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Abstract. The Small World phenomenon has inspired researchers across a num-
ber of fields. A breakthrough in its understanding was made by Kleinberg who
introduced Rank Based Augmentation (RBA): add to each vertex independently
an arc to a random destination, selected from a carefully crafted probability dis-
tribution. Kleinberg proved that RBA makes many networks navigable, i.e., it
allows greedy routing to successfully deliver messages between any two vertices
in a polylogarithmic number of steps. Our goal in this work is to prove that navi-
gability is an inherent, robust property of many random networks. Our framework
assigns a cost to each edge and considers the uniform measure over all graphs on
n vertices that satisfy a total budget constraint. We show that when the cost func-
tion is sufficiently correlated with the underlying geometry of the vertices and for
a wide range of budgets, the overwhelming majority of all feasible graphs with
the given budget are navigable. We provide a new set of geometric conditions that
generalize Kleinberg’s set systems as well as a unified analysis of navigability.
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1 Introduction

The Small World phenomenon (SW), popularly known as Six Degrees of Separation [1],
refers to the empirical fact that one can connect any two people in the world through
short chains of personal acquaintances. Sociologists, mathematicians and more recently
computer scientists have undertaken efforts to formalize this phenomenon, provide
plausible explanations (mechanisms) of its emergence and finally exploit it in the de-
sign of networks and protocols. In light of these efforts the SW phenomenon has been
at center stage of the developments in the study of mathematical models of real world
networks [2, 3] and of decentralized routing protocols.

The early interpretation of the SW was in terms of the diameter of the network, that
is, the largest distance between any two individuals. A network (graph) is said to be
a “small world”, if it’s diameter is at most logarithmic in the number of vertices. This
is motivated by the fact that any network with constant degree has to have diameter
at least logarithmic. Many mathematical models (typically involving some amount of
randomness) have been shown to satisfy this requirement and underlying proofs of such
results lies expansion, i.e. that there is non-trivial density of edges between sets of
vertices.

The first concrete empirical evidence that gave credence to Small World phenomenon
came from Sociologist Stanley Milgram in one of his famous experiments [4]. In this
experiment participants were given a letter addressed to a certain person specified by
his name, location and occupation. They were asked to forward the letter (along with
instructions) to an acquaintance of theirs that is most likely to know the target. A large
fraction of the letters sent did arrive to the target and on average each letter had to go
through 5 or 6 people before it reached its target. Since then, more modern forms of the
same experiment have been repeated [5] and in our era we have the phenomenon of 4
degrees of separation [6]. However, it was not until Kleinberg’s work that Milgram’s ex-
periment and the Small World phenomenon in general was fully appreciated and given
its modern interpretation.

Jon Kleinberg realized that Milgram’s experiment indicated not only that short
chains of acquaintances exist, but also that they can be found in a decentralized man-
ner using only some global information of the target (occupation and location). In his
groundbreaking work [7, 8], Kleinberg formulated mathematically the property of find-
ing short-paths in a decentralized manner as navigability. Since then, the concept of
navigability has also found applications in the design of peer-to-peer networks [9, 10],
data-structures [11, 12] and search algorithms [13–15].

In this paper we revisit this most recent algorithmic interpretation of the SW phe-
nomenon, that of Navigability. We propose a unified and simplified framework that sep-
arates the geometric and probabilistic requirements for navigability and offers insights
on its emergence in the real world.

1.1 Navigability and Rank Based Augmentation

Navigability is a property of networks that allows efficient decentralized communica-
tion. Key to decentralization is shared knowledge in the form of geometry. In Milgram’s
experiment individuals were embedded in a occupation-location space and distance was



defined based on this information. Here, more generally, we will assume shared knowl-
edge of a (distance) function on pairs of vertices (not necessarily satisfying the triangle
inequality) that can guide the search through an otherwise unstructured network.

Definition 1. A geometry (V, d) consists of a set of vertices V and a distance function
d : V × V → IR+, where d(x, y) ≥ 0, d(x, y) = 0 iff x = y, and d(x, y) = d(y, x),
i.e., the function d is a semi-metric.

Given a graph G(V,E) on a geometry (V, d), a decentralized search algorithm is
any algorithm that given a target vertex t and current vertex v selects the next edge
{v, u} ∈ E to cross by only considering the distance d(u, t) of each neighbor u of v
to the target t. Navigability concerns the performance of decentralized algorithms in
finding paths in a graph guided by a distance function.

Definition 2. A graph G(V,E) on geometry (V, d) is d-navigable if there exists a de-
centralized search algorithm that given any two vertices s, t ∈ V will find a path from
s to t of length O (poly(log n)).

In the above definition, the requirement that paths have polylogarithmic length es-
sentially means that decentralized search incurs cost at most polynomial larger than if
we had full information, i.e., we could actually compute the shortest path between any
pair of vertices.

In his original work on navigability [7], Kleinberg showed that if G is the two di-
mensional grid (with d being the `1 distance on the grid) then adding a single random
edge independently to each v ∈ V according to some distribution results in a navi-
gable graph. The distribution for selecting the other endpoint u of each added edge is
crucial. Indeed, if it can only depend on d(v, u) and distinct vertices are augmented
independently, Kleinberg showed that there is a unique suitable distribution, the one in
which the probability is proportional to d(v, u)−2 (and, more generally, d(v, u)−r for
r-dimensional lattices).

The underlying principle behind Kleinberg’s augmentation scheme has by now be-
come known as Rank Based Augmentation (RBA) [8, 16].

Definition 3. Given a geometry (V, d) and two vertices v, u ∈ V , let rankv(u) be the
number of vertices that have distance at most d(u, v) from v. Rank Based Augmentation
(RBA) refers to a probability distribution µ over edges such that the probability of an
edge (v, u) being included is proportional to the rank of u with respect to v:

Pµ((v, u) ∈ E) ∝ 1

rankv(u)
(1)

The intuition behind RBA is that navigability is attained because the added edges
provide connectivity across all distance scales and crucially in all possible directions,
i.e., target vertices. The first property is not hard to achieve. For instance, if all distances
to v are unique, then rankv actually induces a permutation of the vertices. As such, if
we pick any constant γ > 1 and partition vertices depending whether their rank is
between [γk−1, γk) for k ≥ 1, we see that for each “scale” k the expected number of
edges to vertices in that scale is proportional to 1/ log n. However, even though we have



a non-trivially probability of finding an edge to cross the right distance scale, we still
need the edge to bring us closer to the target by a constant factor if we are ever going
to reach the destination in a poly-logarithmic number of steps. For that to happen, we
roughly need a constant fraction of the vertices in that scale to reduce the distance to
the target by a constant factor. Both conditions are effortlessly true in regular lattices of
finite dimension as there are a constant number (though exponential in the dimension) of
possible “directions” and the rank function grows only polynomially with the distance
of the vertex.

An important facet of Kleinberg’s work is that navigability is achieved by only
adding a constant number of edges per node. Observe, that trivially the complete graph
is navigable, so the question of navigability is of special interest when the graph is
sparse. From a practical perspective, the amount of links that a node has translates into
the number of bits that each node has to store in order to be able to run the decentralized
search algorithm [12].

In subsequent work [8], Kleinberg generalized his results beyond lattices and showed
that the geometric conditions needed for RBA to render a network navigable are satis-
fied by the geometries induced by a family of set-systems, whose definition (Section 6)
corresponds roughly to an abstraction of the above considerations. To make this intu-
ition more concrete consider a regular lattice and for all k ≥ 0 define balls of radius γk

centered at each vertex, the resulting collection of sets of vertices would form a valid
set-system. The motivation for studying set-systems has also a conceptual importance
as in the real world people belong in groups and typically the distance between two
individuals can be defined as the size of the smallest group that both belong to. RBA
in this context expresses the idea that the probability of two people knowing each other
is inversely proportional to their distance in this group space. Besides, its conceptual
appeal it is also known [12] that set-systems encompass geometries defined by metric
spaces of bounded doubling dimension. Thus, set-systems are a very general and con-
ceptually appealing abstraction of the geometric requirements of navigability and along
with RBA go far in providing a solid mathematical explanation of the Small world
phenomenon.

The remarkable success of RBA in conferring navigability rests crucially on its
perfect adaptation to the underlying geometry. This adaptation, though, requires not
only all vertices to behave identically and independently, but also a very specific, indeed
unique, functional form for the probability distribution of edge formation. This exact
fine tuning renders RBA unnatural, severely undermining its plausibility.

1.2 Our contribution

Our goal in this paper is to demonstrate that navigability is in fact a robust property
of networks that does not require independence, coordination or fine tuning, but rather
arises naturally under the right geometric and “economical” conditions. We achieve
this by first presenting a set of sufficient conditions for navigability (unifying previous
approaches) and then showing that they can be easily satisfied under natural models of
generating the geometry and the graph. Roughly speaking, we isolate three ingredients
that suffice for navigability on a geometry (V, d):



– Geometric requirements: some degree of coherence of the semi-metric d (similar
to Kleinberg’s set systems).

– Local progress: a substrate of connections between nearby points in V compatible
with the semi-metric, making it impossible to get stuck locally.

– Probabilistic requirements: sufficient edge density across all distance scales and
“directions” (target vertices).

The first two ingredients are generalizations of existing work and, as we will see, fully
compatible with RBA. The third ingredient is also motivated by the RBA viewpoint,
but we will prove that it can be achieved in far more-light handed, and thus natural,
manner than RBA. Moreover, in the course of doing so, we will give RBA a very natural
economic interpretation, as the distribution on edges arising when the cost of each edge
is the cost of indexing among neighbours at the same distance scale.

As mentioned, at the foundation of navigability lies shared knowledge in the form of
geometry. At the same time, geometry imposes global constraints on the set of feasible
networks. Most obviously, in a physical network where edges (wire, roads) correspond
to a resource (copper, concrete) there is typically an upper bound on how much can be
invested to create the network. More generally, cost may represent a number of different
notions (e.g., class membership) that distinguish between edges.

We will formalize the above intuition by (i) allowing edges to have costs given by
an arbitrary function c on the edges, and (ii) taking as input an upper bound on the total
cost of feasible graphs, i.e., a budgetB. For instance, the cost of each edge may express
the propensity (low cost) or reluctance (high cost) of two individuals interacting. In that
case, an upper bound on the total cost expresses that feasible social interaction graphs
are selected to not cause too much discomfort to the participating individuals.

Geometry, either of physical or of “concept” space, is an extremely natural backdrop
for network formation that brings along both notions of cost and budget. In general,
we expect that cost will correlate with geometry and that the budget, for any given cost
function, will be such that the average degree of the network will be small (a property of
nearly all real networks). Within these highly generic considerations, given a geometry,
a cost function, and a budget we would like to study the set of all graphs satisfying the
budget constraint, i.e., the set of all feasible graphs, and answer the following question:
is it the case that the overwhelming majority is navigable?

This viewpoint departs from previous work where the aim was to provide a network
creation mechanism that would lead to navigable graphs. Our viewpoint is motivated
by the fact that, in reality, navigability is almost never an explicit goal of the network
formation process yet, at the same time, navigability appears to be prevalent in a wide
variety of settings. To demonstrate the power of our approach at this point we give only
an informal a flavor of our results and postpone the precise statements for the main part
of the paper.

Theorem 1 (Informal). Given a random set of n points on the square [0,
√
n]2 en-

dowed with some local connectivity (e.g. edges between nearest neighbours), define the
cost of an edge to be the logarithm of `∞-distance between the points. If one picks a
graph uniformly at random among all graphs with total cost at most n · poly(log n),
then with high probability the graph will be navigable.



Though the precise quantitative dependences are omitted in this theorem, the the-
orem captures the main point that we want to make with this work, namely, that navi-
gability is a robust property, in the sense that it emerges almost inevitably under very
different ways of defining the graph as long as the geometry permits it (e.g. set systems,
random points) and there is some local connectivity (substrate).

1.3 Related work

The Small World phenomenon and Navigability are by now well studied topics. The
review by Kleinberg [17] provides an excellent introduction and covers almost all of
the earlier results up to 2006. Here, we would like to highlight three major questions
that were left open and the work that has been made towards their resolution the past
years.

Robustness of Navigbability. Kleinberg’s work identified a specific graph augmentation
mechanism (RBA) that renders networks navigable, thus providing a plausible explana-
tion of the Small World Phenomenon. However, he provided no indication about how
such a distribution might come about in the real world or whether networks even ap-
proximately exhibit such behavior. Early empirical studies [16, 18] of real world social
networks have shown that although there are deviations from the idealized behavior
that Kleinberg assumed (RBA), the distribution of edges scales proportionally with
ranku(v)−β , albeit with β < 1. This was perplexing as Kleinberg had shown that
β = 1 is the only exponent for which the network is navigable. Previously researchers
attempted to reconcile this by suggesting that the observed deviations from the expo-
nent are due to finite size (n finite) effects [19]. In this paper, we show that such a
discrepancy can be to attributed to the network having super-constant average degree
(see proof of Theorem 5), that underlies Kleinberg’s results.

Evolution of Navigability. Another intriguing question that was inspired by Kleinberg’s
work was to exhibit a network creation mechanism that might lead to a distribution sim-
ilar to RBA. The first work to provide an indication about how that might happen was
carried out by Clauset and Moore [19]. They considered a network rewiring process,
that samples source-target pairs x, y according to some distribution Q(x, y) and per-
forms greedy routing for at most T steps. If the target has not been reached until time T
then one of the out-going links of x are rewired to point to y. They showed empirically
that this process seems to converge to RBA but did not provide any rigorous evidence
of that fact. Later, Sandberg [20] proved that a very similar process does converge to a
unique stationary distribution over links but again only provided experimental evidence
that the networks created by this mechanism are navigable. The first rigorous proof
that a mechanism is able to reproduce Kleinberg’s distribution came from Chaintreau et
al. [21]. The authors considered a setting where nodes are embedded in a d-dimensional
regular lattice and each node independently picks an outgoing link by having the end of
the link performing a random walk with some time varying restart probability starting
at the source. When the restart probability is approximately harmonic with the number
of steps taken the stationary distribution of the link approximately matches RBA. A dif-
ferent approach to providing an explanation for the SW phenomenon was put forward



by Gulyás et al. [22]. Instead of assuming that nodes are embedded in a euclidean space
as previous works, they consider that nodes are embedded in the hyperbolic plane. The
important fact about hyperbolic plane is that space expands exponentially with the dis-
tance away from the center. This behavior is very similar to what happens on trees, and
indeed hyperbolic space and trees have very close connections [23]. The authors exploit
this phenomenon and under a game-theoretic framework, where each node tries to con-
nect to the closer/smallest set of neighbors that would allow them to send messages to
any node, show semi-rigorously that the graphs at equilibrium are navigable.

Searchability of arbitrary Networks. In achieving Navigability, an underlying geome-
try is indispensable. Kleinberg originally considered the 2-dimensional grid and showed
that indeed navigability is achievable through RBA. A natural question that was raised
by Duchon et al. [24] is whether any any graph G(V,E0) could become navigable after
being augmented randomly with long range edges. They proved that as ufficient con-
dition for a graph to become navigable through RBA is to have some bounded growth.
In the same direction, other authors have been looking at other general sufficient con-
ditions on the underlying graph that enable navigability through augmentation. Fraig-
niaud [25] showed that this is possible for bounded-treewidth graphs, and Abraham et
al. [26] showed it, further, for minor-free graphs. The work of Slivkins [12] proved that
augmentation always works if the doubling dimension of the graph is O(log log n) and
Fraigniaud et al.[27] proved that this is actually best possible. Since [27] research in this
topic has turned to proving upper bounds for the performance of decentralized routing
algorithms for arbitrary graphs. In that direction, Peleg first proved an O(

√
n) upper

bound which was consequently improved to O(n1/3) (up to poly-logarithmic factors)
by Fraigniaud [28]. The best upper bound to date is O(2(logn)

1/2+o(1)

) due to the work
of Fraigniaud and Giakkoupis [29] almost matching a lower bound of Ω(2

√
logn) for

“monotone” decentralized algorithms by Fraigniaud et al. [27].

2 Our Results

Notation. Throughout the paper the set of vertices V is considered to be fixed and large,
i.e., n := |V | is finite but large. Any asymptotic notation, e.g. f(|V |) = O(g(|V |))
should be interpreted as comparing two functions of |V | (eq. n) and only means that
there are some constants independent of |V | such that the corresponding inequalities
hold, e.g. f(|V |) ≤ Cg(|V |). In particular, all the statements in this paper apply to
a single geometry or graph rather than a sequence. Lastly, to make the presentation
more readable we will often say that a property A holds with high probability (w.h.p)
to indicate that P(A) ≥ 1− o(1).

2.1 Geometric requirements and a unifying framework for RBA

We start by introducing the geometric requirements for navigability through the notion
of coherence3, that comes with an associated scale factor γ > 1 and a resolution κ ≥ 1.

3 Note that coherence here is unrealted to the corresponding notion for matrices used in Com-
pressed Sensing.



Specifically, given a geometry (V, d) we will refer to the vertices whose distance from
a given vertex v ∈ V lie in the interval (γk−1, γk] as the vertices in the k-th (distance)
γ-scale from v and denote their number as Pk(v). Additionally for any two vertices
v 6= t ∈ V we will use kvt to denote the integer k such that d(v, t) ∈ (γk−1, γk]. For
a fixed λ < 1 and any target vertex t 6= v, we will say that a vertex u is t-helpful to
v if d(v, u) ≤ γkvt (u is within the same or lower γ-scale as t from v), and d(u, t) <
λd(v, t) (reduces the distance to t by a constant). We denote the set of t-helpful nodes
of v by Dλ(v, t).

Definition 4. Fix γ > 1 where K = dlogγ |V |e. A geometry (V, d) is (γ, κ)-coherent
for κ ∈ [K] if:

(H1) Bounded Growth: ∃A > 1, α ∈ (0, 1) such that

Pk(v) ∈ γk[α,A], for all v ∈ V and k ∈ [κ,K].

(H2) Isotropy: ∃φ > 0, λ ∈ (0, 1) such that

|Dλ(v, t)| ≥ φγkvt , for all v 6= t ∈ V such that kvt ≥ κ.

The two conditions above endow the, otherwise arbitrary, semi-metric d with suffi-
cient regularity and consistency to guide the search. Although our definition of coher-
ence is far more general, in order to convey intuition about the two conditions, think for
a moment of V as a set of points in Euclidean space. The first condition guarantees that
there are no “holes” when one looks at an appropriate resolution κ ≥ 1, as the variance
in the density of points is bounded in every distance scale. In particular, it implies that
the largest “distance” is proportional to γk ∼ |V |. The second condition guarantees that
around any vertex v the density of points does not change much depending on the direc-
tion (target vertex t) and distance scale. A concrete example is presented in Section 2.4.
Besides these two conditions, we make no further assumptions on d and, in particular,
we do not assume the triangle inequality. For convenience, we will usually omit κ and
simply call a geometry γ-coherent when κ = 1.

Coherent geometries allow us to provide a unified treatment of navigability since
they encompass finite-dimensional lattices, hierarchical models, any vertex transitive
graph with bounded doubling dimension and more generally as we show Kleinberg’s
set systems.

Theorem 2. Every set system satisfying the conditions of [8] is a γ-coherent geometry
for some explicit γ > 1.

Our second requirement is to assume the existence of a substrate, that implies that
greedy routing will not get trivially stuck, i.e., that we can always move towards the
target even incrementally.

Substrate. A set of edges E0 forms a substrate for a geometry (V, d), if for every
(s, t) ∈ V × V with s 6= t, there is at least one vertex v such that {s, v} ∈ E0 and
d(v, t) ≤ d(s, t)− 1. If there are multiple such vertices, we distinguish one arbitrarily
and call it the local t-connection of s. A path starting from s and ending to t using only
local t-connections is called a local (s, t)-path.



In the graph augmentation setting this was given by the fact that the initial set of
edges formed a known connected graph, while in Kleinberg’s work on set systems it
was circumvented by making the vertex degrees Θ(log2 n), so that the probability of
ever being stuck at a vertex is polynomially small. We chose to use the notion of a
substrate to encompass the graph augmentation setting but also generalize it since the
semi-metric d is only locally consistent with the substrate. We show that those two
requirements are sufficient for RBA to create a navigable graph.

Theorem 3. Let (V, d) be any (γ, κ)-coherent geometry and let E0 be any substrate
for it. If Ed is the (random) set of edges obtained by applying RBA to (V, d), then the
graph G(V,E0 ∪ Ed) is d-navigable w.h.p.

Theorem 3 subsumes and unifies a number of previous positive results on RBA-
induced navigability. Our main contribution, though, lies in showing that given a sub-
strate and coherence, navigability can emerge without any coordination or indepen-
dence, merely from the alignment of cost and geometry.

2.2 Navigability from organic growth

As mentioned earlier, the success of RBA stems from the fact that the edge-creation
mechanism is perfectly adapted to the underlying geometry so as to induce navigability.
In contrast, we will not specify any edge-creation mechanism, but rather consider the
set of all graphs feasible with a given budget. Our requirement is merely that the cost
function is informed by the geometry, in the following sense.

γ-consistency. Given a γ-coherent geometry (V, d), a cost function c : V × V → R
is γ-consistent if c takes the same value ck for every edge {u, v} such that d(u, v) ∈
(γk−1, γk].

In other words, γ-consistency means that the partition of edges according to cost is
a coarsening of the partition of the edges by γ-scale. Note that beyond γ-consistence
we do not impose any constraint on the values {ck}, not even a rudimentary one such
as being increasing in k. In fact, even the γ-consistency requirement can be weakened
significantly, as long as some correlation between the two partitions remains, but it is
technically much simpler to assume γ-consistency as it greatly simplifies the exposi-
tion. One can think of consistency as limited sensitivity with respect to distance. As an
example, it means that making friends with the people next door might be more likely
than making friends with other people on the same floor, and that making friends with
people on the same floor is more likely than making friends with people in a different
floor, but it does not really matter which floor.

Cost-geometries. We say that Γ = Γ (V, d, c) is a coherent cost-geometry if there ex-
ists γ > 1 such that (V, d) is a γ-coherent geometry and c is γ-consistent cost function.

We are now in a position to state the set of feasible graphs that we consider.

Random graphs of bounded cost. Given a coherent cost-geometry Γ (V, d, c) and a
real number B ≥ 0, let GΓ (B) = {E ⊆ V × V : 1

n

∑
e∈E c(e) ≤ B}, i.e., GΓ (B) is

the set of all graphs (edge sets) on V with total cost at most Bn. A uniformly random
element of GΓ (B) will be denoted as EΓ = EΓ (B).



Obtaining bounds on the probability that a uniformly random element out ofGΓ (B)
is navigable, is an intuitive and technically enabling way to obtain bounds on the frac-
tion of feasible graphs that are navigable. Our main result is the following general the-
orem.

Theorem 4. For every coherent cost-geometry Γ (V, d, c) with substrate E0, there exist
numbers B± such that if EΓ is a uniformly random element of GΓ (B) then:

– For all B ≤ B+, w.h.p. |EΓ | = O(n · poly(log n)). (Sparsity)
– For all B ≥ B−, w.h.p. the graph G(V,E0 ∪ EΓ ) is d-navigable. (Navigability)

In the proving this theorem, the fact that we were able to get a close-form expres-
sion for the probabilities of each edge, exponentially decreasing in its cost (Lemma 4),
was instrumental. Note that Theorem 4 shows that navigability arises eventually, i.e.,
for all B ≥ B−, without any further assumptions on the cost function or geometry.
The caveat, if we think of B as increasing from 0, is that by the time there are enough
edges across all distance scales, i.e., B ≥ B−, the total number of edges may be much
greater than linear. This is because for an arbitrary cost structure {ck}, by the time the
“slowest growing” distance scale has the required number of edges, the other scales
may be replete with edges (due to the exponential dependence), possibly many more
than Ω(n/poly log n) that are required in order for greedy decentralized search to have
probability of crossing a distance scale at least inverse poly-logarithmic. This is re-
flected in the ordering between B− and B+ that determines whether the sparsity and
navigability regimes are overlapping. In particular, we would like B− ≤ B+ and, ide-
ally, the ratio R = B+/B− > 0 to be large. Whether this is the case or not depends
precisely on the degree of adaptation of the cost-structure to the geometry, as we discuss
next.

2.3 Navigability as a reflection of the cost of indexing

Recall that for every vertex v in a γ-coherent geometry and for every distance scale
k ∈ [K], the number of vertices whose distance from v is in the k-th γ-distance scale
is Pk(v) = Θ(γk). Let pk := 1

|V |
∑
v∈V Pk(v) be the average number of vertices at

distance scale k from a random vertex. A coherent-cost geometry is parametrized by
the numbers {pk} and the values of the cost function {ck}.

We will now exhibit a class of cost functions that (i) have an intuitive interpretation
as the average cost of indexing, (ii) achieve a ratio R = B+/B− > 0 that grows with
n, i.e., a very wide range of budgets for which we have both navigability and sparsity,
and (iii) recover RBA as a special case corresponding to a particular budget choice. To
motivate the cost of indexing consider a vertex v that needs to forward a message to a
neighbor u at the k-th distance scale. To do so, v needs to distinguish u among all other
Pk(v) vertices in the k-th distance scale, i.e., v needs to be able to index into that scale.
Storing the unique ID of u among the other members of its equivalence class (in the
eyes of v) has a cost of Θ(log2 Pk(v)) = Θ(log pk) = Θ(k) bits. Motivated by this we
consider cost functions where for some β > 0,

c∗k =
1

β
log pk . (2)



We also assume that c∗k is non-decreasing. This assumption is not needed and only
changes some absolute constants but deals with some tedious technical issues.

Theorem 5. For any coherent cost-geometry Γ (V, d, c∗), there exist B± such that :

(a) B+/B− = ω(poly log n).
(b) For all B ∈ [B−, B+], w.h.p. |EΓ (B)| = O(n poly log n)) and the graph

G (V,E0 ∪ EΓ (B)) is d-navigable.

(c) There exists Bβ ∈ [B−, B+] such that P [(u, v) ∈ EΓ (Bβ)] = Θ
(

1
ranku(v)

)
for

all edges u, v ∈ V such that kuv ≥ κ.

This result shows that Navigability and sparsity are both compatible for a large
range of values of B and hence that Navigability is indeed a robust property of net-
works. Since, our results are rather abstract and general, we show here how our theo-
rems apply in a simple setting where both the geometry and the graph itself is generated
randomly.

2.4 Application: Random Cube Model

Let X tn = [0, Rn]t be the t-dimensional cube of length Rn = n1/t and B(X tn) be its
Borel σ-algebra. A probability measure µ : B(X tn)→ [0, 1] with density dµ

dλ (x) = p(x)

satisfies the Random Cube Model C(n, t,∆) iff max
x,y∈X tn

p(x)
p(y) ≤ ∆.

Theorem 6. Let V be a set of points sampled from a probability measure satisfying
the Random cube model C(n, t,∆), then the semi-metric d(u, v) := ‖u− v‖t∞ defines
with high probability a coherent geometry at resolution κ = log log n with parameters
(γ, α,A, φ) = (2D, 1−ε∆ 2−t(1− 2−t), ∆(1 + ε), 1−ε∆ 2−2t).

Proof. We first show the bounded growth properties of coherent geometries for scales
k ≥ κ. We need to get for each u ∈ V upper and lower bounds on the number of
vertices v that d(u, v) ∈ [γk−1, γk] or equivalently (by definition of the semi-metric)
‖u− v‖∞ ∈ [2k−1, 2k]. Letting Bk(u) :=

∑k
`=1 Pk(u) we have that for integer r ≥ 0:

Pκ+r(u) = Bκ+r(u)−Bκ+r−1(u)

To control this quantity, we partition the cubeX tn = [0, n1/t]t intoN0 = n
c logn boxes of

size r0 = (c log n)1/t for some constant c > 0 to be selected later. Using concentration
of measure We first obtain bounds on Nb the number of points in each box b ∈ [N0].

Lemma 1. Let ε > 0, δ > 0 and c > 3(1 + δ)∆ε−2, with probability at least 1− n−δ
we have that for all b ∈ [N0], Nb ∈

[
1−ε
∆ , (1 + ε)∆

]
c log n.

Proof. By standard Chernoff bounds for i.i.d Bernouli random variables, the number of
points Nb that fall into any box b ∈ [N0] satisfies

Pµ (Nb ≥ (1 + ε)∆c log n) ≤ exp

(
−ε

2

3
c log n

)



Pµ
(
Nb ≤ (1− ε)c log n

∆

)
≤ exp

(
− ε2

3∆
c log n

)
Thus, we have that for all b ∈ [N0]:

Pµ

 ⋂
b∈[N0]

(
Nb ∈

[
1− ε
∆

, (1 + ε)∆

]
c log n

) ≥ 1−2 exp

(
−ε

2

3

c log n

∆
+ logN0

)

For c(ε, δ,∆) = 2dlog2(3(1+δ)∆)ε−2e we have that the event holds with probability at
least n−δ .

Next, we obtain upper and lower bounds on the number of boxes that are within the
specified radius. To obtain a lower bound imagine a node that is located at a vertex of
the cube X tn. For this node there are 1

2t 2
tr boxes within `∞ distance 2κ+r. Thus, we

have that for any vertex there are at least 1
2t 2

tr − 1
2t 2

t(r−1) boxes. By Lemma 1 each
box has at least 1−ε

∆ γκ vertices. This gives us the following lower bound:

Pκ+r(u) ≥ 1− ε
∆

2−t(1− 2−t)2rtγκ =

(
1− ε
∆

2−t(1− 2−t)

)
γ(κ+r)

To obtain an upper bound we follow the same strategy but identify a vertex in the
center of the cube. For such a vertex, there are at most 2tr(1− 2−t) boxes of length r0
fully contained in the specified interval of distances. Again by Lemma 1 this gives the
following upper bound

Pκ+r(u) ≤ (1 + ε)∆2rtγκ = [(1 + ε)∆] γ(κ+r)

Finally, to prove the coherence property of the geometry, we count again the number of
boxes that are both contained in the range [2κ+r−1, 2κ+r] from u and [0, 2κ+r−1] from
v. The number of such boxes is at least 2−t2t(r−1) and thus we get that the number of
good vertices is

|Dλ(u, v)| ≥ 2−2t
1− ε
∆

2trγκ =

(
2−2t

1− ε
∆

)
γκ+r

Since, the event described in Lemma 1 holds with high probability we know that the
geometry is coherent with the same probability.

Having proven that the geometry defined by the random cube model is coherent at
an appropriate scale, constructing a graph that is navigable becomes an easy matter. As-
suming the existence of an appropriate substrate, for instance one defined by connecting
k-nearest neighbours with edges, we consider two ways of defining the graph:

1. Distance based augmentation: we may add a constant number of shortcuts with
probability proportional to 1

1+‖u−v‖t∞
. This is very similar to RBA augmentation,

in fact Lemma 1 shows that indeed ‖u−v‖t∞ is within constant factors of ranku(v)
and by Theorem 3 the resulting graph will be navigable. Alternatively, if we assume
that edges are added independently of each other, as we will see we may invoke
Lemma 2 to get the same conclusion.



Fig. 1. Left: Geometry and substrate (4-nearest neighbors) by sampling points n = 1000 from
the density p(x1, x2) = 1+0.5 ·sin( 6πx1√

n
) ·sin( 12πx2√

n
) for which∆ = 3. Right: resulting graph

after distance based augmentation, where we also include a number of sample searches.

2. Random Graphs of Bounded Cost: a different way to define the graph would be to
set for each edge (u, v) a cost cuv := dlogγ‖u− v‖∞e and pick a graph uniformly
at random subject to the total budget constraint of B = Ω(npoly(log n)). It is easy
to see that in this case the conditions of Theorem 5 are satisfied and the resulting
graph would be navigable.

The ease with which we can show that the above construction produces navigable
graphs is indicative of the generality and power of our results. To summarize, our work
identifies three components for navigability:

(i) Geometry: we require bounded (in reality at most poly-logarithmic in n) fluctua-
tions of the density of points above some scale κ (resolution). Mathematically, we
capture this requirement with the notion of coherent geometries and have showed
that natural candidates as set systems and random geometries satisfy our definition.

(ii) Augmentation: any probability measure over edges that is uniformly rich, i.e., it
recovers up to poly-logarithmic factors RBA, is sufficient, even if edges are not
independent. We give a concrete example of Random Graphs of Bounded cost that
is a minimal naturalistic model of graph generation.

(iii) Local Connectivity: allows to effectively care for distances from a resolution and
above, as well as, deals with the trivial issue of getting stuck locally.

2.5 Outline of the rest of the paper

This concludes the presentation of our results and the rest of the paper is devoted to
providing their proofs. In Section 3, we present a concise framework that allows one to
prove that a graph on a coherent geometry is navigable . Then in Sections 4 and 5, we
show respectively how one can analyze a random graph of bounded cost using a cou-
pling with an explicitly constructed product measure and under what conditions such a



graph is navigable. Section 6, then proves that Kleinberg’s set systems are coherent ge-
ometries. Finally, in Section 7, we include for completeness a proof that classical RBA
makes graphs on coherent geometries navigable.

3 Navigability via reducibility and uniform richness

In this section we present structural results about navigability on coherent geometries
that allow us to reduce navigability to a “richness” property of the probability mea-
sure on the non-substrate edges. We first define a sufficient deterministic property for
navigability.

Reducibility. IfG(V,E) is a graph on a coherent geometry (V, d) with substrateE0 ⊆
E, we will say that (s, t) ∈ V × V is p-reducible if there is C > 0 such that among the
first C(log |V |)p vertices of the local (s, t)-path there is at least one vertex u such that
(u, v) ∈ E and d(v, t) ≤ λd(s, t). If every pair (s, t) ∈ V × V is p-reducible, we will
say that G is p-reducible.

Reducibility expresses that as we move along the local path we never have to wait
too long in order to encounter an edge that reduces the remaining distance by a con-
stant factor. The motivation for introducing reducibility is that it allows us to separate
the construction of the random graph from the analysis of the algorithm. Reducibility
implies navigability in a straightforward manner.

Proposition 1. If G is p-reducible, then greedy routing on G takes O(log1+p n) steps.

Proof. Given any arbitrary pair of vertices (s, t) with distance at most n, the reducibility
property of G guarantees us that after at most C logp n steps we will obtain a new pair
(s′, t) with distance reduced by a constant factor. Since, the new pair is also p-reducible,
we can repeat the process until we reduce the distance again by a constant. After at most
log1/λ n iterations we will reach the target. Since, the pairs were arbitrary, this holds
for all pairs and thus the graph is navigable in 1+C(log n)1+p steps.

Reducibility is easiest to establish for random graphs whose edges are included
independently, for concreteness we provide the following definition.

Product measure. Given a set of vertices V with |V | = n, let Gn denote the set of all
2(n2) possible graphs (edge-sets) on n vertices. A product measure on Gn is specified
succinctly by a symmetric matrix Q ∈ [0, 1]n×n of probabilities where Qii = 0 for
i ∈ [n]. We denote by G(n,Q) the distribution over Gn in which possible edge {i, j} is
included independently with probability Qij = Qji.

We next introduce the probabilistic requirement that suffices for reducibility.

Uniform richness. Let (V, d) be a γ-coherent geometry with parameter α ∈ (0, 1)
(see H1). For θ ≥ 1, a product measure G(n,Q) is θ-uniformly rich for (V, d) if there
is a constant M > 0 such that for every k ≥ kθ, for every pair (i, j) with d(i, j) ∈
(γk−1, γk] we have:

Qij ≥
1

M logθ n

1

γk



where kθ := θ log logn−logα
log γ .

The number kθ simply denotes the distance scale that would take O(logθ n) “slow”
steps to cross, and is used to impose density requirements only for non-trivial distance
scales as opposed to all scales. As we show next, uniform richness is a sufficient condi-
tion for reducibility on coherent geometries.

Lemma 2. If (V, d) is a γ-coherent geometry with substrateE0 andEq is sampled from
a θ-uniformly rich product measure G(n,Q), then G(V,E0 ∪Eq) is (θ + 1)-reducible
with probability at least 1− n−5.

Proof. To prove that the graph is (θ + 1)-reducible we will (i) prove that the event Bst
that any fixed source-destination pair (s, t) is not (θ+1)-reducible has very small prob-
ability under G(n,Q), and (ii) use union-bound to argue that the probability that any
pair is not (θ + 1)-reducible is small as well. To simplify the proof, we first distinguish
between pairs (s, t) where within the first C logθ+1(n) steps of the t-local path there is
a vertex with distance smaller than d(s, t) by a constant factor λ < 1 and where there is
no such vertex. Pairs (s, t) that belong in the first case, are (θ+ 1)-reducible with prob-
ability 1. Hence, we only need to focus on the latter case, where all vertices on the first
C log(θ+1)(n) steps are within the same distance scale kst := dlogγ d(s, t)e as s from t.
We will refer to kst as k to ease the notation. For each such vertex v on the t-local path,
property (H2) of coherent geometries tells us that there are at least φγk candidate edges
that would reduce the distance from t by a constant factor λ < 1. The probability Qvz
of each such good edge (v, z) is lower bounded by 1

M logθ+1(n)
1
γk

, since the measure
G(n,Q) is θ-uniformly rich. Let T (s, t) be the set of all such good edges. We can write
the probability of the event Bst as:

PQ(Bst) =
∏

e∈T (s,t)

(1−Qe) ≤
(

1− 1

M(log n)θ+1γk

)|T (s,t)|

≤ e−
C logθ+1(n)φγk

M logθ(n)γk ≤ n−
Cφ
M

where we used that |T (s, t)| ≥ C(log n)θ+1 · φγk due to (H2) and the definition of
reducibility. For any ` > 0 and C ≥ (2 + `)Mφ we get that P(Bst) ≤ n−(2+`). To finish
the proof, we perform a Union Bound over all possible sets (s, t). Let B be the even
that the graph G(V,E0 ∪ Ed) is not (θ + 1)-reducible, then:

PQ(B) = PQ(
⋃
Bst) ≤

∑
st

PQ(Bst) ≤ n2n−(2+`) = n−`

for any ` > 0. Taking ` = 5 we see that the graph G(V,E0 ∪ Ed) is d-navigable with
the desired probability.

Deriving navigability from uniform richness may strike the reader as odd, given that
a central goal of our work is to show that independence assumptions are not needed for
navigability. There is no cause for alarm: we we will never assume uniform richness.
Instead, we will prove that under certain conditions, the (random) set of edges of a
typical element of the set of all graphs feasible within a certain budget dominates a
θ-uniformly rich product measure. Our capacity to do so is enabled by a very recent



general theorem we developed in [30] which asserts that if a family of graphs S ⊆ Gn
is sufficiently symmetric, then the uniform measure on S can be well-approximated by
a product measure on the

(
n
2

)
edges. We discuss this next.

4 Analyzing Random Graphs of Bounded Cost

A classic result of random graph theory is that to study monotone properties of graphs
with n vertices andm edges it suffices to studyG(n, p) random graphs, i.e., graphs gen-
erated by including each edge independently of all other with probability p = p(m) =
m/
(
n
2

)
. The reason for this is that the uniform measure on graphs with exactly m edges

is sandwiched by the G(n, p(m)) product measure, in the following sense.

Sandwichability. The uniform measure U(S) on an arbitrary set of graphs S ⊆ Gn
is (ε, δ)-sandwichable if there exists a n × n symmetric matrix Q such that the two
distributions G± ∼ G(n, (1± ε)Q), and the distribution G ∼ U(S) can be coupled so
that G− ⊆ G ⊆ G+ with probability at least 1− δ.

When S is the set of all graphs with exactly m edges we have Qij = p(m) for all
non-diagonal entries. To make a sandwich, i.e., simultaneously generate G−, G,G+,
one generates

(
n
2

)
i.i.d. uniformly distributed real numbers in [0, 1], one for each poten-

tial edge. The graph G− contains all edges whose r.v. is less than (1− ε)p, the graph G
contains the edges corresponding to the m smallest r.v.’s, while G+ contains all edges
whose r.v. is less than (1+ε)p. As long as them-th smallest r.v. is in ((1− ε)p, (1 + ε)p)
we have G− ⊆ G ⊆ G+.

The set of all graphs with m edges is highly symmetric: its characteristic function
is invariant under every permutation of the input x ∈ {0, 1}(

n
2); it only cares about

|x|. When considering graphs with bounded total cost, symmetry comes from the fact
that edges with the same cost are interchangeable. Thus, if the number of distinct cost-
classes is not too big we can hope for a product measure approximation (indeed, the set
of all graphs withm edges can be seen as the case where there is only one cost class, unit
cost, and the total budget is m). As discussed earlier, navigability requires some degree
of structure in the underlying geometry in the form of coherence. Our requirement that
the cost function is consistent with the (coherent) geometry, giving rise to a coherent
cost-geometry, is what will give us enough symmetry to apply the main theorem of [30]
and derive the following approximation.

In all of the following, Γ (V, d, c) is an arbitrary coherent cost-geometry and K =
dlogγ |V |e. As before, we denote by ck the cost of an edge of scale k and by pk the
average number of neighbors at distance scale k from a random vertex in V . For a
given budget B ≥ 0, let λ(B) = g−1(B) ≥ 0, where

g(λ) :=

K∑
k=1

ck
pk

1 + exp(λck)
.

Intuitively, λ(B) will control the drop in likelihood of costlier edges as a function of
the budgetB (mathematically, λ(B) is a Lagrange multiplier, physically, it is an inverse
temperature).



Theorem 7. For every coherent cost-geometry Γ , there exists a constant B0(Γ ) > 0
such that for every B ≥ B0(Γ ) the uniform measure on GΓ (B) is (ε, δ)-sandwichable
by the product measure G(n,Q∗(B)) in which each edge of cost ck has probability

Q∗ij(B) =
1

1 + exp(λΓ (B)ck)
, (3)

where (ε, δ) =
(√

24
logn , 2n−5K

)
.

4.1 Proof of Theorem 7

We start with some definitions that will allow us to state the main theorem of [30]. A
set of graphs S ⊆ Gn is symmetric with respect to a partition P of the set of all possible(
n
2

)
edges, if the characteristic function of S depends only on the number of edges from

each part of P but not on which edges.

Edge profile. Given a partition P = (P1, . . . ,PK) of the set of all possible
(
n
2

)
edges,

for a set of edges E ∈ Gn and for each k ∈ [K], let mk(E) denote the number of edges
in E from Pk. The edge profile of E is m(E) := (m1(E), . . . ,mK(E)).

We denote the image of a symmetric set S under the edge-profile as m(S). As before
let Pk := |Pk| = 1

2

∑
u∈V Pk(u) be the total number of edges in part k of partition P .

Edge profile entropy. Given an edge profile v = (v1, . . . , vk) the entropy of v is

ENT(v) =

K∑
k=1

log

(
Pk
vk

)
.

The edge-profile entropy is used to express the number of graphs with a particular
edge profile v as exp(ENT(v)). Given any symmetric set S ⊆ Gn, the probability of
observing an edge profile v when sampling an element uniformly at random from S
is then given by PS(v) = 1

|S|e
ENT(v). Thus, in order to analyze the distribution of a

random edge-profile, and consequently of a random element of Gc(n,B), we are going
to exploit analytic properties of the entropy on the set of feasible edge profiles m(S).

Convexity. Let Conv(A) denote the convex hull of a set A. Say that a P-symmetric set
S ⊆ Gn is convex iff the convex hull of m(S) contains no new integer points, i.e., if
Conv(m(S)) ∩ Nk = m(S).

Entropic optimizer. Given a symmetric set S, let m∗ = m∗(S) ∈ IRk be the unique
solution to

max
v∈Conv(m(S))

−
K∑
k=1

[
vk log

(
vk
Pk

)
+ (Pk − vk) log

(
Pk − vk
Pk

)]
. (4)

Given the maximizer m∗(S), the matrix Q∗ = Q∗(S) is given by letting for all
k ∈ [K] the probability of an edge e ∈ Pk be Q∗e := m∗k/Pk. To state the theorem, we
need the following parameters that quantify the concentration of the uniform measure
around its mode.



Thickness and condition number. Given a partition P and a P-symmetric set S, we
define

Thickness: µ = µ(S) = min
k∈[K]

min{m∗k, Pk −m∗k} (5)

Condition number: τ = τ(S) =
5K log n

µ(S)
(6)

We now state the main theorem employed in the proof.

Theorem 8 ([30]). Let P be an edge-partition and let S be ay P-symmetric convex set.
For every 1 > ε >

√
12τ(S), the uniform measure over S is (ε, δ)-sandwichable with

δ = 2 exp
[
−µ(S)

(
ε2

12 − τ(S)
)]

.

In our setting, S is the set GΓ (B) := {E ⊂ V × V : 1
n

∑
e∈E ce ≤ B} of graphs

with bounded average cost and P is the partition induced by the coherent cost function
c. The set m(S) is then given by m(S) = {v ∈ Nk : 1

n

∑K
k=1 ckvk ≤ B}. Hence, it is

easy to see that GΓ (B) is convex and symmetric, according to the previous definition,
for all values of B. To prove Theorem 7, we need to find:

(i) an analytic expression for the vector m∗ as a function of B
(ii) the range of values of B for which applying Theorem 8 gives high probability

bounds.

Finding the Entropic Optimal Edge Profile We start by introducing a slight reparametriza-
tion in terms of the average-degree profile. For an edge setE, define the vector a(E) :=
m(E)/n, where as before m is the edge-profile. In the same spirit, let pk := Pk/n de-
note the average number of edges in part (scale) k. Using this parametrization and by
explicitly writing Conv(a(S)), we can equivalently express the optimization problem
(4) as:

max
a

H(a) = −
K∑
k=1

[(pk − ak) log(pk − ak) + ak log(ak)]

subject to
K∑
k=1

akck ≤ B

0 ≤ ak ≤ pk, ∀k ∈ [K] .

We will refer to the above optimization problem as (Λ) and to its solution as a∗ =
a∗(B). Towards obtaining an analytic expression for a∗, we first show that no coordi-
nate k ∈ [K] lies on the natural boundary {0, pk}.

Lemma 3. The optimal profile a∗ ∈ D(B) := {a ∈ (0, p1)×. . .×(0, pK) :
∑K
k ckak ≤

B}.

Proof. We prove the lemma by contradiction. We show that if a∗ is a solution of (Λ)
such that a∗ /∈ D, then there is an â∗ ∈ D for which objective function takes a higher



value. Specifically, there exists ε > 0 small enough such that there are indices4 1 ≤
i, j ≤ K for which a∗i = 0 and a∗j > δ(ε), where δ(ε) = ε ci/cj . Define â∗(ε) =
(a∗1, . . . , a

∗
i + ε, . . . , a∗j − δ(ε), . . . , a∗K). If h(ε) = H(â∗)−H(a∗) is the difference in

the objective function between the assumed optimal a∗ and the perturbation â∗, then

h′(ε) = − log(ε) + log(pi − ai − ε) +
ci
cj

(log(aj − δ(ε))− log(pj − aj + δ(ε))) .

Observe, that limε→0 h
′
(ε) = +∞, since we have assumed that a∗j > 0. This shows

that every maximizer satisfies a∗ > 0. The same argument establishes that a∗k < pk
for all k ∈ [K]. Combining the two statements we get that any maximizer belongs in
D.

As a consequence, since they are inactive at the optimum, we can omit separable
inequalities from the formulation. Further, define B̄ := 1

2

∑K
k=1 pkck the average cost

of the solution to the unconstrained version of (Λ), i.e., where āk := pk/2. If B > B̄
then the absolute maximum entropic point ā is still in D(B) and thus the solution will
be always a∗k = āk for every such B.

Lemma 4. There is a unique function λ(B) that is one-to-one for all 0 ≤ B ≤ B̄ and
λ(B) = 0 for all B ≥ B̄, such that the unique solution of (Λ) is given by:

a∗k(B) =
pk

1 + exp [λ(B) · ck]
, ∀k ∈ [K] . (7)

Proof. Uniqueness of the solution follows easily from convexity of the domain and con-
cavity of the objective function. Further, by Lemma 3, we can reduce the optimization
problem (Λ) to the following:

max
a
−

K∑
k=1

[(pk − ak) log(pk − ak) + ak log(ak)]

subject to
K∑
k=1

akck ≤ B .

To obtain an analytical solution, we form the Lagrangian of the reduced problem

L(a, λ) = −
K∑
k=1

[(pk − ak) log(pk − ak) + ak log(ak)] + λ

(
B −

K∑
k=1

akck

)
.

with the additional constraint that λ ≥ 0. The Karush-Kuhn-Tacker conditions read

∂L

∂ak
= 0⇐⇒ log

(
ak

pk − ak

)
= −λck (8)

∂L

∂λ
= 0⇐⇒

K∑
k=1

akck = B . (9)

4 For any nontrivial values of B such an index can always be found.



Solving the first equation for ak(λ) we get

a∗k =
pk

1 + exp(λck)
,

Substituting this expression in (9), we get the following function of λ:

g(λ) =

K∑
k=1

ck ·
pk

1 + exp(λck)
(10)

and the second constraint can now be written as g(λ) = B. The domain of g is the set
of non-negative numbers on which g is continuous and infinitely differentiable. Under
positive costs {ck}, it is easy to see that g′(λ) < 0 for all B < B̄ , hence, g is strictly
decreasing in the interval [0,∞) and g(0) = B̄. Thus, g : [0,∞) → [0, B̄] is 1-to-1
and thus invertible. This means that every budget in [0, B̄] is feasible and that for each
such budget there is a unique λ(B) := g−1(B). For B ≥ B̄, λ(B) = 0. Therefore, we
conclude that the maximizer is always unique for any feasible B and implicitly given
by g(λ) = B.

Thickness µ(B) of GΓ (B) and Sandwiching Our next step is to use the analytical
solution to the optimization problem to instantiate the thickness parameter µ defined in
(5). Using (7), we can write:

µ(B) = min
k∈[K]

m∗k = n · min
k∈[K]

pk
1 + exp [λ(B)ck]

(11)

where we have used the facts that that a∗k = m∗k/n and a∗k(B) ≤ 1/2 ⇒ m∗k ≤
Pk −m∗k. To get a more convenient expression, since 0 < ck < ∞ we can write the
cost as ck = 1

βk
log(pk) where 0 < βk < ∞ when pk ≥ 1. Thus, approximately5

for large pk (eq. k) we have µ(B) ≈ n · mink∈[K]

[
p
1−λ(B)/βk
k

]
. Theorem 8, gives

strong (non-constant) probability bounds as long as τ(B) � 1. For our purposes we
are going to consider that the maximum τ(B) (respectively minimum B) that we allow
is τ0 = log−1(n) (respectively B0). Substituting the above expression for µ(B) in (6),
we get that the condition τ ≤ τ0 can be rewritten as λ(B) ≤ λ0, where

λ0 = λ0({pk}, {βk}) := min
k∈[K]

[
log

(
n log pk

5K log2(n)

)
βk

log pk

]
. (12)

Using the function g(λ) defined in (10), we can express this constraint asB ≥ B0(Γ ) :=
g(λ0).

To conclude the proof we see that µ(B) ≥ 5K log2(n) and τ(B) ≤ 1
log(n) , for all

B ≥ B0(Γ ). Applying Theorem 8, for ε0 =
√

24
logn that is greater than

√
12τ0, we

get that δ ≤ 2 exp
[
µ(B)

(
ε20
12 − τ(B)

)]
. The proof is concluded by substituting the

bounds in the last expression.
5 When the approximation does not hold it means that µ(B) = Ω(n) which trivially satisfies

all the requirements we need for “sandwiching” and navigability.



5 Navigability for Random Graphs of Bounded Cost Model

Having established the connection of Random Graphs of Bounded cost with an explicit
product measure (Theorem 7), in order to prove navigability we simply need to show
that for a range of values of B, the product measure defined through (3) is θ-uniformly
rich for some θ > 0.

Proposition 2. Let λθ({pk}, {ck}) := minkθ≤k≤K

[
log pk
ck

(
1 + θ log logn

log pk

)]
. LetB−θ :=

max{B0(Γ ), g(λθ)}. For allB ≥ B−θ , the product measureG(n,Q∗(B)) is θ-uniformly
rich.

Proof. This follows easily by the definition of λθ and the monotonicity of λ(B) =
g−1(B) with respect to B. In particular, for any pair (i, j) of distance scale k ≥ kθ we
have

Q∗ij(B) = [1 + exp (ckλ(B))]
−1 ≥

[
pk logθ(n)

]−1
≥ 1

A logθ(n)γk
,

where the last inequality follows from (H1).

Proposition 3. LetΛθ({pk}, {ck}) := maxkθ≤k≤K

[
log pk
ck

(
1− θ log logn

log pk

)]
andB+

θ :=

g(Λθ). For all B ≤ B+
θ , the product measure G(n,Q∗(B)) has O(n logθ+1 n) edges

with probability at least 1− n−5.

Proof. For all B ≤ B+
θ , by definition of Λθ we have that for all k ≥ kθ:

Q∗ij(B) = [1 + exp (ckλ(B))]
−1 ≤

[
pk log−θ(n)

]−1
.

Thus, the expected number of edges n ·
∑K
k=1 pk[1 + exp(λ(B)ck)]−1 is upper

bounded by

n·

[
Akθpkθ + (K − kθ) max

k≥kθ
pk

logθ n

pk

]
= n·O

(
log log(n) logθ n+ log(n) logθ n

)
,

since kθ = O(log log n), pkθ = O(logθ n) by (H1), and K = O(log n). Expressing
the number of edges as a sum of independent Bernoulli random variables and applying
standard Chernoff bounds [31] we get the required conclusion.

Proof of Theorem 4. For any B ≥ B0(Γ ), consider two random elements generated
according to E± ∼ G(n, (1± ε)Q∗(B)) and let W be the event that E− ⊆ EΓ ⊆ E+.
Theorem 7 implies that for ε =

√
24/ log(n) the probability of W is at least 1−n−5K .

Further, for any constant p > 0 and for an arbitrary set of edges E letNp(E) denote the
event that that the graph G(V,E0 ∪ E)) is not p-reducible and let Nd(E) be the event



that the same graph is not d-navigable. Since p-reducibility is a monotone increasing
property with respect to edge inclusion and since Nd ⊆ Np by Proposition 1, we get

P(Nd(EΓ )) = P(Nd(EΓ ) ∩W ) + P(Nd(EΓ ) ∩W ) (13)
≤ P(Np(EΓ )|W ) + P(W ) (14)
≤ PQ∗(Np(E

−)) + 2n−5K (15)
≤ n−5 + 2n−5K , (16)

where we used the law of total probability in the first equality, Bayes Theorem in the
second inequality, Theorem 7 and monotonicity of reducibility in the third. The last
inequality follows from Lemma 2 and Proposition 2. This proves part (a) of the theorem.
To prove part (b) we follow the same method but for the event {|EΓ | = ω(npolylogn)}
and exploit that, conditional on W occurring, EΓ ⊆ E+. Using Proposition 3 and
Theorem 7 we get the required conclusion.

5.1 Recovering RBA: Proof of Theorem 5

Let us write c∗k = 1
β log pk and let Bβ := g(β). For any edge (u, v) of scale k ≥ κ, we

have
Q∗uv(Bβ) =

1

1 + exp(λ(Bβ)c∗k)
=

1

1 + exp(β log pk
β )

=
1

1 + pk
.

Now, by property (H1) we know that for any vertex u and every vertex v within distance
scale k ≥ κ from u, ranku(v) ≤

∑k
t=1 Pt(u) ≤ Aγ

γ−1γ
k and ranku(v) ≥ Pk−1(u) ≥

a
γ γ

k. This relation enables as to provide a connection with RBA, proving Part (c):(
a

2Aγ

)
1

ranku(v)
≤ 1

2Aγk
≤ Q∗uv(Bβ) ≤ 1

aγk
≤
(

Aγ

a(γ − 1)

)
1

ranku(v)
. (17)

To further highlight the correspondence between RBA and Random Graphs of Bounded
Cost when the cost is proportional to the cost of indexing, observe that for every dis-
tance scale k ∈ [K], the per vertex average number, a∗k(Bβ), of edges of scale k is

a∗k(Bβ) =
pk

1 + pk
= Θ(1) .

Thus, we recover RBA’s property of (approximately) one long-distance edge per vertex
per distance scale.

To prove the first part of the theorem we see that when c∗k = 1
β log pk, the quantities

λθ and Λθ in Propositions 2 and 3, respectively, equal6

λ∗θ = β

(
1 + θ

log log n

log pK

)
(18)

Λ∗θ = β

(
1− θ log log n

log pK

)
. (19)

6 This is the only place we use monotonicity of c∗k and this is only to not burden the reader with
the extraneous constants that would arise.



By property (H1) we know that log pK = Θ(log n). Define B+ = g(Λ∗θ) and B− =
g(λ∗θ) and let a∗k(Bβ) = pk

1+exp(λ(Bβ)c∗k)
be the average number of edges of scale k per

vertex. Then for every B− ≤ B ≤ B+ or equivalently for Λ∗θ ≤ λ(B) ≤ λ∗θ , we have
that for some C > 0,

Ω

([
log n−

Cθ
logn

]k)
= a∗k(B) = O

([
log n

Cθ
logn

]k)
.

where the far left and far right hand sides are achieved for the extremal exponents. Using
the facts that log pK = Θ(log n), that λ(B+) = Λ∗θ and consequently a∗K(B+) =

Ω

([
log n

Cθ
logn

]k)
, we get

B+ =
1

β

K∑
k=1

a∗k(B+) log pk ≥
1

β
a∗K(B+) log pK = Ω(log(n)1+C

′
θ)

where the constant C ′ = CK/ log n = Θ(1). Further, B− ≤ Bβ =
∑K
k=1 c

∗
k

pk
1+pk

=

Θ(log2(n)). Hence, B+/B− = Ω(poly(log n)) as θ > 0 can be as large a constant as
we want.

Finally, the second part is a direct corollary of Theorem 4 since the numbers B±

defined above are those in Theorem 4 for the cost function c∗k ∝ log pk. Hence, for
all B ∈ [B−, B+] a random element EΓ (B) of GΓ (B) is navigable and has poly-
logarithmic degree with high probability.

6 Proof of Theorem 2

We begin by recalling the definitions of set-systems from [8].

Definition 5 (Set System). Let V be a finite set of vertices and let Σ = {S1, . . . , Sm}
be a collection of subsets of V . If a set S contains a vertex t we will say that S is
t-bound. Fix 0 < λ < 1 and β > 1. We say that Σ is a (λ, β)-set system if all the
following hold:

(K1) V ∈ Σ.
(K2) If |S| > 1, then for every t ∈ S, there is a t-bound S′ ⊂ S of size |S′| ≥

min{λ|S|, |S| − 1}.
(K3) If SL(v) is the union of sets that contain v and have size at most L ≥ 2, then

|SL(v)| ≤ βL.

Given a set system Σ on a set of vertices V , we define the distance (semi-metric)
between two vertices.

Definition 6. For any two vertices u, v ∈ V , their distance in Σ, denoted by dΣ(u, v),
is the size of the smallest set in Σ containing both vertices minus 1, i.e. dΣ(u, v) =
minS∈Σ{|S| − 1 : u, v ∈ S}.



The goal of this section is to show that the geometry (V, dΣ) is coherent for any
(λ, β)-set system, i.e., prove that for a suitable γ > 1 the semi-metric dΣ satisfies
properties (H1) and (H2) in the definition of Coherence in Section 3. Towards that
direction, the main hurdle is obtaining for all v ∈ V upper and lower bounds on Pk(v),
the number of vertices at distance in (γk−1, γk] from v. The basic observation that
guides the proof is that for all v and k ≥ 1

Pk(v) = |Bk(v)| − |Bk−1(v)| (20)

where Bk(v) is the set of all vertices having distance from v at most γk. This repre-
sentation is very convenient because the properties of set systems are directly related to
|Bk(v)|. In particular, if we get good upper and lower bound for |Bk(v)| then we can
obtain upper and lower bounds for Pk(v) and prove (H1), which comprises the main
challenge.

Obtaining the upper bound is trivial, since it is directly given by (K3). However,
the lower bound on Bk(v) requires more thought as it needs to be tight enough so that
when substituting both bounds in (4) (in order to obtain a lower bound on Pk(v)) the
difference is strictly positive. It turns out that the last property depends on the particular
values of the parameters λ, β. We show that it is always possible to select γ = γ(β, λ) >
1 such that the last property holds. The main observation that will provide a lower
bound on |Bk(v)| is that the existence of a set S with size in (γk−1, γk] implies that
|Bk(v)| ≥ |S| for all v ∈ S. This is because all vertices in S have distance at most
|S| − 1 from v. Thus, what remains is to show the existence of such set S for all v ∈ V
and k. To that end, we need the following axillary lemma that was implicitly stated and
used in Kleinberg’s original work [8].

Proposition 4 (Shrinkage). For every S ∈ Σ with |S| ≥ 1/(λ − λ2) and for every
t ∈ S, there exists a t-bound set S′ ∈ Σ with λ2|S| ≤ |S′| ≤ λ|S|.

Proof. Given any set S ∈ Σ and t ∈ S, we start with S and invoke (K2) iteratively
until we reach t, producing a sequence S = S1 ⊃ S2 · · · ⊃ Sk = {t} of t-bound
subsets of S. Since |S| > λ|S|, there is a largest index i such that |Si| > λ|S| and
|Si| ≥ 2, since λ|S| ≥ λ

λ−λ2 > 1. Applying (K2) to Si yields a t-bound set Si+1 of
size at least min{λ|Si|, |Si| − 1} and less than or equal to λ|S| (by maximality of i).
Trivially, λ|Si| > λ2|S| so we only need to show that |Si| − 1 ≥ λ2|S|, for which a
sufficient condition is that λ|S| − λ2|S| ≥ 1.

This lemma will be used to show that for all vertices v one can start from the set V ,
that belongs in Σ by (K1), and inductively apply Proposition 4 to deduce the existence
of sets S containing v at all scales. More specifically, given a (λ, β)-set system Σ, let
M be the smallest integer such that λ−2M ≥ |V |. We partition the range of possible
set-sizes in Σ as I = (I1, . . . , IM ) by letting Ik = (λ−2(k−1), λ−2k], for k ∈ [M ]. The
partition I implicitly partitions all pairs of vertices into groups, such that all pairs in a
group have roughly the same distance in Σ, i.e., up to a factor of λ2. We show that for
every vertex and for every interval of the partition, there is a set with size in that interval
that contains the vertex.



Proposition 5. For every t ∈ V , for every k ∈ [M ], there exists a t-bound set S ∈ Σ
with |S| ∈ Ik.

Proof. Assume, for the sake of contradiction, that there exists a vertex t for which the
proposition does not hold. Let k0 ∈ [M ] be the largest integer such that there is no
t-bound set S′ ∈ Σ with |S′| ∈ Ik0 . If we start with V (which is trivially t-bound)
and invoke (K2) iteratively until we reach t, we get a sequence V = S1 ⊃ S2 · · · ⊃
Sk = {t} of t-bound sets. Let ik0 be the largest index i ≤ k such that |Si| ∈ Ik0+1

(by maximality of k0). The maximality of k0 implies |Sik0+1| ∈ Ik0−1. But invoking
Proposition 4 for Sik0 implies |Sik0+1| ∈ Ik0 , a contradiction.

Treating I as a distance scale, our next goal is to obtain for each vertex t, upper
and lower bounds on the number of vertices that lie at each distance-scale from t. To
achieve this we need to consider a coarser partition of the set sizes than I. To do that it
will be beneficial to use a partition built out of blocks of I, thus allowing us to utilize
Proposition 5, proven for I. In particular, the existence of a t-bound set of each size will
be the basis for obtaining lower bounds on the number of vertices at each new distance
scale from t.

We let r = r(β, λ) ≥ 2 denote the smallest integer such that λ−2(r−1) > β and
consider the partition that results by grouping together every r consecutive intervals of
I. That is, for γ(β, λ) = λ−2r(β,λ), we define the partition A = A(γ) consisting of
the intervals Ak = (γk−1, γk], k ∈ [K], where K is the smallest integer such that
γK ≥ |V | − 1. Having defined A, we now let Pk(v) denote the number of vertices
whose distance from v lies in the set Ak and we let Pk = 1

2

∑
v∈V Pk(v) denote the

total number of pairs of vertices whose distance lies in Ak.

Lemma 5 (Bounded Growth). Let α = (λ2 − β/γ) > 0 and A = (β − λ2/γ). For
all k ∈ [K] and v ∈ V ,

α · γk ≤ Pk(v) ≤ A · γk .

Proof. First observe thatA is a coarsening of I since γ = λ−2r and r ≥ 2 is an integer.
Next, let Bk(v) =

∑
i≤k Pk(v) be the number vertices in V whose distance from v lies

in A1 ∪ · · · ∪ Ak, i.e., is no more than γk. Condition (K3) asserts that Bk(v) ≤ βγk.
On the other hand, by Proposition 5, we know that for any v ∈ V there is a v-bound set
S ∈ Irk ⊂ Ak. Since, all vertices in S have distance at most |S| ≤ γk from v, we get
that Bk(v) ≥ |S| ≥ λ−2(rk−1) = γkλ2. Therefore, for all k ∈ [K],

λ2γk ≤ Bk(v) ≤ βγk . (21)

Using the representation (20) and invoking (21), we get

λ2γk − βγk−1 ≤ Pk(v) ≤ βγk − λ2γk−1

which is equivalent to the claimed statement. The fact α > 0 is implied by our choice
of γ.

Thus we have shown property (H1). Proceeding further, we need to show that the semi-
metric dΣ satisfies also the isotropy property (Section 3), i.e. that the size of the set



Dλ(s, t) = {v ∈ V : d(s, v) ≤ γkst and d(v, t) ≤ λd(s, t)} is proportional to γkst ,
where kst is the scale of d(s, t). To do that we are going to show something stronger.
Given any two vertices s 6= t ∈ V , consider a Sst ∈ Σ of minimal size such that both
s, t ∈ S. Then for all k ≤ kst define the following set Gk(s, t) = {v ∈ Sst : d(s, v) ∈
Ak and d(v, t) ≤ λ|S|} of vertices in Sst whose distance from s lies in the interval
Ak (scale k) and whose distance from t is no more than λ|Sst|.

Lemma 6 (Isotropy). For every s 6= t ∈ V with |Sst| ≥ 1/(λ− λ2), we have that

|Gkst(s, t) ∪Gkst−1(s, t)| ≥
(
α

γ

)
γkst .

Proof. Proposition 4 implies that there is a t-bound set S′ ∈ Σ with λ2|Sst| ≤ |S′| ≤
λ|Sst|. Thus, a λ2 fraction of the vertices in Sst have distance from t at least a factor λ
less that |Sst|. Having established an abundance of “good” vertices in Sst, we are left
to show that a constant fraction of them are in the top two distance scales kst, kst − 1
from s (recall that |Sst| ∈ Akst ). We start by noting that Z =

∑
i≤k |Gi(s, t)| ≥ |S′|,

as the sum must count the vertices in S′. Since Sst ∈ |Akst | and |S′| ≥ λ2|Sst|,
we get Z ≥ λ2γkst−1. On the other hand, the good vertices in the bottom kst − 2
distance scales from s are a subset of all vertices containing s at those distance scales,
a quantity bounded by (K3) as

∑
i≤k−2 |Gi(s, t)| ≤ βγkst−2. Therefore, |Gkst(s, t) ∪

Gkst−1(s, t)| ≥ λ2γkst−1 − βγkst−2.

Proof of Theorem 2. In order to prove that the set system defines a coherent geometry,
we need to show that properties (H1) and (H2) hold for some γ > 1. Our two lemmas
achieve exactly that. The first property follows from Lemma 5 and the second property
follows from Lemma 6 since Gkst(s, t) ∪Gkst−1(s, t) ⊂ Dλ(s, t).

7 Proof of Theorem 3

Recall that in RBA, for each vertex u ∈ V , a single link is added from u to a random
vertex v with probability given by

PRBA(u, v) =
1

Z

1

ranku(v)
. (22)

Here we show that the Kleinberg’s original proof can be applied with ease when instead
of the semi-metric induced by set-system, we have a semi-metric corresponding to a
coherent geometry. There are basically two steps. We first upper bound the normalizing
constant Z and then lower bound the probability that for a given pair (s, t) we find an
edge in the first C log2(n) steps of a path along the substrate that reduces the distance
to t by a constant factor.

Proposition 6 (Bounded Growth). For a coherent geometry (V, d), ∃C < ∞ such
that Z ≤ C log(n).



Proof. For a given vertex u, we divide vertices depending on their distance scale k ∈
{0, . . . , logγ(n)} from u. For k ≥ 0, we know from property (H1) that there are at most

Aγk such vertices. Further, we also know that |Bk−1(u)| =
∑k−1
i=0 Pk(u) ≥ aγ

k−1
γ−1 .

Using these two facts we have:

Z =
∑
v∈V

Pα(u, v) ≤ A

a
+

log(n)∑
k=1

Pk(u)
1

|Bk−1(u)|

≤ A

a
+
A

a

log(n)∑
k=1

γk
γ − 1

γk − 1
≤ A

a

(
1 + γ logγ(n)

)

Finally, to complete the proof, we are going to employ once again reducibility.

Proof of Theorem 3. Fix any two vertices s, t, the probability of finding a long-range
edge at s reducing the distance by a constant factor is at least:

|D(s, t)|
Z

1

Pk(s)
≥ 1

C log n

φγk

Aγk
=

φ

AC

1

log n

Thus, the probability of the event Bst that no such edge exists after C ′ log2(n) trials is
at most:

P(Bst) ≤
(

1− φ

AC

1

log n

)C′ log2(n)

≤ e−
φC′
AC logn ≤ n−

φ
ACC

′

For C ′ large enough and a union bound over the Θ(n2) possible pairs of vertices, we
get that if Ed is the random set of edges added through RBA and E0 is a substrate for
the coherent geometry (V, d), then the graph G(V,E0 ∪ Ed) is d-navigable with high
probability.
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