum revenue one can extract from buyer ¢ alone.

Marketing Strategies and Revenue Maximization. We can usually extract more rev-
enue from G by employing a marketing strategy that exploits the positive influence
between the buyers. A marketing strategy (7, x) consists of a permutation 7 of the
buyers and a pricing vector * = (z1, ..., 2, ), where 7 determines the order in which
the buyers are approached and « the prices offered to them.

We observe that for any buyer ¢ and any probability p that ¢ accepts an offer, there
is an (essentially unique) price x,, such that ¢ accepts an offer of x,, with probability p.
For the Uniform Additive Model, =, = (1 —p)M, g and the expected revenue extracted
from buyer ¢ with such an offer is p(1 — p) M; s. Throughout this paper, we equivalently
regard marketing strategies as consisting of a permutation 7r of the buyers and a vector
p = (p1,...,pn) of pricing probabilities. We note that if p; = 1, 7 gets the product
for free, while if p; = 1/2, the price offered to 7 is (the myopic price of) M; s/2. We
assume that p; € [1/2, 1], since any expected revenue in [0, M; s/4] can be achieved
with such pricing probabilities. The expected revenue of a marketing strategy (7, p) is:

R(m,p) = Zpi(l —pi) | wis + Z DjWyjs (1)

i€V Jimi<m;

The problem of revenue maximization under the Uniform Additive Model is to find
a marketing strategy (7*,p*) that extracts a maximum revenue of R(7*, p*) from a
given social network G(V, E, w).

2 Wlog., we ignore w;;’s for directed networks, since we can replace each w;; by an edge (7', )
of weight w;; from a new node i’ with a single outgoing edge (i’, ) and no incoming edges.
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Bounds on the Maximum Revenue. Let N = >,y w;; and W = >7, . wj, if the
social network G is undirected, and W = Z(z fer Wij» if G is directed. Then an upper
bound on the maximum revenue of G is R* = (W + N) /4, and follows by summing up
the myopic revenue over all edges of G [[14, Fact 1]. A lower bound on the maximum
revenue is (W + 2N)/8 (resp. (W + 4N)/16), if G is undirected (resp. directed), and
follows by approaching the buyers in any order (resp. in a random order) and offering
them the myopic price. Thus, myopic pricing achieves an approximation ratio of 0.5 for
undirected networks and of 0.25 for directed networks.

Ordering and NP-Hardness. Revenue maximization exhibits a dual nature involving
optimizing both the pricing probabilities and the sequence of offers. For directed net-
works, finding a good ordering 7 of the buyers bears a resemblance to the Maximum
Acyclic Subgraph problem, where given G(V, E, w), we seek for an acyclic subgraph
of maximum total edge weight. In fact, any permutation 7 of V' corresponds to an
acyclic subgraph of G that includes all edges going forward in 7r, i.e., all edges (i, )
with m; < 7;. [14, Lemma 3.2] shows that given a directed network G and a pricing
probability vector p, computing an optimal ordering of the buyers (for the particular p)
is equivalent to computing a Maximum Acyclic Subgraph of G, with each edge (%, )
having a weight of p;p;(1 — p;)w;;. Consequently, computing an ordering 7 that max-
imizes R(m,p) is NP-hard and Unique-Games-hard to approximate within a factor
greater than 0.5 [[12]. On the other hand, we can show that in the undirected case, if the
pricing probabilities are given, we can easily compute the best ordering of the buyers.

Lemma 1. Let G(V, E,w) be an undirected social network, and let p be any pricing
probability vector. Then, approaching the buyers in non-increasing order of their pric-
ing probabilities maximizes the revenue extracted from G under p.

Therefore, [14, Lemma 3.2] does not imply the NP-hardness of revenue maximization
for undirected networks. The following lemma employs a reduction from monotone
One-in-Three 3-SAT [10, LO4], and shows that revenue maximization is NP-hard for
undirected networks.

Lemma 2. Computing a marketing strategy that extracts the maximum revenue from
an undirected social network is NP-hard.

3 Influence-and-Exploit Strategies

An Influence-and-Exploit (IE) strategy IE(A, p) consists of a set of buyers A receiving
the product for free and a pricing probability p offered to the remaining buyers in V'\ A,
approached in a random order. We slightly abuse the notation, and let TE(q, p) denote
an IE strategy where each buyer is selected in A independently with probability ¢. For
directed networks, IE( A, p) extracts an expected (wrt the random ordering of the exploit
set) revenue of:

Rie(A,p) = p(1 —p) Z wii + Z wi + Z P;Uji 2

iEV\A jeA JEV\A, j#i
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Specifically, IE(A, p) extracts a revenue of p(1 — p)w,; from each edge (j,) with
j € Aandi € V' \ A, and a revenue of p(1 — p)wj; from each edge (j, i) with both
J,i € V'\ A, if jis before ¢ in the random order, which happens with probability 1/2.
The problem of finding the best IE strategy is to compute a subset of buyers A* and
a pricing probability p* that extract a maximum revenue of Rig(A*, p*) from a given
social network G(V, E, w). The following lemma employs a reduction from monotone
One-in-Three 3-SAT, and shows that computing the best IE strategy is NP-hard.

Lemma 3. The problems of computing the best IE strategy and of computing the best
IE strategy with a given pricing probability p, for any fixed p € [1/2,1), are NP-hard,
even for undirected networks.

Simple IE strategies extract a significant fraction of the maximum revenue. E.g., for
undirected networks, Rig(0,2/3) = (4W + 6N)/27, and IE(, 2/3) achieves an ap-
proximation ratio of }5. Moreover, IE(X, 1/2) extracts the maximum revenue from any
simple undirected bipartite network G(X, Y, F). For directed networks, Rig((),2/3) =
(2W + 6N)/27, and IE(), 2/3) achieves an approximation ratio of ;.. We next show
that carefully selected IE strategies extract a larger fraction of the maximum revenue.

Exploiting Large Cuts. A natural idea is to exploit the apparent connection between a
large cut in the social network and a good IE strategy. For example, in the
undirected case, an IE strategy IE(q, p) is conceptually similar to the randomized 0.5-
approximation algorithm for MAX-CUT, which puts each node in set A with proba-
bility 1/2. However, in addition to a revenue of p(1 — p)w;; from each edge {i, j} in
the cut (4, V \ A), IE(q, p) extracts a revenue of p*(1 — p)w;; from each edge {i, j}
between nodes in the exploit set V' \ A. Thus, to optimize the performance of IE(g, p),
we carefully adjust the probabilities ¢ and p so that TE(g, p) balances between the two
sources of revenue. The proof of Proposition[I] extends the proof of [14, Theorem 3.1].

Proposition 1. Ler G(V, E,w) be an undirected (resp. directed) social network, let
A= N/W, and let ¢ = max{1l — ‘/Z(iH‘) ,0}, Then, IE(q, 2 — \/2) approximates the
maximum revenue of G within a factor of 0.686 (resp. 0.343).

On the Efficiency of Influence-and-Exploit. IE makes a rough discretization of the
pricing space, and exploits the fact that the combinatorial structure of partitioning the
vertices into two sets is well understood. Nevertheless, we are left with the nontrivial
task of correlating the maximum revenue with only two prices and the maximum rev-
enue with any set of prices. We next show that the best IE strategy, which is NP-hard
to compute, manages to extract a significant fraction of the maximum revenue.

Theorem 1. For any undirected social network, there exists an IE strategy with pricing
probability 0.586 whose revenue is at least 0.9111 times the maximum revenue.

Proof. We consider an undirected social network G(V, E, w), start from the revenue-
maximizing pricing probability vector p, and obtain an IE strategy IE(A, p) by apply-
ing randomized rounding to p. We show that for p = 0.586, the expected (wrt the
randomized rounding choices) revenue of IE(A, p) is at least 0.9111 times the revenue
extracted from G by the best ordering for p.
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By Lemmal[ll the best ordering is to approach the buyers in non-increasing order of
pricing probabilities. Hence, we let p; > --- > p,,, and let 7v be the identity permuta-

tion. Then,
sz 1 7pz Wi; + szpj pj W4
eV 1<j

For the IE strategy, we assign each buyer i to the influence set A independently with
probability I(p;) = a(p;)(p; —0.5), and to the exploit set with probability E(p;) = 1—
I(p;), where a(z) : [0.5,1] — [0, 2] is a piecewise linear function with breakpoints at
(0.5,0.7,0.8,0.9,1.0) and values (0.0, 1.0, 1.33,1.63, 2.0) at these points. By linearity
of expectation, the expected revenue of IE(A, p) is:

Rie(A,p) Zp (1 —p)E(pi)wii + Zﬁ(l —p) (I(ps)E(py)

€V 1<j
+ E(pi)1(p;) + p E(pi) E(p;)) wij

Specifically, IE(A, p) extracts a revenue of p(1 — p)w;; from each loop {i,i}, if ¢ is
included in the exploit set. Moreover, IE(A, p) extracts a revenue of p(1 — p)w;; from
each edge {4, j}, 4 < j, if one of 4, j is included in the influence set A and the other is
not, and a revenue of p*(1 — p)w;; if both i and j are included in the exploit set V' \ A.

The approximation ratio of IE( A, p) to the maximum revenue of G under p is derived
as the minimum ratio between any pair of terms in R(7r, p) and Rig(A, p) correspond-
ing to the same loop {4,i} or to the same edge {4, j}. Therefore, the approximation
ratio of IE(A, p) is no less than the minimum of:

BB L p( -5 ) + B) () + 5 B(x) B())
05<z<1  z (1 —ux) 0.5<y<a<1 zy(l—1y)

Using calculus, we can show that for p = 0.586, these ratios are at least 0.9111. O
For directed networks, we use the same approach, and obtain the following theorem.

Theorem 2. For any directed social network, there is an IE strategy with pricing prob-
ability 2 /3 whose expected revenue is at least 0.55289 times the maximum revenue.

Proof sketch. Working as in the proof of Theorem [l we show that the approxima-
tion ratio of the IE strategy obtained by applying randomized rounding to the revenue-
maximizing pricing probability vector is at least:

p(1—=p)(I(z) E(y) +0.5p E(x) E(y))
0.5<z,y<1 zy(l—vy)

For p = 2/3 and a(w) = 1.0, for all z, this is simplified to min, (o 5 1 227(;(1 y)) , which

attains its minimum value of ~ 0.55289 at y = 3_2‘/3. g

Similarly, we can show that there is an IE strategy that uses the myopic pricing proba-
bility of 1/2 and extracts a revenue of at least 0.8857 (resp. 0.4594) times the maximum
revenue for undirected (resp. directed) social networks.
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On the Approximability of the Maximum Revenue for Directed Networks. The
results of [[14, Lemma 3.2] and [12] suggest that given a pricing probability vector p,
it is Unique-Games-hard to compute a vertex ordering 7 of a directed network G for
which R(7, p) is at least 0.5 times the maximum revenue of G under p. An interesting
consequence of Theorem[2lis that the inapproximability bound of 0.5 does not apply to
revenue maximization in the Uniform Additive Model. In particular, given the prices p,
Theorem 2l computes, in linear time, an IE strategy with an expected revenue of at least
0.55289 times the maximum revenue of GG under p. This does not contradict the results
of [14112], because the pricing probabilities of the IE strategy are different from p.

In the Uniform Additive Model, different acyclic (sub)graphs (equivalently, differ-
ent vertex orderings) allow for a different fraction of their edge weight to be translated
into revenue, while in the reduction of [14, Lemma 3.2], the weight of each edge in
an acyclic subgraph is equal to its revenue. Thus, although the IE strategy of Theo-
rem 2] with pricing probability 2/3, gives a 0.55289-approximation to the maximum
revenue of G under p, its vertex ordering combined with p may generate a revenue
of less than 0.5 times the maximum revenue of G under p. Next, we obtain a pair of
inapproximabity results for revenue maximization in the Uniform Additive Model.

Lemma 4. Assuming the Unique Games conjecture, it is NP-hard to approximate
within a factor greater than 27 /32 (resp. to compute an IE strategy with pricing proba-
bility 2/3 that approximates within a factor greater than 3 /4) the maximum revenue of
a directed social network in the Uniform Additive Model.

4 Generalized Influence-and-Exploit

Building on the idea of generating revenue from large cuts between pricing classes, we
obtain a class of generalized IE strategies, which employ a partition of buyers in more
than two pricing classes. A generalized IE strategy consists of K > 3 classes. Each class
k,k=1,..., K,isassociated with a pricing probability of p, = 1 — 2(’?_11), and each

buyer is assigned to the class k independently with probability gi, where Zle q =1,
and is offered a pricing probability of pi. The buyers are considered in non-increasing
order of pricing probability, i.e., the buyers in class k are considered before the buyers
in class k + 1, and the buyers in the same class are considered in a random order.

Let IE(q, p) be such a generalized IE strategy, where ¢ = (q1,-..,qx) is the as-
signment probability vector and p = (p1, ..., pxk ) is the pricing probability vector. We
can show that the approximation ratio of IE(q, p) for undirected networks is at least:

K K K1
min{4ZQkpk(1 — i), 4> qrpr(l —pr) (f]kpk: + 22%?@) } )

k=1 k=1 (=1

while for directed social networks, the approximation ratio of IE(q, p) is at least half
of the quantity in (3). We can now select the assignment probability vector g so that (3)
is maximized. With the pricing probability vector p fixed, this involves maximizing a
quadratic function of g over linear constraints. Thus, we obtain the following:



280 D. Fotakis and P. Siminelakis

Theorem 3. For any undirected (directed) network G, the generalized IE strategy with
K = 6 classes and assignment probabilities ¢ = (0.183,0.075,0.075,0.175,0.261,
0.231) approximates the maximum revenue of G within a factor of 0.7032 (0.3516).

5 Influence-and-Exploit via Semidefinite Programming

The main hurdle in obtaining better approximation guarantees for the maximum rev-
enue is the loose upper bound of (N + W) /4. We do not know how to obtain a stronger
upper bound on the maximum revenue. However, in this section, we obtain a Semidef-
inite Programming (SDP) relaxation for the problem of computing the best IE strategy
with any given pricing probability p € [1/2,1). Our approach exploits the resemblance
between computing the best IE strategy and the problems of MAX-CUT (for undirected
networks) and MAX-DICUT (for directed networks), and builds on the approach of
[[L148]. Solving the SDP relaxation and using randomized rounding, we obtain, in poly-
nomial time, a good approximation to the best influence set for the given p. Then, em-
ploying the bounds of Theorems [Il and 2] we obtain strong approximation guarantees
for the maximum revenue in both directed and undirected networks.

Directed Social Networks. The case of a directed network G(V, E, w) is a bit simpler,
because we can ignore loops (7, 4) without loss of generality. We observe that for any
given pricing probability p € [1/2,1), the problem of computing the best IE strategy
TE(A, p) is equivalent to solving the following Quadratic Integer Program:

max p(l;p) Z wij (1+5 4+ 1= Dyoyi — 1+ 5)yoy; — (1= Dyiy;) Q)
(i,9)eE

s.t. vy, € {-1,1} Vie VUu{0}

In (Q1), there is a variable y; for each buyer ¢ and an additional variable g, denoting the
influence set A. A buyer ¢ is assigned to A, if y; = yo, and to the exploit set, otherwise.
For each edge (4, j), 1 + yoy: — Yoy; — viy; is 4, if y; = yo = —y; (i.e., if 7 is assigned
to the influence set and j is assigned to the exploit set), and 0, otherwise. Moreover,
P(1 = yoys — yoy; + yayy) is 2p, if y; = y; = —yo (i.e., if both i and j are assigned to
the exploit set), and 0, otherwise. Therefore, the contribution of each edge (i, j) to the
objective function of (Q1) is equal to the revenue extracted from (¢, ) by IE(A, p).

Following the approach of [[L18]], we relax (Q1) to the following Semidefinite Pro-
gram, where v; - v; denotes the inner product of vectors v; and v;:

max p(14—p) Z Wiy <1+g+(1—g)’l}()"l}i—(l—‘rg)’l}o'vj—(l—g)’Ui"Uj>

(i.g)eE
S.t. Vi sV + U v + Vg v = -1 (S1)
Vi sV — Vg Vi — Vo v; > —1
—v; *Vj — Vg -V + Vv > —1
—V; -V +v0 -V —vg -V > —1

s
3
+
=

’UZ"’UZ':]., Vi € VZEVU{O}
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Any feasible solution to (Q1) can be translated into a feasible solution to (S1) by setting
v; = v, if y; = yo, and v; = —vg, otherwise. An optimal solution to (S1) can be
computed within any precision ¢ in time polynomial in n and in In i (see e.g. [2]).

Given a directed social network G(V, E, w), a pricing probability p, and a parameter
v € [0, 1], the algorithm SDP-IE(p, y) first computes an optimal solution vg, v1, . . ., Up,
to (S1). Then, following [8], the algorithm maps each vector v; to a rotated vector v;
which is coplanar with vy and v;, lies on the same side of vy as v;, and forms an angle
with vy equal to f,(6;) = (1 —v)0; + ym(1 — cosb;)/2, where 7 = 3.14... and
0; = arccos(vo - v;) is the angle of vy and v;. Finally, the algorithm computes a random
vector r uniformly distributed on the unit (n 4 1)-sphere, and assigns each buyer i to
the influence set A, if sgn(v] - ) = sgn(vp - r), and to the exploit set V' \ A, otherwise
where sgn(x) = 1, if z > 0, and —1, otherwise. We next show that:

Theorem 4. For any directed social network G, SDP-IE(2/3,0.722) approximates the
maximum revenue extracted from G by the best IE strategy with pricing probability 2 /3
within a factor of 0.9064.

Proof. We let vy, v1, ..., vy, be an optimal solution to (S1), let 8;; = arccos(v; - v;) be
the angle of any two vectors v; and v;, and let 6; = arccos(vo - v;) be the angle of v
and any vector v;. Similarly, we let ¢ ; = arccos(v; - v};) be the angle of any two rotated
vectors v; and v}, and let ¢ = arccos(vg - v;) be the angle of vy and any rotated vector
v;. Building on the proof of [11, Lemma 7.3.2], we can show that:

Lemma 5. The IE strategy of SDP-IE(p, ) extracts from each edge (i, j) an expected

revenue of:

(=50 — (1= +1+1)
27

Since (S1) is a relaxation of the problem of computing the best IE strategy with pricing

probability p, the revenue of an optimal TE(A, p) strategy is at most:

wi; p(1 —p) 4)

p(14—p) Z wij (1 + 8+ (1 —=%)cost; — (1+5)cost; — (1 — g)coseij) (5)
(i,7)€EE

On the other hand, by Lemma[3] and linearity of expectation, the IE strategy computed
by SDP-IE(p, v) generates an expected revenue of:

PPN wy (L= 5)05 — (1= 2) 8+ (1+2)6)) (6)
(i,))eE

We recall that for each i, 6, = f.,(6;). In [8 Section 4], it is shown that for each ¢, j,

0;; = arccos (cos J+(6;) cos f(0;) + °° eéfnfeiozii"ejos % gin f+(6;) sin fW(Gj))
= g4(0i5,05,0;)

The approximation ratio of SDP-IE(p, ) is derived as the minimum ratio of any pair
of terms in (@) and (@) corresponding to the same edge (i, 7). Thus, the approximation
ratio of SDP-IE(p, ) is at least:



282 D. Fotakis and P. Siminelakis

)f5(63) + (1 +
Jcosf; — (1 —

)1+(0;)

2 (1_p)g (91‘,(9,’,9')—(1—
p(p.7) = R T ) cos B
ij

p p
2 2
min

T 0<6,5,0:,0;<m 1 + 5 4 (1 — §)cost; — (1 + 5 b
where cos 0;; = v; - v;, cos 0; = v - v;, and cos §; = v - v; must satisfy the inequality
constraints of (S1). It can be shown numerically that p(2/3,0.722) > 0.9064. O

Combining Theorem[ and Theorem 2] we conclude that:

Theorem 5. For any directed social network G, the IE strategy of SDP-IE(2/3,0.722)
approximates the maximum revenue of G within a factor of 0.5011.

Undirected Social Networks. We apply the same approach to an undirected network
G(V, E,w). The important difference is that the objective function of the SDP relax-
ation now is:

max p(12_p) sz’z‘ (1 —wo-v;)+
iev
sy D wij (24 p—pvo-vi —pvo-v; — (2= p)vi - v))
1<J

Apart from the SDP relaxation, the algorithm is the same as that for directed networks.
Working as in the proof of Theorem] we can prove that:

Theorem 6. For any undirected social network G, SDP-1E(0.586,0.209) approximates
the maximum revenue extracted from G by the best IE strategy with pricing probability
0.586 within a factor of 0.9032.

Combining Theorem[6l and Theorem[l we conclude that:

Theorem 7. For any undirected network G, the IE strategy of SDP-IE(0.586,0.209)
approximates the maximum revenue of G within a factor of 0.8229.

Remark. By the same approach, we compute the approximation ratio of SDP-IE(p, )
against the best IE strategy, for any pricing probability p € [1/2,1). Viewed as a
function of p, both the best value of v and the approximation ratio of SDP-IE(p, )
against the best IE strategy increase slowly with p. For example, for directed net-
works, the approximation ratio of SDP-IE(0.5, 0.653) (resp. SDP-IE(0.52, 0.685) and
SDP-IE(0.52,0.704)) is 0.8942 (resp. 0.8955 and 0.9005). For undirected social net-
works, the approximation ratio of SDP-IE(0.5,0.176) (resp. SDP-IE(0.52,0.183) and
SDP-1E(2/3,0.425)) is 0.899 (resp. 0.9005 and 0.907). Then, for any p € [1/2,1), we
can multiply the approximation ratio of SDP-IE(p,~) and the bound obtained by the
approach of Theorems [I] and 2] on the fraction of the maximum revenue extracted by
the best IE strategy with pricing probability p, and obtain the approximation ratio of
SDP-IE(p, v) against the (unrestricted) optimal marketing strategy.
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